
1 

Running head: READING WORDS LETTER BY LETTER 

 

 

 

 

 

Skilled Readers Process Words Letter by Letter in a Nearly Optimal Sequence 

Caroline Blais, 

Université de Montréal 

Daniel Fiset, 

University of Victoria 

Martin Arguin, Pierre Jolicoeur, and Frédéric Gosselin 

Université de Montréal 

 



2 

Abstract 

Skilled adult readers, in contrast to beginners, show no increase in reading latencies as a 

function of the number of letters in words up to seven letters. This absence of a word-

length effect is typically interpreted as evidence for parallel letter processing in visual 

word recognition (Coltheart, Curtis, Atkins & Haller, 1993; Fiset, Arguin, Bub, 

Humphreys & Riddoch, 2005; Grainger & Jacobs, 1996; Weekes, 1997). However, 

alternative views have been proposed (e.g., left-to-right serial strategy; Kwantes & 

Mewhort, 1999; Whitney, 2001) and the strategy of letter extraction is still under debate. 

The present study directly examined the space-time use of letter information while 

reading using the Bubbles technique (Gosselin & Schyns, 2001a; Vinette, Gosselin & 

Schyns, 2004). Ten participants each read 5,000 five-letter words sampled in space-time 

within a 200 ms window. We found that, on average, the third and fourth letters were 

used effectively from 42 to 133 ms after word onset, and that the first letter was used 

between 42 and 75 ms and again, in conjunction with the second letter, between 142 and 

175 ms. To benchmark human performance, we introduced a family of ideal observer 

models that could optimally use all the available information in order to read words. Of 

all the models that were examined, the ideal reader that processed one letter at a time 

was the one that offered the best fit to human performance. Indeed, this serial reader is 

compatible with the absence of a word-length effect for words from four- to seven letters 

in length. 
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Skilled Readers Process Words Letter by Letter in a Nearly Optimal Sequence 

Gutenberg’s invention has democratized the written word to such an extent that it 

is estimated that nowadays the average English reader has been exposed to more than 

100 million printed words before he reaches the age of 25 (Geisler & Murray, 2003). As 

a result of this intense exposure skilled adult readers, in contrast to beginners, show no 

increase in reading latencies as a function of the number of letters in a word (i.e., word 

length effect), at least for relatively short words (Cohen et al., 2003; Fiset, Arguin & 

McCabe, 2006; Weekes, 1997). 

This finding is interpreted by the vast majority of researchers as evidence that 

letters are processed in a parallel manner when they form words no longer than six or 

seven letters (Coltheart, Curtis, Atkins & Haller, 1993; Fiset, Arguin, Bub, Humphreys 

& Riddoch, 2005; Rayner & Johnson, 2005; McCandliss, Cohen & Dehaene, 2003; 

Weekes, 1997). However, alternative views have been proposed (e.g., left-to-right serial 

strategy; Kwantes & Mewhort, 1999; Whitney, 2001) and the parallel letter extraction 

strategy remains under debate. Indeed, proponents of this strategy can only indirectly 

infer parallel processing since studies addressing this question have relied on methods 

that did not allow direct tracking of the extraction of letter information through time. 

In the present investigation, we directly track the spatio-temporal progression of 

attentional resource allocation in skilled readers while they are performing a word 

identification task. Our approach directly assesses how proficient readers use visual 

information (the various letters) across time in order to achieve word recognition and 

unambiguously reveals the processing strategy used by these proficient readers to 

recognize letter strings. 
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Attentional deployment during word reading 

There is uncertainty concerning the information extraction strategy used by 

proficient readers in order to recognize written words or non-words. This debate largely 

focuses on two competing hypotheses: parallel processing versus sequential processing. 

Parallel processing implies that several letters of a word are processed 

simultaneously. In its most extreme form, parallel processing supposes that all the letters 

of a word are processed simultaneously. In the present paper, this form of parallel 

processing will be referred to as fully parallel processing. Fully parallel processing may 

be either exhaustive, in which case the beginning and the end of processing are 

synchronized across all letters, or self-terminating, in which case the end of the 

processing may occur at different moments for each letter (Lamberts, 2005; Pashler, 

1998). An alternative version of parallel processing assumes that more than one letter of 

a word, but not necessarily all of them, are processed at the same time. In the present 

paper, this form of parallel processing will be referred to as partially parallel 

processing. This hypothesis is conditional on the simultaneous processing of two or 

more letters at least once (regardless of duration) during the recognition of a word. It 

also implies that the beginning and/or the end of the processing of each letter may occur 

at different times. For example, “ends-in” processing may be classified as partially 

parallel if the processing of the outer (or inner) letters overlap in time. 

Most theories of word recognition postulate that letters are processed in a parallel 

manner (Coltheart, Curtis, Atkins & Haller, 1993; Coltheart, Rastle, Perry, Langdon & 

Ziegler, 2001; Coltheart & Rastle, 1994; Harm & Seidenberg, 1999; McClelland & 

Rumelhart, 1981). The hypothesis of parallel processing is based, at least in part, on the 
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absence of a length effect with this stimulus type (Cohen et al., 2003; Fiset, Arguin & 

McCabe, 2006, Weekes, 1997). A length effect is observed with pseudo-words, 

however, and several researchers propose that it reflects a letter extraction strategy that 

is sequential (Coltheart, Curtis, Atkins & Haller, 1993; Coltheart, Rastle, Perry, Langdon 

& Ziegler, 2001; Coltheart & Rastle, 1994; Weekes, 1997).  

Theoretically, however, the absence of a length effect with words could be 

obtained even with sequential processing, and a few researchers postulate that words are 

indeed processed sequentially (Kwantes & Mehwort, 1999; Whitney, 2001). Sequential 

processing (under a strict definition) means that the letters are processed one at a time. 

This hypothesis is conditional on the absence of temporal overlap in the processing of 

individual letters in a word and it implies that the beginning and the end of processing 

occur at different moments for each letter. Most theories that involve sequential 

processing with words and/or pseudo-words postulate that it is performed from left-to-

right (Coltheart, Curtis, Atkins & Haller, 1993; Coltheart, Rastle, Perry, Langdon & 

Ziegler, 2001; Coltheart & Rastle, 1994; Kwantes & Mewhort, 1999, Whitney, 2001). 

