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Opinion
If the brain is a machine that processes information, then
its cognitive activity can be interpreted as a set of
information processing states linking stimulus to
response (i.e. as a mechanism or an algorithm). The
cornerstone of this research agenda is the existence of
a method to translate the measurable states of brain
activity into the information processing states of a cog-
nitive theory. Here, we contend that reverse correlation
methods can provide this translation and we frame the
transitions between information processing states in the
context of automata theory. We illustrate, using
examples from visual cognition, how this novel frame-
work can be applied to understand the information
processing algorithms of the brain in cognitive neuro-
science.

Algorithms in the brain
Consider your favourite email program running on your
desktop computer. As you depress ‘get new mail’, an
electronic storm of microstates occurs in several regions
of the motherboard to implement this function. Depressing
‘store mail’ elicits a different storm. Detailed measure-
ments of the motherboard electronics would reveal to a
computer engineer that the microstates implementing ‘get
new mail’ differ from those implementing ‘store mail’.
These measurements, aggregated over time, could also
reveal the subsets of motherboard components mostly
activated to perform these functions. However, as Marr
[1] famously pointed out, to reverse engineer the compu-
tational steps of ‘getting’ or ‘storing new mail’ (i.e. to
understand ‘how’ separate algorithms perform the func-
tions) additional knowledge is required. First, the engineer
must understand the abstract goals of the computation (i.e.
‘what’ information is manipulated, such as sender, recei-
ver, subject and message fields) and they must also under-
stand the hardware implementing the algorithm (i.e.
‘where’) such as a desktop computer connected to a mail
server.

Cognitive neuroscientists face the similar problem of
reverse engineering the algorithms of cognitive functions
from measurements of brain activity. Of crucial import-
ance is identifying the information processed and how it is
distributed and transferred throughout the different brain
areas involved. Careful control of cognitive parameters
during experimentation and use of advanced analysis
methods have provided considerable insight into what
Corresponding author: Schyns, P.G. (philippe@psy.gla.ac.uk).

20 1364-6613/$ – see front matter � 2008 Elsevier L
information is represented by the brain [2]. However,
although subtle experimental conditions (e.g. a happy
versus a fearful face) might reveal which brain areas
respond to a particular visual stimulus, they cannot inform
us about the information processing that subsumes these
crucial categorizations. For example, what information is
being extracted from the fearful face? How is it extracted?
What are the networks involved in this extraction? Is their
information processing content changing over time?

We believe that cognitive neuroscience must now
embrace such detailed questions of information processing
to provide a fuller account of cognition from brain activity
measured with a millisecond time resolution. Here, we
present a novel approach that uses a method called
‘Bubbles’ [3,4] to characterize the information goals of
cognitive tasks (i.e. ‘what information is processed?’). We
thenmodel ‘how’ brain algorithms process this information
between stimulus onset and behavioural response.

Diagnostic use of Information
Consider an observer asked to perform a cognitive task, for
example, judging the expression of the face presented on a
computer screen. By using reverse correlationmethods (i.e.
Bubbles technique [3,4]), we can precisely determine the
facial information that the observer uses to make this
judgement (e.g. reveal that the wide-opened eyes predict
‘fear’ or that the smiling mouth predicts ‘happy’. See
Figure 1; The Bubbles Procedure). Therefore, we know
that the brain of this observer must process at least these
specific diagnostic features to reach these particular judg-
ments.

