
Composition Is Almost (but Not Quite)

as Good as S-1-1∗

Yves Marcoux
EBSI, Université de Montréal,

C.P. 6128, succ. Centre-ville, Montréal (Québec), Canada H3C 3J7

E-mail: yves.marcoux@umontreal.ca

Abstract

We establish a polynomial upper bound on the time complexity of an
s-1-1 function in programming systems with a linear time composition
function. This improves the double-exponential upper bound of Machtey
and Young [9], the only previously known upper bound, and invalidates
the belief expressed twice in the literature [8, 19] that it could not be
significantly improved. We then show our upper bound to be tight by
exhibiting a family of acceptable programming systems for which it is op-
timal. We deduce several bounds on the time complexity of composition
functions, s-1-1 functions, and various other semantic transformations of
programs, in programming systems with a linear or polynomial time com-
position function. In particular, we show the existence of an acceptable
programming system with a quadratic time composition function, but
no subexponential time s-1-1 function. In one interpretation from [11],
this last result states that the complexity of a composition function for
an effective programming system does not give an upper bound on the
complexity of the “task of programming” in that programming system.
In contrast, results by Royer [19] indicate that this task is essentially no
more complex than computing an s-1-1 function.

1 Introduction

1.1 Basic definitions

Let N be the set of nonnegative integers, and PartRec the class of unary partial
recursive functions from N to N . A programming system [9] is a (total) surjec-

∗This is the correct version of the article with the same title published in Theoretical Com-
puter Science, vol. 120, 1993, pp. 169-195. A preliminary version appeared in the Proceedings
of the Fourth Annual Conference on Structure in Complexity Theory, IEEE Computer Society
Press (1989), under the title Composition is Almost as Good as S-1-1.

1

tion from N onto PartRec. If ψ is a programming system and i an integer, ψi

denotes ψ(i), and we say i computes or is a (ψ-)program for ψi. Two programs
are said to be equivalent iff they compute the same partial function.

The symbol φ denotes a fixed programming system induced by some standard
computational model (e.g., the Turing machine [9, 3]), and some fixed encoding
of the computing devices of this model. We say a programming system ψ is
effective iff it corresponds to an interpretable programming language, i.e., iff
there exists a Turing machine M such that for all i and x, ψi(x) = M(i, x).
Intuitively, M takes a ψ-program and a piece of data, and runs the program
against that piece of data. We say ψ is programmable iff there exists a recur-
sive function t such that for all i, ψt(i) = φi. For any such t, we say ψ is
programmable via t. Intuitively, t translates programs from a standard formal-
ism (φ) into ψ-programs. We say ψ is acceptable iff it is both effective and
programmable. Effectiveness and programmability are nontrivial and indepen-
dent properties of programming systems [16, 15]. The programming system φ
is trivially acceptable.

Acceptable programming systems are abstractions of exactly those algorithm
description formalisms that give rise to essentially the same theory of com-
putability as the classical models of computation, such as the Turing machine,
the random access machine, and the lambda-calculus (computing over Church’s
numerals). By Church’s thesis, and assuming implicit coding of programs and
data, one can view acceptable programming systems as abstractions of general
purpose programming languages, i.e., formalisms for describing computer actions
that have full computational power. In fact, with their semantics appropriately
“twisted” to fit the programming system framework, all known general purpose
programming languages (APL, PASCAL, etc.) are easily shown to correspond
to acceptable programming systems. For this reason, we allow ourselves in this
paper to discuss acceptable programming systems in the more intuitive terms of
programming languages. In particular, “acceptable programming system” and
“programming language” are used interchangeably, although we use the latter
mainly in the more intuitive passages.

A composition function for (or instance of composition in) a programming
system ψ is a 2-ary function c such that for all programs i and j, ψc(i,j) =
ψi ◦ ψj = λz.ψi(ψj(z)). An s-1-1 function for (or instance of s-1-1 in) ψ is a
2-ary function s such that for all program i and integer x, ψs(i,x) = λy.ψi(〈x, y〉),
where 〈·, ·〉 is any fixed pairing function. Since PartRec is closed under com-
position and fixing the first parameter, every programming system has some
composition function and some s-1-1 function. Not all programming systems,
however, have recursive composition and s-1-1 functions (also called effective
instances of composition and s-1-1). It is well known that an effective program-
ming system is acceptable iff it has either a recursive s-1-1 function or a recursive
composition function, iff it has both [16, 9]. Many other characterizations of
acceptable programming systems can be found in [19] and [11].

Composition and s-1-1 functions can be seen as implementations of two pro-

2

gramming techniques. From this perspective, they represent actions performed
by a programmer in the task of programming. For instance, a composition func-
tion corresponds to the programming technique which consists in functionally
composing two programs together. This programming technique is quite natu-
rally referred to as “program composition”. An s-1-1 function is said to realize
the programming technique of “program specialization”, because the output of
an s-1-1 function is a specialized version of the input program, operating on a
fixed value of one of the parameters (the reader may here want to review the
formal definition of an s-1-1 function).

1.2 Significance of composition and s-1-1

Program composition is conceptually very close to the idea of “modular pro-
gramming”; it is thus readily seen to be a natural and important programming
technique. Program specialization, on the other hand, may seem more remote
from day-to-day life. However, there are two areas in which it can be of direct
interest.

First, program specialization can be seen as a generalization of textual sub-
stitution, which is but one way of achieving the former. Thus, program special-
ization could serve as a basis for the study (or even implementation) of other
mechanisms of programming languages based on textual substitution, such as
parameter binding and Currying [22].

Second, a special case of program specialization, known as partial evaluation,
is actually quite widely used as an automatic program generation technique.
Partial evaluation can be described as program specialization with a concern
for the efficiency of output programs. Research in partial evaluation consists
in developing “clever” program specializers (i.e., “clever” s-1-1 functions) that
return computationally efficient programs. Partial evaluation has proven to be
very useful in such diverse fields as computer graphics, database query process-
ing, compiling, compiler generation, and scientific computing [4, 5].

Thus, both composition and s-1-1 correspond to interesting and fundamental
programming techniques.

1.3 Overview of this paper

As mentioned in Subsection 1.1, all acceptable programming systems have re-
cursive composition and s-1-1 functions. A priori , however, it could be the case
that some have computationally efficient composition and s-1-1 functions, while
others do not.1 Since composition and s-1-1 functions represent important as-
pects of the task of programming in a programming system, this would certainly
be a criterion for preferring some acceptable programming systems over others.

1Note that we are now concerned with the complexity of the composition and s-1-1 functions
themselves, not, as in partial evaluation, of the programs they return. Unless otherwise stated,
“complexity” is to be understood as “Turing machine time complexity”.

3

While all common general purpose programming languages have efficient
composition and s-1-1 functions (the reader may check his or her favorite lan-
guage), constructions such as the one we give in the proof of Theorem 3.1 below
show that some acceptable programming systems have only arbitrarily complex
composition and s-1-1 functions. Thus, all acceptable programming systems
are indeed not equal with respect to the complexities of composition and s-1-1
functions.

However, a few statements can be made about the relative complexities of
composition and s-1-1 functions within the same acceptable programming system.
One first such statement is based on an analysis of a classical construction in
recursion theory for obtaining a composition function from an s-1-1 function.
Machtey, Winklmann, and Young have observed in [8] that the composition
function obtained by this construction is essentially no more complex than the
s-1-1 function used as a starting point. Thus, for instance, if an acceptable
programming system has a linear time s-1-1 function, then it also has a linear
time composition function. This indicates that possessing an efficient s-1-1
function is a desirable property for an acceptable programming system, because
it guarantees not only an efficient implementation of program specialization,
but also one of program composition.

Another statement that can be made is that if an acceptable programming
system possesses a linear time composition function, then it also possesses a
double-exponential time s-1-1 function. Based on this statement alone, we can-
not deduce that possessing an efficient composition function is as desirable a
property for acceptable programming systems as possessing an efficient s-1-1
function. It is thus interesting to see if the statement can be strengthened.

The statement is based on the analysis of a construction by Machtey and
Young of an s-1-1 function from a composition function [9, Theorem 3.1.2]. Fur-
ther analysis shows that the obtained s-1-1 function sometimes requires double-
exponential time to compute. (Both the construction and the analysis are given
in Subsection 2.1.) Thus, the statement cannot be strengthened, unless we use
a different construction.