However, this is not the only possibility. Indeed, in both partially parallel and sequential 

processing the various letters could theoretically be examined in many different orders 

(Lamberts, 2005), including left-to-right, outside-in or random information extraction. 

Methodological options for tracking attention during word reading 

Eye tracking (Rayner, 1978, 1998) has been used successfully in numerous 

studies investigating the extraction of visual and lexical information in reading. This 

method can be advantageous as it leaves the stimulus unaltered and does not interfere 

with the normal reading process. However, its temporal resolution is insufficient to 
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reveal the extraction of visual information in the recognition of individual words. In fact, 

the average duration of ocular fixation when reading English text (200-250 ms; Rayner, 

1998; Sereno & Rayner, 2000; Sereno, Rayner & Posner, 1998) is about the same as the 

time needed to recognize an isolated word (less than 250 ms; McCandliss et al., 2003). 

In addition, using eye tracking for our present purpose would require assuming that eye 

fixation at any given time unequivocally reveals what is being processed at that time. 

Such an assumption is hardly tenable since the locus of attention can be dissociated from 

gaze (Jonides, 1981; Posner, 1980; see however Rayner, 1998; Deubel & Schneider, 

2003; Godijn & Theeuwes, 2003). Finally, eye-tracking studies of reading have shown 

that short words are usually apprehended in a single eye fixation (i.e., mean saccade size 

is 7-9 letters; mean fixation time while reading is about 200-250 ms; Rayner, 1998). 

Attentional saccades, however, can occur several times within a single eye fixation (i.e., 

estimates of the time needed to plan and execute an attentional saccade typically range 

between 50 ms and 85 ms; e.g., Wolfe, 1998; Wolfe, Alvarez & Horowitz, 2000). 

A radical methodological shift is therefore required in order to precisely study 

the deployment of attention during reading. We have opted for a classification image 

technique. Classification image techniques have already been used to uncover the 

features involved in letter discrimination regardless of time (Watson & Rosenholtz, 

1997; Watson, 1998; Gosselin & Schyns, 2003; Fiset et al., submitted). They have also 

been used successfully in the study of features involved at different moments in basic 

image discrimination (Neri & Heeger, 2002), face identification (Vinette et al., 2004), 

and illusory shape discrimination (Gold & Shubel, 2006). They have however never 

been used to examine the reading of letter strings, nor the identification of single letters 
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through time. Classification image methods are ideal for our purposes because they can 

assess the use of information directly and because their spatio-temporal resolution is 

theoretically unlimited—the only limits stemming from the properties of the visual 

system and those of the equipment used to display the stimuli. Among the different 

classification image approaches available, we have chosen Bubbles because only 

Bubbles directly identifies the specific visual information that allows an observer to 

perform a particular task effectively (Gosselin & Schyns, 2002, 2004a, 2004b; Murray 

& Gold, 2004). 

The following analogy illustrates how we applied the Bubbles technique to word 

reading. In the late stages of Emmenthal cheese production, a bacteria releases carbon 

dioxide gas and this process generates bubbles that become the famous holes. Imagine a 

word revealed by an animated sequence of masks very similar to a succession of thin, 

opaque slices of cheese cut from a brick of Emmenthal. This is in essence what we did 

in the present experiment: On each trial, a target word was randomly sampled across 

space and time by a collection of tridimensional (i.e., height, width, and time) Gaussian 

windows (or bubbles; see Figure 1). 

--------------------------------------------- 

Insert Figure 1 about here 

--------------------------------------------- 

Thus, on any given trial, several masks (or slices of cheese, to pursue with our 

analogy) were successively placed over a target letter string so as to modulate the 

availability of visual information (partial and/or complete letters) across time. One 

fundamental feature of Bubbles is that the sampling of the stimulus on any given trial is 
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entirely random. This involves a significant cost in terms of the number of trials required 

to uncover information use (e.g., we ran a total of 50,000 trials in the present 

experiment). This cost however, is offset by a major advantage: the minimization of 

experimental bias. In particular, it is impossible for the reader to adjust on-line to the 

position of the bubbles because they appear briefly and at random locations. The bubbles 

might interact with the information typically used by the observer but this possible 

interaction is unlikely to be problematic. 

The random location of the bubbles over time and the large number of trials 

allows for the identification, in space-time, of the information that is significantly 

correlated with reading accuracy. In other words, this method allows to directly assess 

which letters are used at what time when reading a word. 

Bubbles experiment 

Method 

Participants. Ten students from the Université de Montréal took part in the 

experiment. All had normal or corrected-to-normal visual acuity. 

Materials and stimuli. Stimuli were displayed on a high-resolution Sony monitor 

with a refresh rate of 120 Hz. The experiment ran on a Macintosh G4 computer. The 

experimental program was written in Matlab, using functions from the Psychophysics 

Toolbox (Brainard, 1997; Pelli, 1997). The viewing distance was maintained constant at 

91 cm by using a chinrest. Stimuli were lowercase words printed in Courier 40 points. 

They appeared in dark grey over a light grey background (fixed luminance of 64.8 

cd/m2; minimum and maximum luminances were 0.48 and 130 cd/m2, respectively). The 
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luminance contrast of the stimulus was adjusted according to the criteria and procedure 

described below. 

Stimuli were constructed from a list of 1,000 five-letter French words. We chose 

five-letter words because they are relatively taxing for the visual system while they 

clearly remain within the alleged parallel-processing boundary (i.e., a small but 

systematic word-length effect is observed for words made of seven letters or more). 

These five-letter words subtended a vertical x horizontal spatial extent of 9.8 x 46.1 mm 

(0.6 x 2.9 deg of visual angle or 25 x 118 pixels). The list of words was constructed 

using BRULEX, a lexical database for French (Content, Mousty & Radeau, 1990), and it 

excluded all words with diacritic marks (e.g., é, ê, à, and so on). We also discarded 

extremely low frequency words with which the participants may have been unfamiliar. 

The stimuli consisted of movies made from a sequence of 24 frames shown for 

8.33 ms each (total duration of 200 ms; this is less than the time required to plan and 

execute an eye saccade). On any given trial, a randomly selected word was sampled 

using Gaussian apertures (bubbles) randomly positioned in space-time. Each bubble had 

a standard deviation of 0.195 degree of visual angle (or 8 pixels) in the spatial domain 

and a full-width half maximum of 48.06 ms (5.77 frames), in the temporal domain (see 

Figure 1). This is less than the time required to plan and execute an attentional saccade. 