This is an obvious point, but its implications are import-
ant and often neglected. When the brain processes the
features diagnostic of facial expressions, then it must go
through information processing (i.e. functional) states such
as ‘F = process the eyes’ or ‘G = process the mouth’ before
categorizing ‘fearful’ or ‘happy’, respectively. Diagnostic
information, therefore, provides a lower bound on the
information processing states that the brain must go
through. Although we cannot search the brain directly
for these states, we can search for correlated states of
brain activity in the brain measurements m[F] and m[G]
– henceforth called ‘microstates m[F] and m[G]’ – which
refer to the brain measurements m[X] of information pro-
cessing state X. Knowledge of what the diagnostic features
are then constrains what we are searching the brain for,
that is, the microstates correlated with the processing of
the diagnostic features. The processing of these diagnostic
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Figure 1. The Bubbles Procedure. (a) Stimulus. (i) Bubbles sampling. In this application of Bubbles, an original face picture is initially filtered into five independent spatial

frequency bands. On each sampling trial, Gaussian apertures are randomly allocated across spatial frequency bands and image locations to sample and reveal different

portions of the input face. (ii) Input stimulus. On each trial, the input face will present different samples of facial information. As the location of the bubbles randomly

change across trials, the entire face will be sampled throughout the experiment. (b) Diagnostic information. After many trials, a multiple linear regression associates correct

and incorrect categorization responses (here, for different facial expressions) with the sampled facial features. Diagnostic information, therefore, represents the facial

information that the observer’s brain must process to correctly perform the task. In the example, different features are processed for correctly categorizing different facial

expressions of emotion [3,22,23]. Adapted from Ref. [22].
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features can be construed as the ‘information goals’ of the
brain during a particular visual categorization task. Note
that diagnostic features are found in any sensory modality
(e.g. in audition, to distinguish the vocalizations of differ-
ent bird species; in taste, to classify wines; in touch, to
categorize smooth from rough surfaces; in smell, to avoid
noxious substances, and so forth). So, the approach of
identifying the states of brain activity correlated with
the processing of diagnostic features is a potentially per-
vasive approach to cognitive neuroimaging in many per-
ceptual and cognitive tasks [5,6].
The previous paragraph highlighted a natural relation-
ship between diagnostic features in the stimulus, their
processing in the brain and the observer’s categorization
behaviour. However, is this all there is? For example, when
the visual stimulus is an expressive face, does the brain
process other features of the face that are not diagnostic for
this task? How could we know what these features are if
they do not underlie behaviour? For example, perhaps the
information processing state ‘F = process the eyes’ system-
atically precedes the state ‘G = process the mouth’, when
behaviour only requires the presence of the smiling mouth.
21



Figure 2. Translation of macrostates of cognition X into microstates of the brain m[X] (part 1). Imagine that the task of an observer is to determine whether the input face is

smiling or not. Suppose we know that the observer must use information from the mouth to respond correctly. Suppose further that we measure the observer’s brain with

an MEG scanner while she performs this task. (a) We find that different brain regions process different combinations of three basic facial features: ‘F = process the right eye’,

‘G = process the left eye’ and ‘H = process the mouth’. The data report an experiment carried out in our laboratory using Bubbles. Figure 3 explains how Bubbles derives

these estimates of information processing from behavioural [3] and brain data [4]. (b) and (c) present 2D slices of the observer’s 3D brain (going from the top of the head on

the left to the bottom on the right) measured with MEG between 165 ms to 175 ms after stimulus onset. (b) Macrostates of Cognition X. We translate the activity of the brain

microstates m[X] into the macrostates X of an information processing function. (c) Microstates of the Brain m[X]. Occipito-temporal hotspots correspond to the typical

sources of the left and right M170 (the MEG version of the N170 ERP). The arrow between X and m[X] illustrates the correspondence that our method establishes between

information processing state X (e.g. ‘F = process the left eye’) and its brain measurement m[X] (e.g. a MEG ‘hotspot’ in the right occipito-temporal cortex between 165 ms to

175 ms following stimulus onset).
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How would we know that the brain correlate of F did,
indeed, correspond to processing of the eyes, and not to
processing of the nose or forehead? This presents a diffi-
culty: the processing of diagnostic features in the brain is
necessary, but it might not be sufficient to understand the
full process. The next sections develop these themes.