In two different instances in the literature [8, 19], the belief has been ex-
pressed that the Machtey and Young construction could not be improved signifi-
cantly. This belief was in both cases based on the intuition that there might exist
a programming system for which all s-1-1 functions would be much more com-
plex than some (intuitively, the “easiest”) composition function. In [8, p. 53],
Machtey, Winklmann, and Young write that it would not be counterintuitive if,
in some programming system, the task of computing any s-1-1 function turned
out to be significantly more complex than that of computing some composition
function, to the point of making the Machtey and Young construction close to
optimal. In [19, pp. 39, 152], Royer is more precise and suggests that one could
construct an acceptable programming system with a linear time composition
function, but no subexponential time s-1-1 function.

Our first main result, Theorem 2.2, invalidates both this belief and the intu-

4

ition on which it is based. This theorem states that if an acceptable program-
ming system possesses a linear time composition function, then it also possesses
a polynomial time s-1-1 function, where the degree of the polynomial is es-
sentially the base 2 logarithm of the linear time constant of the composition
function. Our proof of Theorem 2.2 is based on an improvement of Machtey
and Young’s construction.

Our second main result, Theorem 3.1, states that the polynomial upper
bound of Theorem 2.2 is optimal for a large family of acceptable programming
systems. To prove this, we construct, for each rational2 constant q ≥ 1, an
acceptable programming system with a composition function computable in
time linear with constant q, and for which the upper bound of Theorem 2.2 is
optimal.

As a corollary to the proof of Theorem 3.1, we show the existence of an ac-
ceptable programming system with a quadratic time composition function, but
no subexponential time s-1-1 function (Corollary 3.5). Under the common hy-
pothesis that computations requiring more than polynomial time are not feasible
practically, this programming system has a practically computable composition
function but no practically computable s-1-1 function. In contrast, remember
that an acceptable programming system with a polynomial time s-1-1 function
is guaranteed to possess a polynomial time composition function.

In the light of these results, we can conclude that having an efficient s-1-1
function is indeed a better property for an acceptable programming system,
than having an efficient composition function, although the difference is not as
dramatic as foreseen by Machtey, Winklmann, and Young and Royer. Hence,
the title of this paper.

The rest of this paper is organized as follows. In Subsection 1.4, we present
a setting in which the questions treated in this paper can be expressed in terms
of the task of programming in a programming system, rather than just realizing
program composition and specialization. In Subsection 1.5, we present an al-
ternative interpretation of these questions, which is implicitly used by Machtey,
Winklmann, and Young in [8]. Related work is presented in Subsection 1.6,
while Subsection 1.7 is devoted to the definitions, conventions, and terminology
not presented elsewhere in the paper. Sections 2 and 3 contain, respectively,
our upper and lower bound theorems and corollaries. An absolute lower bound,
valid for any composition function in any programming system, is presented in
Section 4. Finally, in Section 5, we make some concluding remarks and mention
open questions.

1.4 A wider setting

We now present a setting in which both the questions treated in this paper
and our main results can be interpreted in terms of the task of programming in

2See footnote 3.

5

a programming system. This setting is nearly explicit in a number of works,
among which [13, 14, 15], and is presented in detail in [11]. We take it as a basis
for this paper. Here is a quick and intuitive overview of this setting.

Define Φ : PartRec×PartRec → PartRec such that for all α and β, Φ(α, β) =
α ◦ β. We can say that Φ represents the “semantic change” that composition
functions perform on their input programs. Similarly, Ψ : PartRec × N →
PartRec satisfying Ψ(α, x) = λz.α(〈x, z〉) for all α and x, represents the “se-
mantic change” performed by s-1-1 functions. A composition function for a
programming system ψ is a transformation of programs that realizes Φ in ψ, in
that it is a function c such that for all i and j, ψc(i,j) = Φ(ψi, ψj). Similarly, an
s-1-1 function for ψ is a transformation of programs and data that realizes Ψ in
ψ, in that it is a function s such that for all p and x, ψs(p,x) = Ψ(ψp, x).

The notion of semantic change has been formally defined in [11, Defini-
tion 2.9] (though there labelled semantic relation). For the purposes of this
paper, it will be sufficient for the reader to consider a semantic change as a
mapping of program semantics and/or data to program semantics, in the man-
ner of Φ and Ψ above. Sans-serif names are used to denote semantic changes.
The names composition and s-1-1 denote the semantic changes corresponding to
composition and s-1-1 respectively. (For the purposes of this paper, the reader
may thus think of composition and s-1-1 as identical to the mappings Φ and Ψ
above.)

Now, in the same way as composition and s-1-1 functions realize the seman-
tic changes composition and s-1-1, so can other transformations of programs
(and/or data) realize other semantic changes. If sc is a semantic change and
the function f realizes sc in a programming system ψ, then we say that f is an
instance of sc in ψ. (This is why the expressions instances of composition and
s-1-1 were presented as alternative names for composition and s-1-1 functions
in Subsection 1.1.) If f is recursive, we say it is an effective instance of sc in ψ.

Several frameworks for expressing classes of semantic changes have been in-
troduced in the literature. Examples of such frameworks are Riccardi’s control
structure [13] and our own enumeration-verifiable relation [11]. All these frame-
works allow the expression of composition and s-1-1, but they also typically
allow the expression of much more complex semantic changes, such as finding a
fixed point of a partial function [19, Definition 1.4.1.5] or finding an inverse of
a partial function (appropriately defined if the partial function is not one-one
and onto N ; see [11]).

Now, in the same way as composition and s-1-1 functions can be seen as
implementations of programming techniques, so can instances of other semantic
changes be seen as implementations of other programming techniques. For
instance, if fix is the semantic change corresponding to finding a fixed point
of a partial function, then an instance of fix in a programming system ψ can
be seen as an implementation in ψ of the technique of programming by taking
fixed points.

Some classes of semantic changes are so vast that they can arguably represent

6

most, if not all, of the programming techniques a programmer might ever want
to use. Examples of such classes are Royer’s control structures with a trivial
predicate [19], and our own enumeration-verifiable relations with an LC predicate
[11]. Because these classes are so encompassing, we can intuitively interpret
complexity bounds on the instances of the semantic changes they contain, in
terms of the task of programming in a programming system: if a programming
system possesses an efficient instance of all the semantic changes in the class,
then we say the task of programming in that programming system is practically
feasible; otherwise, we say that task is not practically feasible.

This is our motivation for stating our results in terms of control structures
with a trivial predicate. For example, Corollary 2.4, which states that “every
effective programming system with a linear time instance of composition has
a polynomial time instance of any control structure with a trivial predicate”,
conveys the interpretation that any acceptable programming system that has
a linear time composition function is guaranteed to have a practically feasible
programming task.

Royer has shown that if an effective programming system has a linear (re-
spectively, polynomial) time instance of s-1-1, then it has a linear (respectively,
polynomial) time instance of all control structures with a trivial predicate [19].
Thus, essentially, the complexity of an s-1-1 function gives an upper bound
on the complexity of the task of programming in an acceptable programming
system.

The intuition, expressed in [8] and [19], that there might exist a programming
system for which all s-1-1 functions would be much more complex than some
composition function, would imply that even a linear time composition function
does not guarantee a practically feasible programming task. This, of course, is
refuted by our Corollary 2.4. However, our lower bound results (Theorem 3.1
and Corollary 3.5) show that the complexity of a composition function does
not , contrary to s-1-1, give an upper bound on the task of programming in an
acceptable programming system. In this setting, the title of the paper takes on
a whole new dimension.

Note that all our results expressed in terms of control structures with a
trivial predicate are also valid for enumeration-verifiable relations with an LC
predicate, a strictly larger class of semantic changes [11].

The formal definitions of semantic change, control structure with a trivial
predicate, and enumeration-verifiable relation with an LC predicate are rather
lengthy, and since we do not use them directly, we omit them. The interested
reader is referred to [19] and [11].

1.5 Another interpretation

As mentioned above in Subsection 1.1, the possession of either a recursive com-
position function or a recursive s-1-1 function characterizes acceptable program-

7

ming systems among the effective ones. But what is the most “natural” char-
acterization?

Machtey, Winklmann, and Young [8], in line with their intuition that, in
some programming systems, computing a composition function might be strictly
easier than computing any s-1-1 function, suggest that the possession of a recur-
sive composition function is a “simpler” property than the possession of an s-1-1
function, and thus, that the most natural definition of an acceptable program-
ming system is an effective programming system with a recursive composition
function.