The number of bubbles was adjusted twice during the experiment, as will be explained 

shortly. 

Procedure. Each participant completed a total of 5,000 trials divided in 20 

experimental sessions (250 trials each) spread over 10 weeks on average. Reading 

accuracy was maintained at 51% correct. The usual procedure to maintain accuracy at a 
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fixed level in a Bubbles experiment is to adjust the number of bubbles on a trial-by-trial 

basis so as to make the task more difficult (or easier) when the accuracy of the subject is 

higher (or lower) than the targeted accuracy (e.g., Gosselin & Schyns, 2001a). A trial-

by-trial modification of the number of bubbles requires the online computation of each 

dynamic stimulus. Since this computation took on average 8 seconds, we opted for a 

dual strategy in order to maintain performance at a fixed level while avoiding 

excessively long inter-trial intervals. Specifically, we estimated the number of bubbles 

necessary to obtain approximately 51% accuracy twice during the experiment—at the 

beginning and halfway through—and we also adjusted the contrast of the target word 

revealed by the bubbles on a trial-by-trial basis throughout the experimental sessions.  

This procedure allowed us to generate the bubbles’ masks for each trial before 

the experimental sessions, thus reducing the time required to prepare the upcoming trial 

to approximately 4 s, which was relatively comfortable for participants. We estimated 

the number of bubbles required by each participant to read accurately on 51% of trials in 

two 50-trial setting sessions, one before the first experimental session and the other 

before the eleventh experimental session. In these setting sessions, the luminance 

contrast of the stimuli was kept constant at 0.1, and the number of bubbles was adjusted 

on a trial-by-trial basis using a gradient descent procedure (Hertz, Krogh & Palmer, 

1991). On each trial a homogenous grey screen was first displayed for 250 ms and a 

1300 Hz pure tone accompanied this stimulus for the first 122 ms. The grey screen was 

immediately followed by a dynamically bubbled word displayed for 200 ms at the center 

of the screen. This was in turn immediately followed by a homogenous grey screen that 

remained visible until the participant responded. The participant’s task was to read the 
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target word aloud as quickly and as accurately as possible. This triggered, via a response 

key, a dialog box into which the subject typed his/her response using the appropriate 

computer keyboard keys followed by the «ENTER» key. No feedback was provided to 

participants during the setting sessions. 

The sequence of events for each trial in the experimental sessions was identical 

to that of the setting sessions. The number of bubbles per trial for the first ten 

experimental sessions was determined by the first setting session and remained constant. 

It was then readjusted after the second setting session and remained constant for the 

remaining ten experimental sessions. Performance was further fine-tuned at 51% correct 

by adjusting the luminance contrast of the stimulus on a trial-by-trial basis using 

QUEST, with the initial contrast being set at 0.1 for all participants (Watson & Pelli, 

1983). No feedback was provided to participants during the experimental sessions. 

Results and Discussion 

In the first half of the experiment, a mean of 332.4 bubbles (between 222 and 530 

across participants) with an average Weber contrast of 0.094 (the average contrast was 

of 0.1 and 0.088 at the beginning and the end, respectively) were necessary to maintain 

performance at 51% correct. In the second half of the experiment, the corresponding 

numbers were 252.3 bubbles (between 172 and 455 across participants) with an average 

Weber contrast of 0.099 (the average contrast was of 0.1 and 0.098 at the beginning and 

the end, respectively). The word "bulle" displayed in Figure 1 is revealed by 332 

apertures, which approximately corresponds to the number of bubbles participants 

required, on average, in the first half of the experiment. 
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The efficient use of the spatio-temporal information in the stimulus was 

determined using an analysis procedure that amounts to a multiple linear regression on 

the bubbles masks (explanatory variables) and the participant’s response accuracy 

(predictor variable). First, we constructed one regression coefficient volume per session 

and per subject by subtracting the sum of the bubbles masks that led to an incorrect 

answer from the sum of the bubbles masks that led to a correct answer. These volumes 

of regression coefficients will be referred to as classification movies, which is a natural 

extension of classification image, a term widely used to refer to planes of regression 

coefficients (e.g., Eckstein & Ahumada, 2002). The elements of these movies will be 

referred to as voxels. Second, we constructed a group classification movie that combined 

the classification movies of all subjects, weighted by the number of bubbles used. If all 

parts of the stimulus (the various letters) were of equal importance for success in the task 

(word identification), the voxels would be uniform. Any local divergence from 

uniformity indicates that this particular part of the stimulus (in space-time) was 

particularly important for the task at hand. The statistical analysis was restricted to the 

central horizontal strip one third the height of the group classification movie (43 x 128 

pixels), which approximately represents the area occupied by the word. The remainder 

of the group classification movie was used to estimate the mean and the standard 

deviation of the null hypothesis, and to Z-score the group classification movie. Finally, 

we conducted a one-tailed Pixel test (Chauvin, Worsley, Schyns, Arguin & Gosselin, 

2005) on the group classification movie (Sr = 132,096 voxels; full-width half maximum 

= 12.696; Zcrit = 4.168; p < .025). 
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Figure 2 shows the thresholded classification movie in a rich tridimensional 

graphic. The space-time voxels reaching statistical significance are depicted in bright red 

in the center of the figure and are overlaid on the word “javel”. Four relatively small 

blobs (< 66 voxels) and, more importantly, three larger blobs can clearly be seen. The 

largest blob (1890 voxels) is shaped like a croissant, the second largest (797 voxels) 

resembles a bottle, and the third largest is almost round, looking more or less like a 

“dragée” (234 voxels). Note that the raw significant voxels were convolved with a small 

Gaussian kernel (spatial std = 1.5 pixels; temporal std = 0.141 frames or 1.18 ms) to 

reduce aliasing. 

--------------------------------------------- 

Insert Figure 2 about here 

--------------------------------------------- 

This tridimensional representation ultimately comes short of fully conveying the 

exact shape and location of the blobs in space-time. To remedy this problem, the 

significant voxels were projected onto three bidimensional planes: the back wall—to 

isolate the spatial left-right and up-down dimensions; the floor—to isolate the time and 

the left-right dimensions; and the right wall—to isolate the time and the up-down 

dimensions. The number of significant voxels projected onto a single pixel on the planes 

is represented by red saturation (see legend). To further facilitate space-time 

localization, we have added dim grey lines delimiting the 24 frames on the time 

dimension and the three different regions of the letters on the space dimensions (i.e., 

body, ascenders, descenders). 
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A glance at the right wall reveals two moments especially correlated with 

accurate reading: one between frames 5 and 10 and the other between frames 19 and 21. 

