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Most neurons in the nervous system appear to contain and release more than one chemical acting as a neurotransmitter or 

neuromodulator. Cotransmission can therefore be considered the rule rather than the exception. Indeed, cotransmission of a 

classical neurotransmitter and a peptide is a ubiquitous phenomenon, but several neuron types can also contain more than one classical 

neurotransmitter [glutamate, γ-amino butyric acid (GABA), acetylcholine, dopamine, etc.]. Although the expression of peptide cotransmitters 

is known to be highly regulated in response to various physiological, chemical and pathological signals, new data now suggest that a similar 

situation prevails in neurons that co-release two classical transmitters. In this review we will consider a number of recently described 

examples of cotransmission implicating more than one classical neurotransmitter. We will also consider new data showing that during 

development and later in adulthood, as well as in the context of disease, the neurotransmitter phenotype of neurons can be highly plastic as 

revealed by changes in the expression of neurotransmitter synthesis enzymes and vesicular neurotransmitter transporters.
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Introduction

Dale postulated that a neuron functions as a metabolic unit, 
whereby a process occurring in the cell can influence all of the 
compartments of that given neuron (1). Through the years, this 
was unfortunately transformed in the literature to a principle stat-
ing that “a single cell releases only one neurotransmitter.” Until 
recently, this statement has influenced many neuroscientists to 
consider with skepticism the idea that classical neurotransmitters 
could be co-released from neurons. 

It is now clear that the “one neuron, one neurotransmitter” 
postulate is the exception rather than the rule. Indeed, the co-
release of a fast-acting “classical” neurotransmitter and a peptide, 
nucleotide (e.g., ATP), Zn2+, neurotrophic factor, nitric oxide, or 
endogenous cannabinoids––among other modulators––has been 
established. In all these cases the co-released factors are synthe-
sized in the cell (except for Zn2+), released in a selectively regulated 
fashion, act on receptors, and are removed or inactivated by specif-
ic mechanisms. These characteristics help to confer upon the fac-
tors the status of “neurotransmitter,” and they serve a modulatory 
purpose. On the other hand, the coexistence and co-release of two 
or more “classical” neurotransmitters, each conveying a “principal 
message,” has been studied less extensively and has in some ways 
remained a curiosity. In the present review, our objective is to show 
that, in fact, co-release is not that uncommon and is now known 
to exist in a variety of neural systems. In addition, we argue that 
although many populations of neurons may not release two classi-
cal neurotransmitters under basal conditions, many appear to do 
so early during development or postnatally in response to a variety 
of physiological and pathophysiological stimuli.

Co-release of Neurotransmitters dur-
ing Development and in the Adult under 
Basal Conditions

Co-release of ATP with Acetylcholine or 
Norepinephrine

One of the first known examples of co-release of two classical or 
small-molecule neurotransmitters was provided by the discovery 
that the adenosine-derived nucleotide ATP is co-released with 
acetylcholine (ACh) from the electric organ of Torpedo (2, 3) and 
in the neuromuscular junction of the rat (4, 5). ATP appears to be 
co-released with ACh or with norepinephrine (NE) from neurons 
of the autonomic nervous system (6–10). The co-release of ATP 
may serve physiological purposes such as presynaptic inhibition 
of excitatory neurotransmission secondary to ectoenzyme-medi-
ated catalysis of ATP, and activation of adenosine receptors (11). In 
pathophysiological conditions (i.e., after neuronal injury), activation 
of purinergic receptors may also play a neuroprotective role (11).

Co-release in Invertebrate Neurons

Early work in invertebrates has also provided evidence for the 
co-release of classical neurotransmitters. For example, giant meta-
cerebral neurons of Helix aspersa (garden snail) were first identi-
fied as using serotonin [5-hydroxytryptamine (5-HT)] as primary 
neurotransmitter but later shown to also produce and release 
ACh as a cotransmitter (12). Some 5-HT neurons of Aplysia also 
contain additional transmitters, including ACh and octopamine (a 
monoamine closely related in structure to NE) (13), whereas giant 
neurons from Lymnaea stagnalis (great pond snail) can contain 
both dopamine and serotonin (14). The specific physiological role 
of such forms of cotransmission in invertebrate neurons has not 
been determined.