From this perspective, our results confirm that possessing a recursive compo-
sition function is indeed a “simpler” property than possessing an s-1-1 function
(even though the extent by which it is simpler is not as great as expected by
Machtey, Winklmann, and Young), and that, in this sense, the most natural
definition of an acceptable programming system is an effective programming
system with a recursive composition function.

1.6 Related work

Riccardi [15] showed that in the context of programmable (and not necessar-
ily acceptable) programming systems, composition is strictly more expressive
than s-1-1, in that an effective instance of it guarantees an effective instance of
strictly more control structures than an effective instance of s-1-1 does. Many
other control structures are also studied. In [14], the expressiveness of several
control structures is compared in the context of effective (and not necessarily
acceptable) programming systems. In these two references, no consideration is
given to the complexity of the instances.

In addition to the study of s-1-1 versus control structures with a trivial
predicate, one finds in [19] many results on the complexity interrelationship of
different control structures in the context of effective programming systems. In
particular, s-1-1 is studied in relationship to padding type control structures,
as well as classes of control structures properly containing the class of control
structures with a trivial predicate. Some of these results are improved in [11].

In [2], Hartmanis and Baker study the relationship between the complexi-
ties of s-1-1 functions and of translations of programs from other programming
systems, especially isomorphic translations, in the same programming system.
In [1], Hartmanis studies the complexity of isomorphic translations between
programming systems in relationship to the complexity of padding functions in
these same programming systems.

In [8], Machtey, Winklmann, and Young compare the complexities of imple-
menting various programming properties in the same programming system, in-
cluding paddability and the self-referential property of satisfying Rogers’ Fixed-
point Theorem [18].

The studies in [14], [15] and [19] put a great deal of emphasis on self-
referential properties, especially the control structure KRT (for Kleene Recur-

8

sion Theorem), corresponding to Kleene’s original form of the Strong Recursion
Theorem [18].

There is a rich Russian and Eastern European literature on the theory of
numberings; see [7] for a survey.

The term s-1-1 comes from the special case m=n=1 of Kleene’s s-m-n the-
orem [18], where the s stands for “substitution”.

The expression programming system is from [9], the adjective effective (for
programming systems) is from [19], programmable is from [13], acceptable prob-
ably originates from [17]. Programming systems were introduced in [16], and
were called there, as well as in [13, 14, 15, 18, 19], numberings of the partial
recursive functions or, for short, numberings. The expression indexing of the
partial recursive functions is often encountered, and Gödel numbering is used
in [8]. The adjective effective is replaced by semi-effective in [16], by executable
in [13, 14, 15], and by universal in [9, 8]. Acceptable programming systems are
called Gödel numberings in [16, 23, 2, 1] (note the discrepancy with [8]). They
are also referred to simply as programming systems in [23].

1.7 Further definitions and conventions

In general, our implicit universe of discourse is N . Thus, any symbol denotes
a (nonnegative) integer, unless otherwise stated; however, by default, q and r
denote real numbers. The symbols ψ and φ always denote programming systems.
We denote the base 2 logarithm function by “lg”. We use lambda (λ) notation
for defining partial functions [18].

For any n, we denote by |n| the length of n, i.e., the minimum number of bits
required to express n in binary. We note that |n| = dlg(n + 1)e (in particular,
|0| = 0).

The computational model underlying our discussion is the deterministic
multi-tape Turing machine taking integers in binary representation as inputs.
When expressing a running time as a function of the length of the input, we
use n to denote that length. For instance, if we say a function is computable
in time O(n2), we mean it is computable in time quadratic in the length of the
input. By exponential time, we mean “time O(2p(n)) for some polynomial p”.
We often shorten “linear (polynomial, etc.) time computable” to simply “linear
(polynomial, etc.) time”.

We use the pairing function from [20, 19, 21], which we denote by 〈·, ·〉.
By convention, for all i > 2, 〈x1, x2, . . . , xi〉 denotes 〈x1, 〈x2, . . . , xi〉〉. This
pairing function has many convenient properties, among which the following:
it is strictly increasing in both arguments; it and its two associated projection
functions are computable in linear time; for all a and b, 2 · max(|a|, |b|) − 1 ≤
|〈a, b〉| ≤ 2 ·max(|a|, |b|), with equality on the left if |a| < |b| and on the right
otherwise; for all x > 1 and for all y, 〈x, y〉 > x and 〈y, x〉 > x. We may
occasionally use these properties without explicit mention. Note that we rely
on some pairing function being linear time computable only in Proposition 2.6.

9

Any pairing function whatsoever could be used in the definition of an s-1-1
function, and all our results would still hold.

A problem that is very seldom dealt with in complexity theory is that of
deciding what is the “length of the input” for functions of more than one argu-
ment. The reason for this is that, by using any “reasonable” pairing function
(like the one we use here), the length of a pair is always kept within a con-
stant factor of the length of the longer component. Hence, the difference made
by using, say, the sum of the lengths of the arguments instead of the length
of the paired arguments, would simply be a constant factor somewhere in the
expression obtained for the complexity of the function or the running time of
an algorithm for computing it.

In most cases, a constant factor is of no concern. Here, however, we are
at times interested by the exact value of some linear time constant, and we
must pay attention to all multiplicative factors that show up in our analyses.
In particular, it turns out that what the “length of many arguments” really is,
makes a difference. Among the most natural candidates, let us mention the
following:

(a) |〈p1, p2, . . . , pk〉|,

(b) max
1≤i≤k

(|pi|), and

(c)
∑k

i=1 |pi|, which we denote by |p1, p2, . . . , pk|,

where k is the arity of the function and pi its i-th argument.
In this paper, we use (c), which seems the most reasonable to us. The use

of (b) would change both bounds to nlg q (q > 2) or n log n (q = 2), whereas us-
ing (a) would change them to n2+lg q and allow us to use an injective composition
function in our proof of Theorem 3.1.

2 The Upper Bound

2.1 Machtey and Young’s construction

Before we state and prove our main upper bound theorem, we give for refer-
ence Machtey and Young’s construction of an s-1-1 function from a composition
function [9, Theorem 3.1.2], and briefly argue that it can yield an s-1-1 function
that requires double-exponential time to compute, even if the composition func-
tion is computable in linear time. Note that Machtey and Young’s result was
originally stated for effective programming systems only; however, Machtey and
Young [10] and Riccardi [13, 15] noted that the construction is also applicable
to noneffective programming systems.

Theorem 2.1 (Machtey and Young, 1978) Every programming system that
has a recursive composition function also has a recursive s-1-1 function.

10

Proof. (Machtey and Young’s construction) Suppose ψ is a programming
system and c a recursive composition function for ψ. Let q0 and q1 be ψ-
programs for λz.〈0, z〉 and λ〈y, z〉.〈y + 1, z〉 respectively (remember that ψ is
onto PartRec; thus, such programs exist).

Let function h be defined as follows:

h(0)
d
= q0,

h(x+ 1)
d
= c(q1, h(x)).

For all x, we say a ψ-program is an “x-inserting program” iff it computes
the function λz.〈x, z〉. It is easy to verify that for all x, h(x) is an x-inserting
program.

Now, define s(p, x)
d
= c(p, h(x)). Then, for all p and x,

ψ(s(p, x)) = ψp ◦ λz.〈x, z〉 = λz.ψp(〈x, z〉).

Thus, s is an s-1-1 function. Since c is recursive and since the definitions of h
and s directly give algorithms to compute them, s is recursive. 2

We now argue that the Machtey and Young (MY) construction can yield
an s-1-1 function that requires double-exponential time to compute, even if the
composition function used as a starting point is computable in linear time.

Let ψ, q0, c, h, and s be as in the MY construction. Now, suppose q0 > 0
and c is computable in linear time but also satisfies |c(p, q)| ≥ c0 · |p, q| for
some constant c0 ≥ 4 and for all p and q (the proof of Theorem 3.1 below gives
examples of such ψ and c). Then, it is immediate by the definition of h that for
all x,

|h(x)| ≥ cx0 ≥ 22|x| .

By the definition of s, we thus have

|s(p, x)| ≥ 22|p,x|/2

as soon as p ≤ x, for all p and x. Hence, s clearly requires double-exponential
time to compute, infinitely often.

2.2 Our construction

Our improvement of Machtey and Young’s construction is based on two simple
ideas for building an “x-inserting program”. These ideas are presented in the
proof of the next theorem, which constitutes our main upper bound result.

Theorem 2.2 Suppose ψ is a programming system with an instance of compo-
sition computable everywhere in time qn+ k for some constants q ≥ 1 and k. If
q > 1, then ψ has an instance of s-1-1 computable in time O(n1+lg q). If q = 1,
then ψ has an instance of s-1-1 computable in time O(n log n).