It also shows that most of the voxels correlated with reading accuracy are located in the 

top half of the body region and, to a lesser extent, in the ascender region. Interestingly, 

there are no significant voxels in the descender regions. Looking at the back wall, it can 

be seen that the letter positions most correlated with reading accuracy are 4 (letter 

positions are numbered from 1—leftmost—to 5—rightmost), followed by 3, then 1, then 

2, and, finally, 5. The floor helps to visualize the interactions between the importance of 

letter positions and time in reading accuracy. 

To summarize, the space-time use of letter positions 3 and 4 forms the large 

croissant-shaped blob. It begins around frame 4 (50 - 58.33 ms) or 5 (41.67 - 50 ms) and 

ends around frame 14 (116.67 - 125 ms) or 15 (125-133.33 ms). The early space-time 

use of letter position 1 forms the dragée-shaped blob. It approximately extends from 

frame 5 (41.67 - 50 ms) to frame 8 (66.67 - 75 ms). Together, the croissant- and the 

dragée-shaped blobs are responsible for the first burst of activity that can be distinctively 

seen on the right wall. The second burst of activity on the right wall is caused by the 

bottle-shaped blob. It corresponds to the effective use of letter positions 1 and 2 between 

frames 17 (141.67 - 150 ms) and 20 (166.67 - 175 ms). 

Comparison to electroencephalographic reading data. 

Our results might seem at odd with the electroencephalographic (EEG) literature 

on reading. Indeed, distinct electrical responses to different stimulus categories occur 

considerably later than the beginning of the activity correlated with correct word 

identification as observed herein. In fact, the earliest EEG response that differentiates 



15 

between orthographic and non-orthographic stimuli has been shown to occur 

approximately 200 ms after stimulus onset (Bentin, Mouchetant-Rostaing, Giard, 

Echallier & Pernier, 1999; Nobre, Allison & McCarthy, 1994; Rossion, Joyce, Cottrell 

& Tarr, 2003). Specifically, this response consists of a negative component showing a 

larger amplitude, in the left hemisphere only, for words as compared to other complex 

objects. The amplitude of this component was found to be identical for words and for 

non-words, and it has been suggested that it reflects visual mechanisms tuned to 

orthographic processing, a stage of processing that occurs earlier than the lexical, 

phonological and semantic processing stages (Nobre, Allison & McCarthy, 1994). The 

present results are in fact not inconsistent with the time course of this component. 

Indeed, they show that the correct identification of words depends on the presentation of 

letters as early as 50 ms after stimulus onset; what the EEG results imply is that the 

visual information presented as early as 50 ms after stimulus onset is processed for 

approximately 150 ms before it is reflected in the orthographic specific electrical 

component of the brain. 

Qualitative evaluation of the reading models proposed in the literature. 

As mentioned previously, the hypotheses concerned with possible strategies of 

information extraction in reading that have been formulated so far usually focus on the 

parallel vs. sequential nature of the processing, and the majority of reading models 

postulate parallel letter processing when the stimulus is a word. 

The fully parallel hypothesis implies that all the letters that form a word are 

processed simultaneously, and that the end of the processing of each letter occurs either 

at the same moment (exhaustive processing) or at different moments (self-terminating 
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processing). In exhaustive processing, no specific time slot is thought to be more 

important, or special, throughout the processing. This is true also, at least at the 

beginning of processing, for self-terminating processing. A fully parallel model would 

therefore be associated with a classification volume in which the relative importance of 

the five letter positions is equal on each frame (McCabe, Blais, & Gosselin, 2005). 

To illustrate, consider the following toy problem: a fully parallel reader is 

exposed for the duration of two frames to a pseudo-word composed of two randomly 

chosen letters. Each bubble mask could be represented as a 2 x 2 matrix: 
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Our results do not support such a fully parallel model. Indeed, there are no time 

intervals during which all the letters of the stimulus are processed simultaneously and 

there is a clear modulation of the relative importance of the five letter positions across 

time. Both of these facts are incompatible with a fully parallel model.  

Partially parallel models propose that only subsets of the constituent letters of a 

word are being processed simultaneously. In that case, the order in which these subsets 

of letters are extracted may be systematic or not. If it is systematic, each time slot 

becomes special and the moment at which the letters are revealed in a bubbles task 

matters: if a letter is not revealed at that very moment when the reading system would 

usually process it, the system will not have all the information it needs to correctly 

recognize the target and performance will suffer. Therefore, a partially parallel model in 

which letter subsets are extracted in a systematic order predicts a modulation of the 

attentional resources allocated to each letter position across time. In contrast, any 

model—partially parallel or serial—in which the order of extraction is random would 

make predictions equivalent to those of the fully parallel hypothesis. Indeed, readers that 

deploy their attention randomly, regardless of the number of letters they can process 

simultaneously, would also generate a homogenous classification volume. As we saw, 

those predictions are infirmed by the present results. The data presented herein could 

therefore be explained by a partially parallel model in which the order of extraction is 
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systematic since we observe a clear modulation of the importance, or diagnosticity, of 

each letter position over time. 

One hypothesis that has been proposed about the order of letter extraction in a 

partially parallel model is that the outside letters are processed before the inside letters 

(Jordan, Patching & Thomas, 2003; Jordan, Patching & Milner, 2000). The present data 

appear incongruent with this hypothesis, however, as the inside letters 3 and 4 become 

useful before outside letter 1. 

The last type of reading model encountered in the reading literature is sequential 

processing, which proposes that the various letters that form a word are being processed 

one at a time. The idea of the “special” quality of each time slot that was discussed in the 

context of the partially parallel hypothesis is also relevant to the sequential processing 

hypothesis: if the order of extraction is systematic, each time slot becomes special; if it 

is completely random across trials, the results should not show any modulations of the 

importance, or diagnosticity, of each letter position over time. Most of the authors who 

propose that a sequential strategy is being used, at least with a certain type of letter 

strings, suggest that the extraction of the letters occurs in a systematic left-to-right order 

(Coltheart, Curtis, Atkins & Haller, 1993; Coltheart, Rastle, Perry, Langdon & Ziegler, 

2001; Coltheart & Rastle, 1994; Grainger & Jacobs, 1995; Kwantes & Mewhort, 1999; 

Whitney, 2001; but see Lamberts, 2005). The results reported in the present study are 

clearly incongruent with a simple left-to-right strategy of information extraction. Indeed, 

the relevant processing focuses mainly on the middle and middle-right portions of the 

word and attention does not appear to smoothly move across adjacent letter positions. 