Co-release of Acetylcholine and Norepinephrine 
from Sympathetic Neurons

Elegant studies by Patterson and by Furshpan and their col-
leagues, published in the mid-1970s and early 1980s, demon-
strated that postganglionic sympathetic neurons can release ACh 
as a cotransmitter in addition to NE. These authors placed neu-
rons from the superior cervical ganglion of rats in primary culture 
together with dissociated heart cells. Recordings from the heart 
cells showed that the neurons first established contacts releas-
ing NE. Over time in culture, however, the neurons gradually 
switched to a cholinergic phenotype leading to the production of 
nicotinic synaptic responses (15, 16). The specific benefits from 
such a switch are unclear. However, a phenotypic switch of this 
type apparently recapitulates the development of the sympathetic 
innervation of sweat glands: outgrowing sympathetic neurons start 
out with a noradrenergic phenotype but subsequently change to a 
cholinergic phenotype in response to the release of a secreted fac-
tor produced by the sweat glands (sweat gland factor or SGF) (17).

Co-release of GABA and Glycine

GABA and glycine were the first pair of fast-acting neurotransmit-
ters unequivocally proven to be co-released from synapses in the 
mammalian central nervous system (CNS). This phenomenon 
was observed in the synapse made by interneurons and moto-
neurons of the spinal cord of neonatal rats (18). The coexistence 
of both amino acids in single cells of the spinal cord was already 
known (19), and it was later determined that these two amino 
acids are packaged in and released from the same vesicles (20, 21). 
Interestingly, GABA and glycine are expressed in different amounts 
and released at different timepoints during development in the 
lateral superior olive (22) and the medial nucleus of the trapezoid 
body (23). Of course, although they are co-released, pure GABA 
type A (GABA

A
) receptor (GABA

A
R)- or glycine receptor–mediated 

synaptic responses can occur as a function of the kind of recep-
tors expressed by different target cells (24). In the spinal cord, 
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fast glycinergic conductances have been proposed to efficiently 
hyperpolarize the cell, whereas smaller and slower GABA

A
 com-

ponents could control shunting and the time course of inhibition. 
Alternatively, differential modulations of GABA

A
 and glycine recep-

tors may permit fast and synapse-specific adaptation of inhibition 
to network states of activity. Also, the presence of receptors for one 
or the other kind of neurotransmitter allows for differential modu-
lation and, thus, differential circuit control. This mechanism would 
be extremely useful, because cell-to-cell signaling is not fully con-
strained by synaptic wiring and synapse independence (24).

Co-release of Glutamate and GABA

It is noteworthy that a set of GABAergic-glycinergic neurons in 
the medial nucleus of the trapezoid body can also transiently 
release glutamate during development (25) (see below). Similarly, 
GABA is transiently released from the glutamatergic granule 
cells of the hippocampus (26). Unlike the actions of GABA and 
glycine, which are both inhibitory amino acids, glutamate and 
GABA have opposing actions in the adult. In 1991, Sandler and 
Smith provided the first data to suggest the presence of GABA in 
the “glutamatergic” mossy fibers of the hippocampal granule cells 
in monkey and human hippocampi (27). Using GABA-specific 
antibodies, they found immunoreactive sites in mossy fiber ter-
minals that made asymmetric synaptic contact with spines arising 
from large dendrites of CA3 pyramidal cells. From this immuno-
anatomical evidence, they concluded that GABA could either be 
taken up from the extracellular space or that it originated from 
an alternative route of synthesis (perhaps from γ-hydroxybutyr-

ate). This latter possibility 
was posited because neither 
of the isoforms of the rate-
limiting enzyme for GABA 
synthesis, glutamic acid 
decarboxylase (GAD), was 
known to be present in these 
neurons. Thus, the authors 
suggested that if the mossy 
fibers contained GABA, then 
at least one component of the 
inhibitory synaptic potentials 
evoked in pyramidal cells by 
dentate gyrus stimulation had 
to be of mossy fiber origin. In 
this way, GABA released by 
the mossy fibers could finely 
modulate the normal mossy 
fiber glutamatergic responses. 