11

Proof. We present only the case q > 1. The case q = 1 is proven similarly.
Suppose ψ is a programming system and c is an instance of composition in ψ

computable in time qn+k for some constants q > 1 and k. It will be convenient
to assume, without loss of generality, that k ≥ 1. We describe an algorithm
which, using c, computes an instance of s-1-1 in ψ and runs in time O(n1+lg q).
The inputs to the algorithm are p, a ψ-program, and x, an integer. We call s
the function computed by the algorithm.

We now give an intuitive outline of how the proof proceeds.
As in the MY construction, on input (p, x), we first build an x-inserting

program, then we compose that program to the right of p, and return the result
as a value for s(p, x). Like Machtey and Young, we build the x-inserting program
by composing copies of a finite number of fixed “base programs” (q0 and q1 in
their construction) together. Our construction, however, differs in the choice
of base programs, and on how we compose them. Informally speaking, each of
these two improvements gets rid of one level of exponential.

First improvement The x-inserting program obtained in the MY construc-
tion inserts x in front of its argument by first inserting a 0 (which is done by q0),
and then incrementing that 0 by 1, x times (which is done by the x copies of q1

used in building the x-inserting program). In contrast, we make our x-inserting
program insert x bit by bit. To achieve this, we use three base programs, p0 to
p2, satisfying

ψ(p0) = λz.〈0, z〉,
ψ(p1) = λ〈y, z〉.〈2y, z〉, and
ψ(p2) = λ〈y, z〉.〈2y + 1, z〉.

(1)

One way to get an x-inserting program using these base programs would be
to redefine the function h from the MY construction as follows:

h(0)
d
= p0,

h(2x)
d
= c(p1, h(x)),

h(2x+ 1)
d
= c(p2, h(x)).

Intuitively, we start with p0 and compose to the left of it either p1 or p2,
for each bit of x, depending on the value of the bit. The reader can verify that
h(x) is indeed an x-inserting program for all x.

Now since c is computable in linear time, it is easy to deduce from the def-
inition of h that |h(x)| will be at most exponential in |x|. Thus, we already
have an improvement over the MY construction. However, if c is such that
|c(p, q)| ≥ c0 · |p, q| for some sufficiently large constant c0 and for all p and q (as
in the discussion following the presentation of the MY construction in Subsec-
tion 2.1), then it is easy to show that |h(x)| will also be at least exponential in
|x|.

12

Thus, although we get rid of one level of exponential by making the x-
inserting program build x bit by bit, we need to do more if we want to achieve
polynomial time. This brings us to our second improvement.

Second improvement In the above definitions of h, the base programs that
make up the x-inserting program (copies of q0 and q1 in the MY construction,
and of p0 to p2 in ours) are composed “sequentially”, that is, the composition
function is always called with an argument of the form “(new base program ,
result of composing everything else so far)”. We call this a purely sequential
application pattern of the composition function. This application pattern is
a natural by-product of the concise recursive definitions we have used for h;
however, it is certainly not the only possible one, since function composition is
associative. Indeed, our second improvement consists essentially in modifying
the last definition of h to make it use a binary tree application pattern of the
composition function (divide-and-conquer strategy) instead of a sequential one.

A very informal description of the new algorithm for h is as follows (x1, . . . , x|x|
denote the successive bits of x, x1 being the most significant one).

Input: x
Algorithm for h:

1. Build a vector v of programs, containing the |x| programs p(1+xi),
1 ≤ i ≤ |x|.

2. Append p0 to v.

3. while v has more than one element, do

4. w ← the empty vector,

5. Using c, compose the programs in v two by two, appending the
results to w as they are obtained,

6. v ← w.

7. end while

8. Return the only element of v.

2 Algorithm

Clearly, because function composition is associative, the programs returned
by this version of h are equivalent to those returned by the previous version.
Thus, h(x) is an x-inserting program for all x.

We can immediately see that |h(x)| will now be polynomial in |x|. Indeed,
at each iteration of the while loop, the total length of (the programs in) v can
only increase by a constant factor dependant on the running time of c, say c0.
Now, clearly, the initial total length of v is bounded by a constant multiple of
|x|, say c1 · |x| (for the moment, we will ignore the case |x| = 0). Since the

13

number of iterations in the while loop is essentially lg(|x|), and since h(x) is
simply v on exit from the while loop, we have for all x,

|h(x)| ≤ clg(|x|)
0 · c1 · |x| = c1 · |x|1+lg c0 .

The detailed proof below will show that this idea can indeed be used to build
a polynomial time s-1-1 function.

It may seem odd that a divide-and-conquer strategy should pay off in per-
forming a series of associative operations. Indeed, the same number of com-
position operations must be performed, whether they are performed with a
sequential application pattern or a binary tree one. Note, however, that a com-
position function performs a “semantically” associative operation, but not one
that is necessarily “textually” associative: if i, j, and k are programs, then
c(i, c(j, k)) and c(c(i, j), k), though equivalent programs, may very well be two
different programs.

We now give more precisely, yet somewhat informally, our algorithm for s.
Details are presented for implementation on a multi-tape Turing machine.

Input: p, a ψ-program and x, an integer
Algorithm for s:
{We use three “base” ψ-programs, p0 to p2, satisfying (1), and a
subroutine for the function c which we assume runs in time qn+ k.}

1. Initialization phase: Successively for each bit b of x (starting
with the most significant bit), we write the program pb+1 on a
work tape; then we write p0. (Adjacent programs are separated
by some special symbol.) Let us denote by n0 the number of
programs we write on the work tape during this phase (clearly,
n0 = |x|+ 1), and by π0,j the j-th of these programs (1 ≤ j ≤
n0).

2. Iterative phase: During this phase, the programs on the work
tape are composed two by two (using our subroutine for c),
repeatedly, until a single program is obtained. During each
iteration, the work tape produced as output in the preceding
iteration (or in the initialization phase on the first iteration)
is used as input to this iteration. (It is clear that two work
tapes suffice, serving alternatively as input and output tape,
no matter how many iterations take place.)

Suppose for the moment that b iterations take place, and let
i satisfy 1 ≤ i ≤ b. Let us denote by ni the number of pro-
grams we write on the output tape during the i-th iteration,
and by πi,j the j-th of these programs (1 ≤ j ≤ ni). The ex-
act processing performed during the i-th iteration is as follows.
Successively, for each j satisfying 1 ≤ j ≤ bni−1/2c, we com-
pute c(πi−1,2j−1, πi−1,2j), which we write on the output tape

14

and which thus constitutes program πi,j . If ni−1 is even, the
iteration is complete, otherwise, we copy πi−1,ni−1 at the end
of the output tape, where it becomes known as πi,dni−1/2e.

The iterative phase is terminated when an output tape is pro-
duced that has only one program on it. In other words, b is
the least integer such that nb = 1. We can designate the sin-
gle program written to the output tape during the last (b-th)
iteration by πb,1.

3. Termination phase: The output of the algorithm, c(p, πb,1),
is computed and written on the output tape.

2 Algorithm

We should now point out that the head of the output tape must be reposi-
tioned at the end of the initialization phase and of each iteration in the iterative
phase; this will have to be considered in estimating the running time of the
algorithm.

For the analysis of the algorithm, let p and x be fixed, let b be the number
of iterations that occur in the iterative phase, and suppose i satisfies 1 ≤ i ≤ b.
Also, let ni and πi,j (for i satisfying 0 ≤ i ≤ b and j satisfying 1 ≤ j ≤ ni) be
as in the description of the algorithm. Since there is only one iterative phase,
the term “iteration” will unambiguously designate an iteration in that phase.

It is immediately seen that ni = dni−1/2e and, hence, that b = dlg n0e.
Thus, our algorithm computes a total function. It is easily shown, by induction
on |x|, that

ψ(π0,1) ◦ ψ(π0,2) ◦ · · · ◦ ψ(π0,n0
) = λz.〈x, z〉.

Also observe that, by associativity of function composition and by the fact that
c is a composition function for ψ,

ψ(πi,1) ◦ ψ(πi,2) ◦ · · · ◦ ψ(πi,ni
) = ψ(πi−1,1) ◦ ψ(πi−1,2) ◦ · · · ◦ ψ(πi−1,ni−1

).

Thus, we have

ψ(πi,1) ◦ ψ(πi,2) ◦ · · · ◦ ψ(πi,ni
) = λz.〈x, z〉.