Translating brain microstates into functional states of
information processing
Coming back to the example of facial expressions, here, we
show that a method exists to translate the microstates of
brain measurements m[X] into the functional states of
information processing X. In Figure 2, the brain is
measured with a magnetoencephalographic (MEG) scan-
ner when an observer is instructed to categorize faces
appearing one at a time on the screen according to whether
they are expressive or not. Because MEG brain measure-
ments are finely resolved in space and time, one can
measure ‘where’ and ‘when’ activity happens in the brain.
To simplify matters, consider a single snapshot of brain
activity measured at 170 ms after stimulus onset. Figure 2
presents this activity as different 2D slices of the 3D brain
(from the top to the bottom of the head), with hotspots of
activity (indicated in red) in the left and right occipito-
temporal regions corresponding to microstates m[X]. Our
22
translation function reveals that activity in the right hot-
spot corresponds to ‘G = process the left eye’ (encoded with
a blue colour). Activity in the left hotspot corresponds to
‘F = process the right eye’ (encoded with a red colour) and
‘H = process themouth’ (encodedwith a green colour, in the
occipital region). The main point of this article is that
reverse correlation can be extended from behavioural
measurements to translate brain microstate m[X] into
information processing macrostate X. Figure 3 explains
how this translation can be accomplished using the
Bubbles technique [3,4], although other forms of trans-
lation could be developed, possibly leading to other macro-
states.

Pursuing the example, we now consider the brain as a
dynamic machine and so we generalize from Figure 2 and
repeat the translation exercise for different time slices
between stimulus onset, when information is presented,
and response, when the observer acts on this information.
Figure 4 presents the generalization of Figure 2, every
10 ms, between 125 ms until 185 ms after stimulus onset.
The point here is to note the sequence of transitions of
information processing states in the brain. In the example,
transitions start from processing the contra-lateral right
eye in the left brain, to later process the contra-lateral right
eye and then the mouth (the latter in parietal regions), to



Figure 3. Translating brain microstate m[X] into functional macrostate X. (a)

Stimulus information. Trials labelled 1 to n illustrate that a mask punctured with

randomly located Gaussian apertures (indicated as white apertures against a black

background) samples information from the input face on each trial. In GENDER,

the observer categorizes the gender of the faces; in EXNEX, the same observer

categorizes whether the same faces are expressive or not. In both conditions,

categorization accuracy and the observers’ brain are measured on each trial (here

EEG voltages. But, the same method can be applied to MEG source activations,

fMRI blood oxygen level-dependent responses or any other brain response for

which single trial measurements can be obtained). (b) Information bins: from brain

amplitudes to stimulus information. In GENDER and EXNEX, a histogram

represents the distribution of brain responses (e.g. amplitudes) across trials. We

split the histogram into five colour-coded bins of equal trial numbers. For each

trial, we substitute the measured amplitude with the corresponding stimulus mask,

to derive bins of stimulus masks corresponding to bins of amplitudes (top row,

correct trials; bottom row, incorrect trials). Finally, for each amplitude bin, we

average the stimulus masks to compute the corresponding stimulus information.

For example, in GENDER, for correct trials, the bin of highest brain amplitudes is

associated with the presence of two eyes in the input stimulus. (c) Computation of

brain and behaviour classification images. With two simple subtractions

schematized as (dark information bins and light information bins) we derive two

classification images from the stimulus information bins. The ‘Brain’ classification

images depict the statistically significant features discriminating high from low

amplitudes ( p < .01, colour-coded for different features), irrespective of correct

versus incorrect behaviour. The ‘Behaviour’ classification images represent the

features discriminating correct from incorrect face categorizations ( p < .01, colour-

coded for different features), irrespective of low versus high brain amplitudes. This

approach enables a direct comparison between functional brain states (here,

‘F + G = process the left and right eyes’ in both tasks) and behaviour (requiring the

eyes in GENDER and the mouth in EXNEX) (see Refs [4,15,16,24,25] for EEG and

Ref. [26] for fMRI). Adapted from Ref. [4].
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finally process the left eye, the right eye and the mouth in
different brain regions. The right hand side of Figure 4
illustrates these transitions in macrostates of information
processing.