Evidence clarifying 
the presence and origin of 
GABA in the mossy fibers 
was provided by Sloviter et 

al. These authors conclusively demonstrated that immunoreac-
tive sites specific for GABA and for the 67-kDa isoform of GAD 
(GAD

67
) were normally present in the mossy fibers of rats, mon-

keys, and humans. Seizures increased the amounts of GABA and 
of both the 65- and 67-kDa isoforms of GAD in mossy fibers 
(28). Subsequently, electrophysiological methods revealed that the 
activation of mossy fibers, in the presence of ionotropic glutamate 
receptor antagonists, could produce GABA

A
R-mediated mono-

synaptic responses in CA3 after seizures (29, 30). In developing 
rodents, the release of GABA from mossy fibers is a normal phe-
nomenon (26, 31, 32); however, this release is transient, because 
the release of GABA (and the expression of GABAergic markers in 
the granule cells) ceases upon completion of the development of 
this pathway (26) (Figure 1). This early GABAergic activity might 
contribute to the refinement of neuronal connectivity before the 
establishment of the adult neuronal circuit (33). Other examples 
in which the expression of a dual glutamatergic-GABAergic phe-
notype has developmental implications were recently described. 
For example, the immature GABA-glycinergic projections of the 
medial nucleus of the trapezoid body transiently express a gluta-
matergic phenotype (25); this has been proposed as a mechanism 
for the developmental reorganization of this inhibitory circuit. 

For a cell to respond to a neurotransmitter, the corresponding 
receptor must be properly located at the postsynaptic site. Within 
this context, how can neurons respond to cells releasing two 
classical neurotransmitters? In cultured neurons, GABA

A
Rs and 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 
(AMPARs) can cluster in a single hippocampal pyramidal cell in 
apposition to different terminals of the same (presynaptic) gluta-
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Figure 1. Plasticity of the dual glutamatergic-GABAergic phenotype of the granule cells. During development, the 
granule cells and their terminals express the machinery for the synthesis and release of glutamate and GABA. Upon its 
completion, at the end of the third postnatal week, the GABAergic phenotype is decreased and the granule cells exclu-
sively express a glutamatergic phenotype. Seizures and sustained enhancement of excitability transiently increase the 
GABAergic phenotype in adult neurons. MF, mossy fiber.
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matergic fiber (34). This evidence suggests that the “mismatching” 
of the glutamatergic and GABAergic elements on either side of 
the synaptic connection reflects a common signal involved in the 
alignment of presynaptic and postsynaptic components during the 
formation of excitatory and inhibitory synapses (34). Interestingly, 
excitatory nicotinic receptors and inhibitory glycinergic receptors 
have also been found apposed to a presynaptic cholinergic termi-
nal, although in distinct postsynaptic membrane microdomains 
(35). These data suggest that postsynaptic sites possess the ability 
to adjust to dynamic shifts in the release of neurotransmitters of 
opposing functions. In particular, in the highly plastic mossy fiber 
synapse, AMPARs and GABA

A
Rs colocalize in apposition to release 

sites on mossy fibers, where glutamate and GABA coexist (36). 

Additionally, GABAergic interneurons of the hippocampus contain 
GABA and aspartate at presynaptic boutons apposed to GABARs 
and N-methyl D-aspartate (NMDA) receptors (37).