In particular, πb,1 (the single program produced during the last iteration), is a
ψ-program for λz.〈x, z〉. Clearly, then, our algorithm computes an s-1-1 function
for ψ.

Respectively denote by Tinit, Tloop, Tterm, Tloop,i, and T the execution times
of the initialization, iterative, and termination phases, of the i-th iteration, and
of the whole algorithm. Also, for i satisfying 0 ≤ i ≤ b, let

li =

ni∑
j=1

|πi,j |.

15

Clearly, l0 ≤ Tinit ≤ c1n0 for some constant c1.
The following observation follows directly from our hypotheses on c and on

our subroutine to compute it.

Observation 2.3 For all a and b, |c(a, b)| ≤ q(|a| + |b|) + k, and computing
c(a, b) in the course of our algorithm can be done in time c2(q(|a|+ |b|) + k) for
some constant c2.

We claim that li ≤ qli−1 + nik and that Tloop,i ≤ c3(qli−1 + nik) for some
constant c3. Indeed, the i-th iteration consists of “running through c” (at most)
all programs πi−1,j , for j satisfying 1 ≤ j ≤ ni−1, and this is done by (at most)
ni applications of c. (The last program is simply copied if ni−1 is odd.) Thus,
our claim follows from Observation 2.3. (Note that the head of the output tape
must be repositioned after each iteration and that adjacent programs on both
the input and output tapes are separated by a special symbol; however, our
claim does hold, partly because we have taken k ≥ 1.)

Next, we claim that ni ≤ 21−in0. Indeed, remember that ni = dni−1/2e. If
n0 is a power of 2, then it is clear that ni = 2−in0. If, on the other hand, n0 is
not a power of 2, observe that, since λz.dz/2e is nondecreasing, ni will certainly
be no greater than it would be, were n0 replaced by the next greater power of
2. Formally, this translates into ni ≤ 2−i2dlg n0e. The last factor being less than
2n0, our claim is verified.

From the above two claims, it is easily shown (by induction on i) that li ≤
qil0 + 2kn0 ·

∑i
j=1 2−jqi−j . Since the summation is less than qi, and because

l0 ≤ c1n0, we obtain
li ≤ c4n0q

i, (2)

where c4 = c1 + 2k. Similarly, we get Tloop,i ≤ c3c4n0q
i.

Hence, we now have

Tloop =

b∑
i=1

Tloop,i ≤ c3c4n0 ·
b∑

i=1

qi.

Using the familiar geometric identity, the last summation becomes

qb+1 − q
q − 1

<
q2

q − 1
qlg n0 =

q2

q − 1
nlg q

0 .

Thus, we get Tloop ≤ c5n1+lg q
0 , where c5 = c3c4q

2/(q − 1).
To bound Tterm, we first use Observation 2.3 to bound it above by c2(q(|p|+

|πb,1|) + k). Then, remembering that |πb,1| is simply another name for lb, we
use inequality (2), above, to get

Tterm ≤ c2q · |p|+ c2c4q
2n1+lg q

0 + c2k.

16

Keeping in mind that n0 ≥ 1 and lg q > 0, while adding up Tinit, Tloop, and
Tterm, we get

T ≤ c6 · |p|+ c6n
1+lg q
0 ,

where c6 = c1 + c5 + c2q + c2c4q
2 + c2k.

Now, n0 = |x|+ 1, and both |x| and |p| are ≤ |p, x|. Hence, n0 ≤ 2 · |p, x| as
soon as |p, x| > 0. Thus, excluding the case |p, x| = 0 (i.e., p = x = 0), we have

T ≤ c6(2q + 1) · |p, x|1+lg q.

2 Theorem 2.2

2.3 Corollaries

Royer showed that an effective programming system with a polynomial time
instance of s-1-1 has a polynomial time instance of any control structure with
a trivial predicate [19, Theorem 1.4.3.9]. The following corollary is therefore
immediate.

Corollary 2.4 Every effective programming system with a linear time instance
of composition has a polynomial time instance of any control structure with a
trivial predicate.

The construction in our proof of Theorem 2.2 is applicable to arbitrarily
complex instances of composition, but a truly general result seems hard to ex-
press without the definition of an ad hoc operation on classes of functions. In
the case of a polynomial time instance of composition, however, we have the fol-
lowing corollary. (Remember that for us, “exponential time” is “time O(2p(n))
for some polynomial p”.)

Corollary 2.5 Every programming system with a polynomial time instance of
composition has an exponential time instance of s-1-1.

Proof. Similar to the proof of the theorem. A much coarser analysis suffices.
2

Theorem 1.4.3.9 in [19] also states that an effective programming system
with an exponential time instance of s-1-1 has an elementary recursive instance
of any control structure with a trivial predicate. We now improve this upper
bound to exponential time.

Suppose m > 1 and ψ is a programming system. An instance of s-m-1 in ψ
is an (m+ 1)-ary function t such that for all p, x1, . . . , xm,

ψt(p,x1,...,xm) = λz.ψp(〈x1, . . . , xm, z〉).

17

In the same way that s-1-1 corresponds intuitively to fixing the first parameter
in a program, s-m-1 corresponds to fixing the first m parameters.

A crucial step in Royer’s proof of his Theorem 1.4.3.9 is a lemma
(Lemma 1.4.3.10) in which he constructs effective instances of s-m-1, for all
m > 1, in effective programming systems with an effective instance of s-1-1.
The upper bound obtained for any control structure with a trivial predicate
depends essentially on the complexity of these instances.

Suppose s is an effective instance of s-1-1 in an effective programming system
ψ. Royer’s way of constructing an instance of s-m-1 in ψ, for any m > 1, is to
iterate s, m times. Thus, with s exponential time computable, the general upper
bound for all m is “elementary recursive”. The proof of the next proposition
uses a more efficient construction.

Proposition 2.6 Every effective programming system with an exponential time
instance of s-1-1 has an exponential time instance of s-m-1 for all m ≥ 1.

Proof. Suppose m ≥ 1. Let ψ be an effective programming system, and p0 a
fixed ψ-program for λ〈〈p, x1, . . . , xm〉, z〉.ψp(〈x1, . . . , xm, z〉). Such a program
exists by the effectiveness of ψ. Then, t defined as follows can be verified to be
an instance of s-m-1 in ψ.

t(p, x1, . . . , xm)
d
= s(p0, 〈p, x1, . . . , xm〉)

Also, since 〈·, ·〉 is computable in linear time and m and p0 are fixed, if s is
exponential time computable, then so is t. 2

Note that the preceding proof can be made to work even if the pairing
function used in the definition of an s-1-1 function is not our linear time pairing
function. Suffice it to replace the outermost occurrence of 〈·, ·〉, in the argument
of the λ-expression defining the function computed by p0, with the pairing
function used to define an s-1-1 function. It is easily verified that this has no
influence on the complexity of t.

By using Proposition 2.6 instead of Royer’s Lemma 1.4.3.10 for proving his
Theorem 1.4.3.9, we obtain the result that any effective programming system
with an exponential time instance of s-1-1 has an exponential time instance of
any control structure with a trivial predicate. This last result, together with
Corollary 2.5, allows us to immediately deduce the following corollary.

Corollary 2.7 Every effective programming system with a polynomial time in-
stance of composition has an exponential time instance of any control structure
with a trivial predicate.

In general, we can obtain better upper bounds by using the construction
in our proof of Proposition 2.6 instead of the one in Royer’s proof of his
Lemma 1.4.3.10. As an example, for instances of control structures with a

18

trivial predicate in effective programming systems with a polynomial time in-
stance of s-1-1, we get polynomial time upper bounds of degrees smaller than
those of the corresponding polynomial time upper bounds guaranteed by Royer’s
Theorem 1.4.3.9. A similar improvement is obtained for Corollary 2.4.

Royer’s construction of instances of s-m-1 (for all m > 1) is the best we
know of for arbitrary programming systems with an effective instance of s-1-1
but without an effective instance of composition (such programming systems
are known to exist [15]). However, if an effective instance of composition is
available, then we can sometimes exploit an idea similar to that in the proof of
Proposition 2.6. For instance, we can show that any programming system with
a polynomial time instance of composition has an exponential time instance of
s-m-1 (for all m > 1). (Proof sketch. On input (p, x1, . . . , xm), compose to the
right of p a fixed program that “splits” its first parameter into m different ones.
Then, apply the exponential time instance of s-1-1 from Corollary 2.5 to the
resulting program and the pair 〈x1, . . . , xm〉. This can be verified to compute
an instance of s-m-1 and run in exponential time.)