The research programme: macrostate transitions,
automata and functional theories
The ability to translate brain activity into a set of distinct
information processing states and their transitions is
important: it projects cognitive neuroscience into the
familiar territory of the formal study of mechanisms. Auto-
mata theory is a branch of mathematics, pre-dating com-
puter science, which provides a generic definition of a
computing machine, also called a ‘mechanism’, a ‘finite
automaton’ or an ‘algorithm’. A finite automaton comprises
a finite set of states, a finite set of possible inputs and a
table specifying how successive transitions between the
states implement a computation. When sufficiently power-
ful (as in themost general sense of a Turingmachine), such
an automaton is believed to be capable of computing any
‘intuitively computable function’. With this in mind, cog-
nitive neuroscience can be framed in terms of the so-called
‘Church-Turing thesis’ [7]: cognitive functions of the brain,
such as determining whether a face is expressive or not, or
its gender, can be implemented as cognitive algorithms.
That is, any cognitive function can be implemented as a
(finite) set of information processing states and a transition
table. The transition table specifies how the computation
should progress from state to state to produce behavioural
responses from sensory inputs.

Such mechanistic conception was very much prevalent
at the inception of cognitive science, based onAlan Turing’s
work [8–10], but its meaning has become somewhat diluted
in modern cognitive neuroimaging. Although the term
‘mechanism’ appears in many studies, few genuinely aim
at unravelling brain mechanisms as suggested earlier.
This probably arises from the success of measurements
of brain activity without a sufficient time resolution to
identify brain microstates at a precise timescale (such as
functional magnetic resonance imaging [fMRI]), preclud-
ing the identification of a precisely timed sequence of
cognitive macrostates, with millisecond resolution, with-
out which the study of dynamic cognitive mechanisms is
not possible.

When brain microstates are measured at a sufficiently
precise timescale (by using electroencephalography [EEG]
[11,12] and MEG), their transitions have been successfully
modelled (e.g. Refs [13,14]). However, these approaches do
not reveal the information that each brain microstate
processes (if any) and how transitions between the infor-
mation processing states implement a cognitive algorithm.
Our approach seeks to do this by translating brain
measurements m[X] into information processing states
X. Once this translation is performed, the evolution of
brain activity over time can be framed as a succession of
states that process information (i.e. brain activity can be
framed as an information processing algorithm). In sum-
mary, by translating brain activity into information pro-
cessing states, our approach based on reverse correlation
enables the neuroimaging of the flow of cognitive infor-
mation, not just the flow of brain activity.

To illustrate, suppose an observer who must determine
whether the input face is smiling or not (Figure 2 and
Figure 4), or whether the face is male or female. Figure 5
illustrates how automata can be derived from the output of
the reverse correlation methods (described in Figure 1 and
Figure 3) to model state transitions at an abstract, infor-
mation processing, functional level of interpretation. Such
automata detail the sequences of states in the occipito-
temporal regions that is linking the input face to beha-
vioural responses via a categorization-specific sequence of
information processing states. For example, in the gender
23



Figure 4. Translation of macrostates of cognition X into microstates of the brain m[X] (part 2). This Figure repeats the computations illustrated in Figure 2 and Figure 3 for

four different time slices between 125 ms and 185 ms after stimulus onset. The schematized faces on the right hand side represent the macrostates of information

(corresponding to processing different combinations of the basic features) that brain regions process across time. The schematized faces also illustrate the transitions in

macrostates that the brain goes through over the time slices considered. That is, processing starts with the right eye, followed by the right eye and the mouth, followed by

two eyes and the mouth.
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task, the brain goes through the states of first encoding one
eye and then two eyes. To judge whether the same faces are
expressive or not, it will instead encode the eye and then
the mouth. Thus, the automata represent the cognitive
algorithms used by the brain to resolve the gender and
expression of a face.