Co-release of Monoamine Neurotransmitters 
and Glutamate

Although dopamine (DA) and other monoamine neurons in the 
vertebrate CNS have long been known to contain a number of 
peptide cotransmitters, such as cholecystokinin (CCK) and neu-
rotensin, recent work now suggests that at least a proportion 
of such neurons also use glutamate as a cotransmitter (38–41). 
Immunohistochemical data first revealed that a number of mono-

TH

DA VMAT2

Glu

VGluT2

Figure 2. Schematic representation of the synaptic and non-synaptic axon terminals established by dopamine neurons. DA neurons are known to estab-
lish two morphologically distinguishable axon terminals: some that are non-synaptic and others that are synaptic. The non-synaptic terminals (varicose-like struc-
tures) display no obvious pre- and postsynaptic specialization (see lower illustration showing a magnified view of a single non-synaptic terminal), contain tyrosine 
hydroxylase (TH) and could be specialized for the release of DA. The synaptic terminals display a more classical active zone, postsynaptic density and synaptic 
cleft, and could be the site of VGluT2 expression and of glutamate (Glu) release (see upper illustration showing a magnified view of a synaptic axon terminal).
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amine neurons are strongly immunopositive for glutamate (42–47) 
as well as for phosphate-activated glutaminase (48), an enzyme 
involved in the synthesis of neurotransmitter pools of glutamate. 
Studying isolated 5-HT neurons in culture, Johnson demonstrated 
that monoamine neurons could, indeed, not only contain but also 
release glutamate from synaptic vesicles (49). Similar results were 
subsequently published for DA neurons (47, 50, 51). Finally, more 
recently, electrophysiological recordings obtained from mouse 
brain-slice preparations and from anesthetized rats showed that 
extracellular stimulation of presumed DA neurons in the ventral 
tegmental area (VTA) generates glutamate-mediated postsynaptic 
responses in ventral striatal and prefrontal cortex neurons, respec-
tively (52, 53). Earlier indirect results obtained with a slice culture 
preparation also yielded a similar conclusion (54). 

A better understanding of glutamate cotransmission by 
monoamine neurons requires explaining why these neurons are 
able to package and release glutamate, whether this is a capacity 
shared by all mesencephalic DA neurons, and whether all axon 
terminals of any given glutamate-releasing DA neuron do in fact 
release both neurotransmitters. Answers to all these questions are 
not available; however, the recent cloning and characterization of 
three vesicular glutamate transporters (VGluT1–3) in the CNS has 
provided important clues (55–67). Interestingly, the initial map-
ping of the expression of the mRNA of these transporters revealed 
that VGluT2 is found in subpopulations of noradrenergic neurons 
in the brain stem whereas VGluT3 is found in 5-HT neurons of 
the Raphe nuclei (67–69). Finally, although there is no widespread 
regional expression of any of the three VGluTs in adult mesen-
cephalic DA neurons, VGluT2 is expressed by mesencephalic rat 
DA neurons in primary culture, as demonstrated by immunocy-
tochemistry and single-cell RT-PCR (70). That a subset of mesen-
cephalic DA neurons in vivo also express VGluT2 was recently 
confirmed by in situ hybridization (71, 72), validating earlier pre-
liminary reports (73, 74). Further experiments are now required 
to identify the signals that regulate the expression of VGluT2 and 
thus of a glutamatergic phenotype by DA neurons in vivo. A cur-
rent hypothesis is that DA neurons may establish two sets of axon 
terminals: some that are synaptic and others that are non-synaptic 
(i.e., free nerve endings) (75). A majority of terminals, most likely 
those that have been described as non-synaptic could be special-
ized for the release of DA. The other subset of terminals, showing 
a more classical synaptic structure with pre- and postsynaptic 
specialization, could be specialized for the release of glutamate, 
either alone or together with DA (Figure 2) (38). The physiologi-
cal significance of dopamine-glutamate cotransmission is also 
presently unclear; however, DA neurons are known to encode 
motivational changes, reward predictions or stimulus salience 
(i.e., novel, infrequent stimuli) via fast transient neuronal activ-
ity (76, 77). Considering that DA itself signals through activation 
of G protein–coupled receptors and cascades that are relatively 
slow, it is possible that such fast information encoding may be 
mediated through glutamate release by DA neurons. In addition 