3 The Lower Bound

We shall now show that the construction of an s-1-1 function given in our proof
of Theorem 2.2 is optimal in a wide range of acceptable programming systems
with a linear time composition function.

Theorem 3.1 There exists an acceptable programming system with an instance
of composition computable in time n + k0 for some small k0, but for which
computing any instance of s-1-1 requires time Ω(n log n) infinitely often. For all
rational q > 1, there exists an acceptable programming system with an instance
of composition computable in time qn+k0 for some small fixed k0, but for which
computing any instance of s-1-1 requires time Ω(n1+lg q) infinitely often.3

Proof. We present only the case q > 1. The case q = 1 is proven similarly.
Let a rational q > 1 be given. We shall construct an acceptable programming

system ψ that satisfies the conditions of the theorem. The exposition of the
proof is easier if we consider ψ-programs to be strings of symbols instead of
integers. Thus, let ψ-programs be finite strings over {[,], ∗, t, u, v}. With
an appropriate encoding of strings and very minor additions to our argument,
the proof is applicable directly to integer programs. The k0 in the statement of
the theorem need not be more than 4 times the maximum number of bits used
to encode a string symbol.

3Our proof is valid for any real q ≥ 1 such that λn.bqnc + 1 is fully time-constructible.
This includes not only all rationals greater than or equal to 1, but also some irrationals (see
[12]).

19

In our discussion, a variable used to denote a ψ-program is implicitly of type
“string”. The length of a string a, denoted by |a|, is the number of symbol
occurrences in a. If a and b are strings, then |a, b| denotes |a|+ |b|.

Let us now define our programming system ψ. Function g is intended to be
a “built-in” composition function; we shall say more about it in a moment.

Definition 3.2

ψ(t)
d
= λz.〈0, z〉

ψ(u)
d
= λ〈y, z〉.〈y + 1, z〉

ψ(v)
d
= λ〈p, x〉.φp(x)

ψ(g(a, b))
d
= ψa ◦ ψb

ψ(p)
d
= λz.↑ if p 6∈ {t, u, v} ∪ range(g)

Assume for the moment that g is recursive and causes no conflict or circularity
in Definition 3.2.

Clearly, by effectiveness of φ and recursiveness of g, we can effectively “inter-
pret” any given ψ-program. Thus, if ψ turns out to be a programming system,
it is going to be an effective one. Also note that g would then be a composition
function for ψ.

Now, observe that programs t and u, together with g, allow us to carry
out Machtey and Young’s original construction of an s-1-1 function, and that
there thus exists a recursive function s such that for all p and x, ψs(p,x) =
λz.ψp(〈x, z〉). Then, in particular,

ψs(v,x) = λz.ψv(〈x, z〉) = λz.φx(z) = φx.

(We can view s as having either one string and one integer argument, or two
integer arguments, the first of which is the encoding of a string.) Hence, ψ
has at least one program for each partial recursive function and is therefore a
programming system. Moreover, it is programmable via λi.s(v, i). Hence, it is
an acceptable programming system.4

Let us now turn to g. First of all, we want g to be computable in time
qn + k0 for some small k0, because we want ψ to have a composition function

4One interpretation of the fact that ψ is a programming system is that the set {ψt, ψu, ψv}
forms a “basis” for generating all the partial recursive functions, in that its closure under
composition equals PartRec. When challenged by the author to prove that no basis of less than
three elements could generate PartRec, Stuart Kurtz [6] promptly came up with (essentially)
the following counterexample. Let [x] stand for the string (over {0,1}) that is the minimum
binary representation of integer x, and let v(σ) stand for the value of string σ interpreted
as a binary integer. Note that λx, i.v([2x]10i+111) is one-one and strictly increasing in both
arguments. Now, define α and β by:

α(n)
d
= 2n for all n,

β(v([2x]10i+111))
d
= φi(x) for all (x, i),

β(n)
d
= 2n+ 1 if n is not v([2x]10i+111) for any (x, i).

20

computable in that much time. However, we also want g to have an output (i.e.,
a value) of length at least qn. Let us refer to this requirement as the “qn length
output” requirement. The idea behind this requirement is to force ψ-programs
resulting from many applications of g to be long. We will later show that for
any s-1-1 function s for ψ, some programs in range(s) have to be the result of
many applications of g, and if all such programs are long, we will be able to
bound below the running time of s.

Of course, we also want g to be recursive and to introduce no conflict or
circularity in Definition 3.2. A first try could be the following definition.

g(a, b)
d
= [a][b] ∗ · · · · · · · · · · · · · · · ∗︸ ︷︷ ︸

b(q−1)|a,b|c many

This g satisfies the “qn length output” requirement by padding its output with
enough asterisks. We will see shortly that it is computable in time bqnc + k0

for some small k0. It causes no circularity, since we have |g(a, b)| > max(|a|, |b|)
for all a and b.

However, it is not injective and can cause conflicts in Definition 3.2. Indeed,
with a= “[t][t]”, b= “t”, a′ = “[t”, b′ = “t]][t” and assuming q is very small, we
have g(a, b) = g(a′, b′) = “[[t][t]][t]”. To see how this causes a conflict, consider
the following correspondences established by Definition 3.2. The ψ-programs
a′ and b′ are certainly not in range(g), and would therefore correspond to the
nowhere defined function. Hence, g(a′, b′) should correspond to the nowhere
defined function. On the other hand, both a and b can be verified to correspond
to total functions. Hence, g(a, b) should correspond to a total function. This is
a contradiction since g(a, b) = g(a′, b′).

This problem is easy to solve, however. We say a ψ-program a is well-formed
iff it has the same number of occurrences of “[” and “]” and no prefix of a has
more occurrences of “]” than “[”. We say a is ill-formed iff it is not well-formed.
It is not difficult to show that g, as defined above, is injective when restricted
to the set of well-formed programs. Furthermore, verifying that a program is
well-formed can be done in real time (i.e., time n). Thus, we could modify
an algorithm for g so that it verifies whether both of its arguments are well-
formed, as it copies them from input to output, and systematically produces an

Obviously, α and β are partial recursive. It can be verified that for all i,

φi = β3 ◦ αi+1 ◦ β ◦ α. (3)

Thus, {α, β} generates PartRec. Moreover, (3) suggests a uniform procedure to translate any
φ-program into (the description of) an equivalent sequence of α’s and β’s. Note that under
any straightforward encoding of sequences, this procedure requires exponential time; however,
as a corollary to our upper bound result (Theorem 2.2), there exists one taking O(n logn)
time, and in fact, it is not hard to see that there exists one taking only linear time. This
situation is very similar to the fact, pointed out below, that the most efficient s-1-1 algorithm
for ψ is not the most obvious one.

It is trivial to show that no one element basis generates PartRec.

21

ill-formed program if it is not the case. This leads us to our final definition of
g.

g(a, b)
d
=

[a][b] ∗ · · · · · · · · · · · · · · · ∗︸ ︷︷ ︸

b(q−1)|a,b|c many

if a and b are well-formed,

[a][b[∗ · · · · · · · · · · · · · · · ∗︸ ︷︷ ︸
b(q−1)|a,b|c many

otherwise.

Clearly, g still satisfies the “qn length output” requirement, and still causes
no circularity. It is still not injective, but it no longer causes conflicts in Defini-
tion 3.2, because we now have

(∀a, b, a′, b′)[g(a, b) = g(a′, b′) =⇒ ψa ◦ ψb = ψa′ ◦ ψb′].

Indeed, it is easy to show that all ill-formed ψ-programs compute the nowhere
defined function.

It can also be shown that this g (as well as the original one) is computable
everywhere in time bqnc+k0 for some small k0, in fact, in no more time than it
takes to write the output. Although this may not immediately be clear, it follows
from the fact that λn.bqnc+ 1 is fully time-constructible [3], for q ≥ 1 rational,
and from a technical lemma on fully time-constructible functions, stating that
for any such function f , there exists a Turing machine which, on all inputs i,
runs for exactly f(|i|) steps, while scanning its input in the first |i| of these
steps. We refer the reader to [11] for a proof of this lemma.