Indeed, relevant processing skips intermediate positions and even at time proceeds from 
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right-to-left (e.g., from letter 4 to 2 or 3 to 1). Nevertheless, our results could still be 

accounted for by a kind of sequential processing in which the order of letter extraction is 

systematic but not from left-to-right. 

In summary, the results of the experiment are consistent with a sequential or 

partially parallel processing strategy in which the order of extraction is systematic, but 

not from left-to-right nor from outside-in. The analyses reported so far do not permit to 

discriminate between these two general hypotheses. In fact, even though two or more 

letters may appear to have been processed simultaneously in the thresholded 

classification movie (Figure 2), it should be kept in mind that the group classification 

movie was elaborated from the weighted sum of all bubble masks. This implies that two 

letters that are revealed simultaneously in the results may have actually been used 

independently on different trials. For example, in a hypothetical case where participants 

would use, during frame 5, letter position 3 on half the trials and letter position 4 on the 

other half of the trials, the weighted sum of all bubbles mask would reveal both letter 3 

and 4 on frame 5. We will come back to this issue in a subsequent section, where human 

data and reading models are compared quantitatively. 

A Family of Ideal Readers 

Ideal observers optimally use all the information available to perform the task at 

hand (Giesler, 1989; Legge, Klitz & Tjan, 1997; Legge, Hooven, Klitz, Mansfield, & 

Tjan, 2002; Mamassian, Landy & Maloney, 2002; Pelli, Farell & Moore, 2003; 

Anderson, 1991; Gosselin & Schyns, 2001b). Their purpose is not so much to fit human 

data but to understand how human data diverges from an ideal implementation. In other 

words, ideal observers can be seen as benchmarks for human performance. Before 
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turning to a new family of ideal readers, we will present Mr. Chips, an ideal-observer 

model of eye saccades, so as to provide a firm grasp of what ideal-observer models 

actually are. 

Mr. Chips 

Legge, Klitz, and Tjan (1997) have proposed an ideal-observer model for a 

simple reading situation: Mr. Chips. The purpose of the model is to examine how basic 

visual, motor, and cognitive constraints influence reading behavior in people with 

normal and low vision. This model provides novel accounts of characteristic patterns of 

normal eye movements while reading, including the presence of regressive saccades, 

word skipping, and a preferred gaze landing position in words. The researchers also 

describe how the model provides insights into the reading difficulties encountered by 

people with visual-field loss resulting from eye disease. 

Visual data are obtained through a simplified "retina". The retina can have any 

sequence of high-resolution slots in which letters can be recognized, and low-resolution 

slots or scotomas where only spacing information is available. The authors refer to the 

set of high-resolution slots as Mr. Chips's "visual span." Mr. Chips has access to lexical 

information that consists of a dictionary containing all allowable words and their 

frequencies. Oculomotor information is available in the form of statistical knowledge of 

eye-movement accuracy. Mr. Chips' eye movements may be "noisy," that is, of 

somewhat uncertain length, but when Mr. Chips plans a saccade of length L, he knows 

the probability distribution of the landing sites. 

Mr. Chips reads texts made of words drawn at random from the dictionary. The 

model makes no use of syntax or semantics. Mr. Chips' task is to read through the text in 
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as few saccades as possible and to identify all the words sequentially without error. 

Mathematically, Mr. Chips uses an entropy minimization principle. At any point, he may 

have partial information about the current word (some of the letters or word length 

information). He then makes the saccade that minimizes uncertainty (bits of 

information) about the current word. He cannot depart from the current word until he has 

unambiguously identified it (i.e., its uncertainty is zero). 

Optimal attentional deployment within reading saccades 

In this section, we will describe a family of ideal readers: models that read words 

by using all the available information in an optimal manner. In a sense, the realm of this 

family of ideal readers begins where Mr. Chips’ ends: they do their work in between eye 

saccades. 

We have made several simplifying assumptions as we elaborated these ideal 

readers. First, we assumed that the letters are the atoms of information for word reading 

(e.g., Pelli, Farell & Moore, 2003). We believe this to be an oversimplification since 

letters can be divided into features (e.g., Pelli, Burns, Farrell & Moore-Page, 2006; Fiset 

et al., submitted). Second, we assumed that time ticks in a discrete manner (e.g., 

VanRullen & Koch, 2003). Third, we assumed two processing stages: the first 

corresponding to bottom-up, encapsulated, low-level visual processes (e.g., Pylyshyn, 

1999), and the second corresponding to a bidirectional attentional mechanism (i.e., 

bottom-up and top-down). In other words, the deployment of this second processing 

stage is informed by lexical knowledge. Fourth, we assumed that the ideal readers have 

perfect lexical knowledge. Fifth, we assumed that their low-level visual systems are 

imperfect and that they obey the same letter confusability matrix as the human visual 
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system. Sixth and finally, we assumed that the attentional mechanisms of the ideal 

readers have limited processing capacity. 

A number of studies suggest that human information processing capacity is 

limited. For example, the classic Miller (1956) study has shown that human short-term 

memory can only process seven chunks of information, plus or minus two. Studies of 

subitizing (Kaufman, Lord, Reese, & Volkmann, 1949) have shown that human subjects 

could rapidly and accurately report the numerosity of sets containing up to 3 or 4 

elements (e.g., Dehaene & Cohen, 1994). Moreover, change blindness experiments have 

shown that subjects that were asked to notice changes in natural scenes do very poorly, 

even if the change involves very salient features of the scene (Levin & Simons, 1997; 

Simons & Rensink, 2005). 

In the reading literature, the usual interpretation of the length effect observed 

with words containing more than 6 letters (Cohen et al., 2003; Fiset, Arguin & McCabe, 

2006) is simply that long words overtax the limited processing capacities of the system. 

The results of the present study, however, imply that the maximum number of letters 

that can be processed simultaneously is inferior to five. 