to glutamate, GABA might also be present in DA neurons and act 
as a cotransmitter. Indeed, immunocytochemical data shows that 
a subset of DA neurons in the substantia nigra compacta contains 
GAD (78). Indirect evidence also suggested the presence of GAD 
in 5-HT neurons (79). These findings are controversial considering 
an earlier report showed that DA neurons lack immunoreactiv-
ity for GABA in the rat (47). In primary culture, however, a small 
subset of DA neurons do indeed appear to contain GABA (47, 80), 
although they appear not to release it synaptically. We can there-
fore conclude that although a minority of DA (and perhaps 5-HT) 
neurons may express GAD and synthesize GABA, in some cases, 
this transmitter does not appear to act as a bona fide cotransmitter 
in these neurons.

Can Neurotransmitter Phenotypes 
Change in Response to Changes in 
Activity or Disease? 

Following initial work on the role of activity and calcium influx 
on neurotransmitter phenotype choice in sympathetic neurons 
(81), an increasing amount of evidence suggests that during both 
development (in utero) and the postnatal period, the neurotrans-
mitter phenotype of neurons is plastic and can be adapted as a 
function of activity or various environmental signals. Thus, activi-
ty-dependent phenotypic plasticity occurs in mature animals, sug-
gesting that a dormant phenotype can be put in play by external 
inputs. A few examples are briefly reviewed here.

Activity-dependent Homeostatic Changes 
in Neurotransmitter Phenotype

Neurons of the Xenopus laevis embryonic spinal chord gradually 
give rise to the cholinergic, GABAergic, glycinergic, and gluta-
matergic neurons found in adult animals. The neurotransmitter 
phenotype of these neurons is influenced by their spontaneous 
firing activity and by the intracellular calcium spikes associated 
with firing (82, 83). Silencing of these developing spinal neurons 
by overexpression of potassium channels or by blocking calcium 
spikes with sodium and calcium channel antagonists enhances 
the expression of cholinergic and glutamatergic markers (choline 
acetyltransferase and VGluT2, respectively) whereas enhance-
ment of their activity by overexpression of voltage-dependent 
sodium channels or by using the sodium channel activator 
veratridine inhibits the expression of these same phenotypic 
markers. The neurotransmitter phenotype plasticity observed in 
this model appears to be homeostatic in terms of maintaining 
an adequate balance of excitatory and inhibitory transmission 
because the increased or decreased expression of the cholinergic 
and glutamatergic phenotypes was accompanied by opposite 
changes in the proportion of neurons containing GABA or glycine. 
Motoneurons normally expressing cholinergic markers can thus 
begin expressing GABA in response to increases in calcium spik-
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ing. Interestingly, plasticity of neurotransmitter phenotype in these 
neurons is accompanied by corresponding adaptations in the post-
synaptic receptor repertoire (84).

Transmitter Phenotype Changes 
in Hypothalamic Neurons

Basal co-release of glutamate and GABA from a set of neurons is 
documented in the hypothalamus of adult female rats during the 
ovulation cycle (85). Indeed, cells in the anteroventral periventric-
ular nucleus of the hypothalamus, which are mainly GABAergic, 
express glutamatergic markers. Furthermore, the expression of 
markers of both phenotypes is regulated by photoperiodic signals 
and estradiol stimulation. In addition, phenotypic plasticity of 
a type similar to that found in spinal neurons (discussed above) 
has also been described in hypothalamic neurons. When placed 
in primary culture, embryonic neurons of the medial hypothala-
mus display a range of neurotransmitter phenotypes, including 
glutamatergic, GABAergic, and dopaminergic. A small proportion 
(less than 1%) of cholinergic neurons is also found. Interestingly, 
chronic blockade of NMDA-subtype glutamate receptors or 
calcium-channel antagonists induces a marked increase in the 
proportion of neurons expressing choline acetyltransferase, associ-
ated with a large increase in ACh-induced excitation and calcium 
influx in neurons (86, 87). Although the physiological significance 
of this observation has not been closely examined [but see (88)], 
the data show quite clearly that a subset of hypothalamic neurons 
have the potential to modify their neurotransmitter phenotype in 
response to chronic changes in the release or synaptic action of 
classical neurotransmitters.