Our definition of ψ is now complete.5 It is an acceptable programming
system with an instance of composition computable everywhere in time bqnc+k0

for some small k0.
There remains to show that computing any s-1-1 function for ψ requires time

Ω(n1+lg q) infinitely often. We do this by proving that, for any s-1-1 function
s for ψ, there exists a constant c0 such that there are infinitely6 many p’s for
which there are infinitely many x’s for which |s(p, x)| ≥ c0 · |p, x|1+lg q. (We shall
in fact exhibit a single constant c0, independent of s; i.e., prove the statement
with the first two quantifications inverted.)

We say a ψ-program is atomic iff it is not in range(g). Implicit in our earlier
discussion of g is the fact that one can “parse” any well-formed ψ-program p,
i.e., break it into the unique nonempty sequence of (necessarily well-formed)
atomic programs which, composed in that order by some application pattern
of g yield p. (This parsing can be effective because g is strictly increasing in
each argument; however, we do not rely on this fact.) For any well-formed
ψ-program p, call the sequence of atomic programs obtained by parsing p, the
atomic sequence of p, and denote it by as(p). The length of as(p), denoted

5ψ is very similar to Royer’s completions of finite bases [19, Definition 2.4.1].
6With some definitions of Ω for multi-argument functions, it would be sufficient to prove

this for a single p. What we prove is stronger and might be required for other definitions of
Ω.

22

by |as(p)|, is the number of program occurrences in it. By the definition of
ψ and by associativity of function composition, the semantics of a well-formed
ψ-program is entirely determined by its atomic sequence. In other words, two
well-formed ψ-programs with the same atomic sequence are equivalent.

Remember that all ill-formed ψ-programs compute the nowhere defined func-
tion. It takes only a moment of reflection to realize that the same is also true
of well-formed ψ-programs having atomic programs other than t, u, and v in
their atomic sequence. Thus, any ψ-program not computing the nowhere de-
fined function is well-formed, and has only occurrences of t, u, and v in its
atomic sequence. We say an atomic sequence is meaningful iff it has only oc-
currences of t, u, and v in it. By extension, a well-formed ψ-program whose
atomic sequence is meaningful is said to be meaningful.

It is well known that an acceptable programming system has infinitely many
programs for every partial recursive function [18]. Thus, there are infinitely
many ψ-programs that compute the first projection function of 〈·, ·〉, i.e., the
function λ〈x, z〉.x. Let p0 be any of these programs, and s, any s-1-1 function
for ψ. Observe that for all k, the ψ-program s(p0, k) computes λz.k, and thus,
must be meaningful.

Suppose we compute successively s(p0, k) for k = 0, 1, 2, . . . With
these programs, we build two lists, both indexed by k, which we call AS and
MAXLEN for, respectively, “atomic sequence”, and “maximum length”. For
each new s(p0, k) obtained, we fill out position k in each list. In AS , we write the
atomic sequence of s(p0, k), then in MAXLEN , we write the maximum length
of an atomic sequence on the AS list at this moment.

No two s(p0, k) programs are equivalent, and hence, no two atomic sequences
on the AS list can be equal. On the other hand, they must all be meaningful.
Since there are only 3m meaningful atomic sequences of length m, the following
must be true.

For all k,

MAXLEN (k)∑
i=1

3i ≥ k. (4)

Informally, this says that for any k, there must be at least k different meaningful
atomic sequences of length up to MAXLEN (k).

From (4), we get MAXLEN (k) ≥ log3(2k/3 + 1) for all k. Now, log3(2k/3 +
1) ≥ |k|/4 for all sufficiently large k. Obviously, MAXLEN (k) grows to infinity
with k, and every time MAXLEN (k) < MAXLEN (k+1), we have |as(s(p0, k+
1))| = MAXLEN (k + 1). Thus, |as(s(p0, k))| = MAXLEN (k) ≥ |k|/4 for
infinitely many k’s. The following lemma allows us to get a lower bound on
|s(p0, k)| for any such k.

Lemma 3.3 Let p be any meaningful ψ-program. Then, |p| ≥ mqblg mc, where
m = |as(p)|.

Proof. The parse tree associated with a given meaningful program p is a labelled
tree whose root is labelled p, and in which any vertex either is labelled with an

23

atomic program and has no child, or is labelled g(a, b) for some programs a and
b, and has a left child labelled a and a right child labelled b. It is easy to show
that for all meaningful p, the parse tree associated with p is unique, finite, and
that its leaves, in order, give as(p), and therefore, consist only of programs t,
u, and v.

Pick any meaningful program p. Let m = |as(p)| and let T be the parse tree
associated with p. Define w, a function that associates to each vertex v of T
a weight (a real number), as follows. If v is a leaf, then w(v) = 1, otherwise,
w(v) = q · (w(left-child(v)) + w(right-child(v))). Note that, by the “qn length
output” requirement satisfied by g, for any vertex of T , the length of the label
is greater or equal to the weight. We show that the weight of T (the weight of
its root) is at least mqblg mc, thereby establishing the desired lower bound on
|p|.

Observe that the weight of a parse tree is equal to the summation over all
leaves v of q`(v), where `(v) is the level (distance from the root) at which v is
located. Suppose T ′ is a minimum weight parse tree with m leaves. Obviously,
w(T) ≥ w(T ′). Define the depth of a tree as the maximum level over all leaves.
Suppose T ′ has depth d and a leaf at some level e < d− 1. Note that, because
every vertex in a parse tree has either 0 or 2 children, there are at least 2 leaves at
level d. By moving 2 leaves from level d to level e+1, we obtain a new tree whose
weight differs from that of T ′ by −2qd+qd−1 +2qe+1−qe = (2−1/q)(qe+1−qd),
which is strictly negative, because e + 1 < d and q > 1. Hence, since T ′ is a
minimum weight parse tree, it must have all its leaves on level d or d − 1, i.e.,
either on level blgmc or blgmc+ 1. Thus, w(T ′) ≥ mqblg mc. 2 Lemma 3.3

Thus, for the infinity of k’s such that |as(s(p0, k))| ≥ |k|/4, we get

|s(p0, k)| ≥ (|k|/4)qblg(|k|/4)c.

As soon as k ≥ p0, we have |k| ≥ |p0, k|/2, and we obtain

|s(p0, k)| ≥ 1

8q4
· |p0, k|1+lg q

for infinitely many k’s. 2 Theorem 3.1

Note the following peculiar fact about the programming system ψ of the
preceding proof. The only obvious s-1-1 function suggested by the definition of
ψ is the one obtained by Machtey and Young’s construction. A quick analysis
shows that the corresponding algorithm takes double-exponential time infinitely
often (see Subsection 2.1). However, by Theorem 2.2, there exists an algorithm
for an s-1-1 function for ψ taking only time O(n1+lg q). The paradoxical situation
is that, in order to constructively exhibit an efficient algorithm, one seems to
have no other choice than to first apply Machtey and Young’s construction to
obtain (by translation from φ-programs) a set of ψ-programs adequate for an
efficient construction (such as programs p0 to p2 in the proof of Theorem 2.2).

24

The following is immediate by Theorems 2.2 and 3.1.

Corollary 3.4 For all rational q > 1, there exists an acceptable programming
system with an instance of composition computable everywhere in time bqnc +
k for some small k, but with no instance of composition computable almost
everywhere in time rn+ k′ for any constants r < q and k′.

The construction in our proof of Theorem 3.1 is applicable to any fully time-
constructible function. Again, however, a truly general result seems hard to
express without ad hoc definitions. Nevertheless, we have the following corol-
laries.

Corollary 3.5 There exists an acceptable programming system with a polyno-
mial time instance of composition but for which computing any instance of s-1-1
requires time 2Ω(n) infinitely often.

Proof sketch. Modify the proof of the theorem as follows. Make g “pad” its
output so that |g(a, b)| ≥ |a, b|2 for all a and b. Also, make sure each string
symbol is encoded on at least 2 significant bits. Then, in lieu of Lemma 3.3,
observe that the “true” integer length of any meaningful program (i.e., its length

as an integer and not as a string) is at least 22dlg me
, where m is the length of

its atomic sequence. Indeed, consider a weighted parse tree for the program as
in Lemma 3.3, in which all leaves receive weight 0 except a single leaf that is
farthest from the root, which receives weight 2, and in which the weight of an
internal node is given by the squared sum of the weights of its children. Clearly,

the weight of this tree is at least 22dlg me
, and gives a lower bound on the “true”

integer length of the program. The corollary follows easily. 2

Corollary 3.6 There exists an acceptable programming system with a polyno-
mial time, but no linear time, instance of composition.