Given the limited capacity afforded to ideal readers, the optimal strategy—or 

rather the optimal family of strategies—is to scan the maximum number of letters within 

one clock cycle and to scan different groups of letters across clock cycles. One 

consequence of this—assuming that all the letters in a word have to be processed for 

identification—is that all words of less than m letters, m being the maximum number of 

letters that can be processed in a processing cycle, can be read at a glance. Conversely, 

all words of n letters, with n > m, have to be read in a number of processing cycles that 
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increases linearly as a function of word length with a slope of n / m. Each member of the 

ideal reader family described in this article will differ from the others in terms of the 

number of letters it can process simultaneously. For each ideal reader, we will find the 

optimal attentional strategy, taking into consideration the lexical and visual constraints 

mentioned above. 

The best attentional strategy Sc at clock cycle c is the attentional strategy K that 

minimizes the uncertainty regarding the target word: 
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where PK(wordi on cycle c+1) is the probability that each word in the lexicon is the target 

given a particular attentional strategy K on cycle c+1. The steps involved in finding the 

best attentional strategy Sc given a target word are summarized in the following pseudo-

code: 

 

Initialize the word probability matrix 

Begin clock cycle loop 

[Generate a bubbles vector] 

Begin loop through all possible K’s 

Temporary word probability matrix = word probability matrix 

Update the temporary word probability matrix according to K 

Compute a word probability vector using the temporary word probability matrix 

Compute uncertainty associated with K 

If uncertainty < than previous ones Sc = K 

End loop through all possible K’s 

Update the word probability matrix according to Sc [and the bubbles vector] 

If the maximum word probability > criteria, stop the clock cycle loop or else continue 
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Prior to the first processing cycle c, each letter (1/26) of each word has an equal 

probability of being the target. Every cell of the word probability matrix is therefore 

filled with 1/26. In other words, the ideal reader has not yet acquired any knowledge 

about the target word at this point in time. Its selection of the optimal attentional strategy 

will solely be based on its lexical and letter confusability knowledge. 

When simulating a Bubbles experiment, a binary vector of length equal to that of 

the word being identified is randomly generated on each processing cycle. These 

bubbles cannot affect the choice of the optimal strategy because they do not last long 

enough (less than 50 ms, the minimum time required to plan and execute an attentional 

saccade) for the human reader to react to them. However this sampling does make a 

difference when the time comes to update the word matrix. 

What warrants the optimality of the ideal reader is that it exhaustively searches the 

possible attentional strategies for the processing of cycle c+1. The number of candidate 

attentional strategies K to consider is the same at all processing cycles and is determined 

by 
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, where m is the number of letters that the model reader can process 

simultaneously and n is the number of letters in the word. For each of these candidate 

attentional strategies K, we calculate a vector containing the probabilities PK(wordi on 

cycle c+1) that each word in the lexicon is the target on cycle c+1. 

On cycle c+1, the probability of recognizing the letter or the combination of letters 

towards which attention is directed can be computed by using a letter confusability 

matrix derived through experimentation, in our laboratories, with human normal readers 

(see Table 1). A letter confusability matrix expresses the probability of identifying letter 

x given that letter y is presented, P(x|y), with x and y spanning all letters of the alphabet. 



25 

These probabilities of identification/confusions can be obtained by putting high 

constraints on the visual system. The letter confusability matrix used herein was 

obtained by very briefly (33.3 ms) presenting letters that were embedded in a high level 

of noise (adjusted so as to maintain performance at 50% correct). 

For example, if the target word was "javel" and if an ideal reader with an 

attentional capacity limited to one letter was to direct its attention toward the first letter 

of the target word, the probability of correctly identifying this letter as a 'j' would be 

0.31. The probability of identifying it as an 'f' (as in the word "farce", for instance) 

would be 0.07 (i.e., the probability to confuse a 'j' for an 'f' is 0.07), and so on for all 

letters from the alphabet. 

To pursue with this example, the next step in the search for the best attentional 

strategy Sc consists in updating a temporary word probability matrix: 0.31, 1/26, 1/26, 

1/26, and 1/26 on the row of the target word "javel"; 0.07, 1/26, 1/26, 1/26, 1/26 on the 

row of the word "farce"; and so on for the rows of all the other words in the lexicon. 

This temporary word probability matrix is then used to construct a temporary word 

probability vector by multiplying all the elements in each row and by dividing the result 

by the sum of the 1,000 products (the total number of words in the model’s lexicon). 

The elements of this vector correspond to PK(wordi on cycle c+1), or to the 

probability that each word in the lexicon is the target given that attention was directed to 

the first letter of the target word on cycle c+1. According to information theory, the 

uncertainty associated with this candidate strategy K is equal to 
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vector were excluded from the computation. 
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This uncertainty equation outputs the number of bits contained in a sequence of 

probabilities associated with events. It reaches a maximum when all events are 

equiprobable (equal to 9.9658 bits for a word probability vector of 1,000 elements such 

as the list of five-letter words used in the Bubbles experiment), and it approaches zero 

when one event has a probability approaching 1. 

The candidate attentional strategy K associated with the least uncertainty is the 

best attentional strategy Sc at processing cycle c and it is perforce the attentional strategy 

chosen by the ideal reader. Note that on the rare occasions that this computation leads to 

ties, one of the winning strategies is selected at random. 

In all the processing cycles that follow the first one, the same computations are 

performed, and for each cycle all the knowledge acquired on the preceding cycles is 

taken into account. This is achieved by updating the word probability matrix according 

to either Sc or, when simulating a Bubbles experiment, according to the intersection 

between Sc and the revealed letter positions. 

Going back to the ongoing example, suppose that the best attentional strategy on 

the first processing cycle was to allocate attention to letter position 1. Remember that the 

word probability matrix after the first processing cycle was 0.31, 1/26, 1/26, 1/26, and 

1/26 on the row of the word "javel"; 0.07, 1/26, 1/26, 1/26, and 1/26 on the row of the 

word "farce"; and so on for the rows of all the other words in the lexicon. If, for 

example, the candidate attentional strategy loop on the second cycle processes the first 

letter position again, the temporary word probability matrix would look like: .312, 1/26, 

1/26, 1/26, and 1/26 for the word "javel"; .072, 1/26, 1/26, 1/26, and 1/26 for the word 

"farce"; and so on for all other words in the lexicon.  
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This is slightly counterintuitive because paying attention twice to the same letter 

position should increase certainty and yet .312 is smaller than .31. We have to bear in 

mind that what matters for the computation of uncertainty is the relative difference 

between the various probabilities in the word probability matrix. In this case, there is a 

decrease in uncertainty from the first to the second cycle because .312/.072 = 19.6 is 

greater than .31/.07 = 4.4. This last observation also stands in cases where the word 

probability is smaller after attending to one letter position than before attending to it. In 

fact, letter positions that were never attended to are somewhat arbitrarily given a weight 

set to 1/26. However, since all the words in the word probability matrix have the same 

weight on the letter positions that have not been attended to, this weight can be factored 

out. In other words, what matters is what varies between words. 