Magnocellular vasopressin and oxytocin-containing hypotha-
lamic neurons also demonstrate neurotransmitter phenotype plas-
ticity. Increasing the concentration of sodium chloride in the drink-
ing water of rats induces an increase in the expression of VGluT2 
mRNA and protein in these neurons (89–91). These data suggest 
that glutamate co-release in this neuronal population is highly plas-
tic even at postnatal stages in response to physiological stimuli.

Glutamate-GABA Co-release in Epilepsy

Epileptic activity increases the GABAergic markers in the glu-
tamatergic granule cells of the hippocampus: expression of 
GABA, GAD

67
, and vesicular GABA transporter (VGAT) mRNAs 

is elevated after seizures (28, 92–94) (Figure 1). and under these 
conditions, activation of the mossy fibers in the presence of iono-
tropic glutamate receptor antagonists produces GABA

A
R-medi-

ated monosynaptic responses (29, 30, 95, 96) and the release of 
GABA from the mossy fibers produces a tonic GABA

A
R-mediated 

inhibition of spontaneously occurring oscillatory activity in CA3 
(97). Interestingly, the presynaptic modulation of glutamate and 
GABA release from the mossy fibers appears to be controlled by 
different metabotropic glutamate receptors (33, 98). Epileptic 

activity is generated when the balance of excitation and inhibition 
is impaired and when excitatory activity––normally conveyed by 
cells releasing glutamate––surpasses inhibition (normally exerted 
by cells releasing the inhibitory amino acid GABA). Thus, because 
a tight maintenance of the excitation-inhibition balance is needed 
to avoid the emergence of epileptic activity, the emergence of 
GABAergic activity from an originally glutamatergic pathway 
would provide an effective means to rapidly auto-regulate the 
system by limiting excitability (30, 97). After the seizure-evoked 
emergence of the GABAergic phenotype in granule cells––and 
thus, in the mossy fiber pathway––the spontaneous oscillatory 
activity of area CA3 is modulated in a manner consistent with 
tonic GABA

A
-receptor-mediated inhibition, whereby β/γ oscilla-

tory activity is depressed, probably to limit further the spread of 
hyperexcitability (97). Oscillatory activity in the β/γ band (20-80 
Hz) is thought to be of key importance for higher brain functions. 
Oscillations provide a temporal framework, with regards to which 
neurons may either fire in synchrony or not. The synchrony of 
firing carries meaning, in that such synchrony (or its absence) 
defines whether particular groups of neurons are devoted to a 
common task. Thus, inhibition of oscillatory activity in CA3 by 
enhanced GABA transmission from the dentate gyrus could, in 
part, underlie the deficits in storage of information in the hippo-
campal network after seizures.

Are There Advantages to Cotransmission?

Functional cotransmission resulting in the release of two or more 
neurotransmitters by a single neuron implies that postsynaptic 
receptors for both transmitters exist in front of or in the vicinity of 
the terminal. In the context of such a configuration, a neurotrans-
mitter could eventually modulate the action of another at either 
side of the synapse. The existence of different postsynaptic recep-
tors apposing a single terminal could allow differential control of 
the excitability of a given neuron and the receptors for each neu-
rotransmitter could also be differentially modulated. It is possible 
that co-release adds a safety factor to the communication process. 
Such a mechanism could compensate for activity- or pathology-
dependent alterations in postsynaptic receptor subunits. Whether 
and how this actually occurs in various neuronal populations is an 
open field of research.

Current Challenges

The work reviewed here illustrates the fact that the neurotransmit-
ter repertoire of neurons is highly plastic, and it is likely that in 
the near future, a number of additional examples of neurons co-
releasing classical neurotransmitters will be described. One of the 
major challenges that lie ahead will be to identify the physiologi-
cal and pathophysiological signals that regulate such plasticity in 
adult animals and in humans.  doi:10.1124/mi.7.3.5
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