4 An Absolute Lower Bound for Composition

As mentioned in Subsection 1.7, if we use max(|i|, |j|) as the length of two
arguments i and j, we obtain nlg q (q > 2) or n log n (q = 2) as a bound in both
Theorems 2.2 and 3.1. It follows from the next proposition that the condition
q ≥ 2 does not affect the generality of these results.

Proposition 4.1 Suppose c is an instance (not necessarily effective) of compo-
sition in any programming system (not necessarily effective). Then, there is no
r < 2 such that for some fixed k and for all i and j, |c(i, j)| ≤ r ·max(|i|, |j|)+k.

25

Proof. Suppose there exist r < 2 and k such that for all i and j, |c(i, j)| ≤
r · max(|i|, |j|) + k. Let p0 and p1 be programs (in the programming system
for which c is an instance of composition) for λz.2z and λz.2z + 1 respectively.
Define P0 = {p0, p1} and recursively, for n ≥ 1, Pn = {c(p, q) | p, q ∈ Pn−1}.
Note that for all n, for all p, q, p′, q′ ∈ Pn, if either p 6= p′ or q 6= q′, then
c(p, q) and c(p′, q′) are inequivalent and, hence, different. (The programs in
Pn each append a different bit string of length 2n to the right of their nonzero
arguments.) Thus, card(Pn) = 22n

.
Now, let `0 = max(|p0|, |p1|) and recursively define for n ≥ 1, `n = r`n−1 +k.

By our hypothesis on c, it is clear that for all n, for all p ∈ Pn, |p| ≤ `n. If r 6= 1,
`n ≤ (`0+k/(r−1))rn, otherwise, `n = `0+kn. In any case, for sufficiently large
values of n, `n < 2n. This is a contradiction because there are 22n

programs in
Pn and only 22n−1 programs of length less than 2n. 2

Note that we have not ruled out the possibility of an instance of composition c
(effective or otherwise) for which limn→∞[infi,j>n(2·max(|i|, |j|)−|c(i, j)|)] =∞,
or even limn→∞[infi+j>n(2 · max(|i|, |j|) − |c(i, j)|)] = ∞. We do not know
whether any such instances exist in any programming system.

5 Concluding Remarks and Open Questions

The fact that we get a base 2 logarithm in our bounds in Theorems 2.2 and 3.1
comes from the fact that composition corresponds to composing 2 programs
together. If we used another control structure corresponding to composing m
programs together for some m > 2, we would get a base m logarithm. We would
also obtain a lower bound of m in Proposition 4.1.

It is also worthwhile noting that, in our proof of Theorem 3.1, we do not
use the fact that the instance of s-1-1 under consideration is recursive. In
other words, the length lower bound we obtain applies to the output (i.e., the
value) of any instance of s-1-1 in the programming system constructed, not
just recursive ones. Thus, Theorem 3.1 and Corollary 3.5 could be rephrased
to express lower bounds on the length of the output of arbitrary instances of
s-1-1. With some work, we could similarly extend Corollaries 3.4 and 3.6. In
[11], we prove results like Theorem 3.1 and Corollary 3.5 in a way that makes
the corresponding output length lower bound apply only to effective instances
of s-1-1. For example, we construct an acceptable programming system with
an instance of composition computable in time linear with constant q, in which
computing any effective instance of s-1-1 requires time Ω(n1+lg q) infinitely often,
but in which there exists a noneffective instance of s-1-1 whose output length
is everywhere linearly related to that of the input.

Consider the class of effective programming systems with a polynomial time
s-1-1 function. We argued in Subsection 1.4 that this class corresponds to the
programming systems whose programming task is “feasible practically”; it is

26

therefore of special interest. We established by Theorem 2.2 that any effective
programming system with a linear time composition function is in that class. Is
the converse true? Does any effective programming system with a polynomial
time s-1-1 function necessarily have a linear time composition function? We
leave this question open, although we suspect the answer to be negative. Note
that it is easy to show that the class of effective programming systems with
a polynomial time s-1-1 function coincides with the class GNPtime defined
by Hartmanis and Baker [2] (but named GNPtime by Young [23]), the class
of effective programming systems (G ödel N umberings) into which any other
effective programming system can be translated via a polynomial time function.

An informal open question about Theorems 2.2 and 3.1 is whether these
results can be generalized elegantly, without resorting to ad hoc definitions.
In other words, is there a “simple” relation between complexity classes that
corresponds satisfactorily to the actual complexity interrelationship between
composition and s-1-1 functions in the same programming system?

A possible avenue for future research would be to try to adapt results of the
kind we present here to “real-world” semantics, as opposed to the unary partial
recursive function semantics of programming systems. To our knowledge, no
work has been done yet in this direction.

Acknowledgements

Financial support for this research was provided by FCAR, and by Professor
Pierre McKenzie through Canada NSERC grant A9979. We wish to thank Jim
Royer for submitting the problem, and for the idea of using constant functions
to get a lower bound for s-1-1. We are also indebted to him as well as to
Pierre McKenzie, Gilles Brassard, Mark Fulk, Carl Smith, Paul Young and, most
especially, John Case, for fruitful and enlightening discussions. We are grateful
to Geňa Hahn for the proof of Lemma 3.3 presented here, which is simpler
than our original proof. Pierre McKenzie painstakingly read and commented
on many different versions of this paper. An anonymous referee made numerous
good suggestions for improving the presentation of the material.

References

[1] J. Hartmanis, A note on natural complete sets and Gödel numberings, Theor.
Comput. Sci. 17 (1982) 75–89.

[2] J. Hartmanis and T. Baker, On simple Gödel numberings and translations, SIAM
J. Comput., 4 (1975) 1–11.

[3] J. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and
Computation (Addison-Wesley, 1979).

[4] N. D. Jones, C. Gomard and P. Sestoft, Partial Evaluation and the Generation
of Program Generators (Prentice Hall International, 1993).

27

[5] N. D. Jones, Computer implementation and applications of Kleene’s s-m-n and
recursion theorems, in: Y. N. Moschovakis, Logic from Computer Science, Math-
ematical Sciences Research Institute Publications 21 (Springer-Verlag, Berlin,
1991).

[6] S. Kurtz, personal communication (1989).

[7] I. A. Lavrov, Computable numberings, in: R. E. Butts and J. Hintikka, ed., Logic,
Foundations of Mathematics, and Computability Theory (D. Reidel Publishing
Company, Boston, 1977) 195–206.

[8] M. Machtey, K. Winklmann and P. Young, Simple Gödel numberings, isomor-
phisms, and programming properties, SIAM J. of Comput. 7 (1978) 39–60.

[9] M. Machtey and P. Young, An Introduction to the General Theory of Algorithms
(North-Holland, Amsterdam, 1978).

[10] M. Machtey and P. Young, Remarks on recursion versus diagonalization and
exponentially difficult problems, J. Comput. Systems Sci. 22 (1981) 442–453.

[11] Y. Marcoux, Complexité des relations sémantiques dans les systèmes de program-
mation, Ph.D. Thesis, Université de Montréal, 1991. Available as “Document de
travail #214”, Dép. IRO, Université de Montréal, 1992.

[12] Y. Marcoux, Fully time-constructible real numbers, in preparation.

[13] G. Riccardi, The independence of control structures in abstract programming
systems, Ph.D. Thesis, State University of New York at Buffalo, 1980.

[14] G. Riccardi, The independence of control structures in abstract programming
systems, J. Comput. Systems Sci. 22 (1981) 107–143.

[15] G. Riccardi, The independence of control structures in programmable numberings
of the partial recursive functions, Z. Math. Logik Grundlagen Math. 48 (1982)
285–296.

[16] H. Rogers, Gödel numberings of the partial recursive functions, J. Symbolic Logic
23 (1958) 331–341.

[17] Original edition of [18] (McGraw-Hill, 1967).

[18] H. Rogers, Theory of Recursive Functions and Effective Computability (MIT
Press, 1987).

[19] J. Royer, A Connotational Theory of Program Structure, LNCS 273 (Springer-
Verlag, 1987).

[20] J. Royer and J. Case, Progressions of relatively succinct programs in subrecursive
hierarchies, Technical Report 86-007, Computer Science Department, University
of Chicago, 1986.

[21] J. Royer and J. Case, Intensional Subrecursion and Complexity Theory , Research
Notes in Theoretical Computer Science (Pitman Press, being revised for publica-
tion, 1989).

[22] J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory (MIT Press, 1977).

[23] P. Young, Juris Hartmanis: fundamental contributions to isomorphism problems,
Technical Report 88-06-02, Computer Science Department, University of Wash-
ington, 1988.

28