When one of the words reaches a probability of being the target that is greater than 

an arbitrary criterion, the run is terminated. To obtain results comparable to the 

thresholded classification movie presented in Figure 2, we used a stopping criterion of 

.51, namely the mean accuracy of human participants. Finally, we averaged the Sc’s 

associated with each word in the five-letter-word lexicon considered as the target ten 

times (i.e., 1,000 words * 10 repetitions = 10,000 simulations). 

Figure 3 shows the space-time deployment of attention for the combination of free 

parameters that lead to the greatest r2 between the predictions of the models and human 

data. The human data focuses on the interaction of time and the left-right plane, which 

was projected on the floor of Figure 2. A first point to note in the results of the 

computational analysis is the high diagnosticity of letter positions 1, 3, and 4, from most 

to least diagnostic, during the initial processing cycles. An examination of the results 
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obtained in the Bubbles experiment reveals that these three letters are also the most 

useful for the tested human readers, albeit not in the same order. Also, the results of all 

the simulations show two bursts of activity over time, just as those of humans (see 

pinkish time histograms next to the prediction planes); this is particularly clear for ideal 

reader number 4. 

Goodness of Fit Between Reading Models and Human Data 

We will now quantitatively compare the results of the Bubbles experiment 

reported above with all the models concerned with the deployment of attention during 

reading, including the four ideal readers introduced in the present article. In order to 

conduct this comparison, we have made a number of assumptions and simplifications 

that we will specify carefully so as to avoid any misinterpretation. Since none of the 

models make any commitments about the use of letter ascenders, bodies, or descenders, 

we collapsed the up-down dimension in the thresholded classification volumes. We also 

assumed that the whole letter was the spatial atom and that a slice of 8.33 ms was the 

temporal atom. Therefore, we compared the theoretical proposals with the averaged 

human data within these 120 space-time atoms (5 letter positions x 24 frames = 120 

space-time atoms). 

The various reading models were best-fitted to the human data as follows: the 

fully parallel model had two free parameters (i.e., a beginning and an end); the left-to-

right model had six free parameters (i.e., a beginning for the leftmost letter as well as for 

the four next letter positions and an end for the rightmost letter); the outside-in model 

had four free parameters (i.e., a beginning for outermost letter positions as well as for 

the next two groups of letter positions and an end for the innermost letter); and each one 
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of the four ideal readers—i.e., those without any built in constraint as to letter extraction 

order and with a processing capacity of one, two, three, and four letters in parallel, 

respectively—had two free parameters (i.e., a beginning and an end). 

Figure 3 shows the space-time deployment of attention for the combination of 

free parameters that led to the greatest r2 between the predictions of each model and 

human data. To summarize the predictions along the time and along the left-right 

dimensions, we flanked the prediction planes with pinkish histograms.  

----------------------------------------------- 

Insert Figure 3 about here 

----------------------------------------------- 

Of all the model readers proposed in the literature, the left-to-right reader is the 

one that explains the most data variance (r2 = .2239). A closer look at the results of this 

model, however, reveals that this relatively good fit is essentially due to the use of 

information at letter position 4 on frames 6 to 11. This model does not capture the global 

aspect of the behavioural data, namely the use of letters 3 and 4 before letter 1, as well 

as the very late use of letter 2. 

Ideal reader 1, which is only capable of processing a single letter at once, 

explains more data variance (r2 = .2578) than any other model discussed in this article. 

The difference between the r2 of ideal reader 1 and the left-to-right reader might appear 

small but a likelihood ratio, corrected for the number of free parameters, 
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where kx is the number of free parameters in model x and n is the number of data points 

(n = 24 frames * 5 letters = 120), indicates that the human data is 1,096.8 times more 

likely to have occurred if ideal reader 1 were true than if the left-to-right reader were 

true (Glover & Dixon, 2004). 

In sum, the best model considered in this article is ideal reader 1, followed by 

ideal reader 2 (the data is more than 14.8087 times as likely to have occurred if ideal 

reader 1 were true than if ideal reader 2 were true). The other models follow thusly: ideal 

reader 4, ideal reader 3, the left-to-right reader (the data is 9.5932 times as likely to have 

occurred if ideal reader 3 were true than if the left-to-right model were true), the outside-

in reader, and finally the fully parallel reader, which is trailing far behind. 

Ideal reader 1 offers a simple and straightforward explanation as to why letters 

would be extracted in a specific order. Specifically, it suggests that skilled readers take 

advantage of the statistical properties of words (i.e., some letter positions are more 

diagnostic than others), and therefore allocate more attention to the letter positions that 

increase the probability of recognizing the target word. Surprisingly, the completely 

sequential version of the model explains more data variance than the partially parallel 

version. This supports a letter-by-letter process rather than a fully or even a partially 

parallel strategy of visual information extraction. 

General Discussion 

First, we used The Bubbles technique to examine the extraction of visual 

information over time in a five-letter word identification task. In a nutshell, it was found 

that the use of letter positions 3 and 4 begins around 42 ms and ends around 133 ms. The 

early space-time use of letter position 1 starts at approximately 42 ms and finishes 
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around 75 ms. Letter position 1 is used effectively a second time, together with letter 

position 2, between 142 ms and 175 ms. 

Second, we examined the optimal strategy of letter information extraction for 

systems with limited processing capacity and perfect lexical knowledge. A family of 

four ideal readers, respectively capable of processing one, two, three or four letters 

simultaneously, were run on the five-letter word lexicon used in the Bubbles experiment. 

These novel ideal readers provide a much better fit to the Bubbles results than the three 

main models proposed in the literature: the fully parallel, the left-to-right and the 

outside-in models. Indeed, the worst of the ideal readers (ideal reader 3) still provides a 

better fit than the best of the models from the literature (the left-to-right reading model). 

Ideal reader 1, with a processing capacity of one letter, is the one that best fits the human 

data. These results suggest that human readers use a nearly optimal strategy of letter 

extraction, and process letters one at a time. 

The behavior of ideal reader 1 is nonetheless different from human behavior and 

it accounts for only about 25% of the variance. In particular, the unfolding over time of 

the human data is not exactly what is predicted by the ideal reader 1. It goes without 

saying that, reading performance can be influenced by numerous factors not taken into 

account by the models examined herein: lexical frequency, imageability, hemispheric 

asymmetry, visual acuity at different eccentricities, etc. These are also likely to influence 

how participants extract information through time. For example, it is possible that the 

left hemisphere bias for verbal stimuli leads to an easier visual processing of the letters 

that fall within the right visual hemifield or that the letters that are further from the 

fixation point are slightly harder to recognize because of decreased visual acuity. Of 
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course the order in which letter information is extracted would take these various factors 

into account. The aim of our computational analysis was not to exactly reproduce human 

performance, but rather to examine and better understand the nature of the task that had 

faced our human participants. 

It should be added that the models have nothing to say about the observed 

variations in the use of information along the up-down dimension. We have already 

pointed out that the upper portion of the letters appears to be much more important than 

the lower parts (Figure 2). This is consistent with the findings of Huey (1908), which 

showed that reading is slow and effortful when the top part of words is removed whereas 

the effect is minor when the bottom part is removed. Future models will have to address 

this bias. Likewise, the models do not predict the within-letter left-right modulations 

captured in the classification volume of Figure 2. For example, the left half of letter 

position 2 and the right half of letter position 3 seem to be especially useful for word 

recognition. 

The word-length effect revisited 

The present findings directly contradict the quasi-universal notion that normal 

word recognition rests upon parallel letter processing, an idea essentially based on the 

fact that the number of letters in a word hardly has any effect on the time required to 

read it (Forster & Chambers, 1973; Frederiksen & Kroll, 1976; Henderson, 1982; 

Weekes, 1997). Apart from constituting a null effect, this observation must be 

considered inconclusive because particular forms of serial letter processing can 

accommodate the absence of a length effect.  
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For instance, one—unlikely—possibility is that serial processing would be 

exhaustive (i.e., the complete set of letters in the word is examined) but that its rate 

increases proportionately with word length. A more likely possibility is that serial letter 

processing is self-terminating—i.e., it terminates when sufficient evidence has been 

gathered to reliably permit word identification. This type of processing would be a 

viable and economically sensible strategy, especially considering that the total number 

of words of a particular length actually constitutes a small subset of the possible letter 

combinations of that length. The serial letter processing strategy demonstrated by the 

present experiment is entirely compatible with this hypothesis since only subsets of the 

letters comprised in the words appear to have been processed to a significant degree. 

Within this context, if it is further supposed that the number of letters that actually need 

to be processed for word recognition remains constant across word lengths, then the lack 

of a word length effect can be reconciled with serial letter processing. 

To assess this hypothesis in a relatively direct manner, we submitted ideal reader 

1 to all the French words without diacritic marks that contain from 4 to 7 letters. This 

analysis revealed that the average number of processing cycles to reach the .99-accurate 

stopping criteria remained approximately constant across word lengths (i.e., 4.66, 4.71, 

4.95, and 4.91 cycles for words containing 4, 5, 6, and 7 letters, respectively). Most 

interestingly, the letter positions that are the most informative during the first cycles 

(i.e., letters 1, 3, and 4—see Table 2) remain the same for all word lengths. This latter 

observation is congruent with studies addressing the effect of word length on optimal 

viewing position. Indeed, it has been shown that the optimal viewing position, which is 

very near the center of the stimulus for five-letter words, shifts towards the left—i.e., 
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closer to where letters 1, 3, and 4 are located—for longer words (Brysbaert, Vitu & 

Schroyens, 1996). Given the above, we argue that this leftward gaze shift may be 

explained by the need to keep the most informative letters within the high-acuity portion 

of the retina. 

Incidentally, it should be noted that the hypothesis of serial self-terminating letter 

processing proposed here might to a large degree explain the occurrence of a substantial 

length effect in pseudoword reading (Weekes, 1997). Indeed, the number of legal 

pseudowords of a given length is necessarily greater than the total number of words of 

that length. Because of this, one should expect the need for the examination of a greater 

number of letters in pseudowords than in words. Furthermore, it should also be expected 

that this increase will be magnified with letter strings of increased length. 
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Table 2. Median activity obtained with ideal reader 1 for each letter position in words 

containing 4, 5, 6 or 7 letters. For five-letter words, list (a) contained all five-letter words 

without diacritics whereas list (b) contained the 1000 words used in the bubbles 

experiment reported in the present article. 
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Figure Captions 

Figure 1. The French word "bulle" sampled using 332 bubbles, which was the 

average number of bubbles used by the participants in the first half of the experimental 

sessions. Only the horizontal strip of the stimulus that contains letter signal is displayed. 

Each one of the 24 stimulus frames has a duration of 8.33 ms, for a total stimulus 

duration of 200 ms. The magnified portion of the stimulus shows a complete bubble 

cycle. 

Figure 2. A thresholded classification movie. The space-time voxels reaching 

statistical significance are depicted in bright red in the center of the figure and are 

overlaid on the word “javel”. The numbers within or nearest to each of the seven blobs 

indicate the size of these blobs in voxels. The voxels were projected onto three 

bidimensional planes: the back wall—to isolate the spatial left-right and up-down 

dimensions; the floor—to isolate the time and the left-right dimensions; and the right 

wall—to isolate the time and the up-down dimensions. The number of significant voxels 

projected onto a single pixel on the planes is represented by red saturation (see legend). 

The dim grey lines delimit the 24 frames on the time dimension and the three different 

regions of the five letters on the space dimensions (i.e., body, ascenders, descenders). 

Figure 3. Space-time deployment of attention for the combination of free 

parameters that lead to the greatest r2 between human behavioural data and the 

predictions of the seven models considered in the article. The number of free parameters 

and r2 are specified for each model reader. To summarize the predictions along the time 

and the left-right dimensions, histograms flank the prediction planes. The models are 
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ordered from best (top left) to worst (bottom right) according to their likelihood ratios 

corrected for the number of free parameters. 

 



49 

 



50 

 



51 

 