Segmentation of brain microstates using functional
macrostates
Automata are not only important for the fundamental
relationship that they offer between computability and
the understanding of brain functions. They also represent
a temporal segmentation of the function of brain activity
that can enhance the understanding of how a cognitive
function is implemented in the brain. To illustrate, con-
sider again Figure 5a. Starting with ‘process the left eye’ on
the right side of the brain, a crucial transition occurs
between 141 ms and 161 ms to ‘process the two eyes’.
Consider further that ‘process the right eye’ is typically
the first state on the left side of the brain. The transition to
the macrostate ‘process the two eyes’ is crucial because it
indicates either a transition of information across the two
hemispheres or a transition of processing mode from con-
tra-lateral to bi-lateral in each hemisphere. From this
observation, one could then examine brain activity around
this particular time window for evidence of this inter-
hemispheric transmission, or for evidence of a transition
from uni- to bi-lateral processing within a hemisphere.
Another important transition occurs when the diagnostic
features of behaviour become reflected in the states of
information processing (e.g. the mouth in the ‘expressive
or not’ task in Figure 5). At this time point of its dynamics,
the brain has encoded the information that is required for
behavioural decision – we know this by examining the
classification image derived from behaviour in this task.
24
These examples illustrate that an automaton seg-
ments the macrostates of the brain into several epochs
with possibly different functional interpretations. One
can then use these epochs and transitions between
epochs as temporal guidelines to further examine the
crucial microstates of the brain implementing these
transitions. We now use two examples from our own
research to illustrate this point. In Ref. [15], we sought
to understand the information processing function of the
N170 event related potential (ERP) – the N170 is a
negative deflection measured in the occipital region
�170 ms after stimulus onset. We showed that the
N170 curvature reflects a process that integrates visual
information specific to each expression according to a
pattern. Specifically, starting 50 ms before the N170
peak, facial information tends to be integrated from
the eyes downward on the face. The integration stops
and the N170 peaks when the information diagnostic for
judging a particular expression has been integrated (e.g.
the corners of the nose in ‘disgust’, the smiling mouth in
‘happy’). So, we explicitly related two microstates of
brain activity (the curvature and peak of the N170) to
two states of information processing (integration of infor-
mation from the eyes downward on the face and the
integration of diagnostic, expression specific infor-
mation). In Ref. [16], we analyzed the oscillatory activity
of the brain when observers consciously perceived an
ambiguous figure (Dali’s painting Slave Market with the
Disappearing Bust of Voltaire). We found that the theta
band (4–8 Hz) encoded the features related to one con-
scious perception (i.e. ‘Voltaire’) whereas the b band (12–

24 Hz) encoded the features related to the other con-
scious perception (i.e. ‘The Nuns’). Again, we related
microstates of brain activity (energy in the theta and
b oscillatory bands) with two states of information pro-



Figure 5. From transitions of information processing states to mechanisms. (a) Identifying information processing macrostates. Classification images computed every 4 ms

between stimulus onset and behavioural response are first sorted for the feature combination that they encode. The blue, purple and white set of classification images

correspond to colour-coded macrostates ‘G = processing the left eye’, ‘F + G = processing the right and left eyes’ and ‘F + G + H = processing the left and right eyes and the

mouth’. (b) Characterizing the mechanisms of state transitions. For the GENDER and EXNEX categorizations on right occipito-temporal electrode (OTR), transitions of

macrostates are then reported in a table. The table reports the conditional probabilities of transitions between state Si (e.g. processing the left eye) and state Sj (e.g.

processing the left and right eyes) computed by pooling transition data across observers. To illustrate, starting at time 0 in GENDER with a state of no information

processing S0,0 (see arrow) the first row describes the conditional probabilities of a transition to any other possible state p(Si = 1. . .7,1j S0,0). The most likely transition at

time = 1 is S1, the contra-lateral left eye (encoded in blue), with a .5 probability. From the left eye in the left column (i.e. S1,1), the most likely conditional transition at time 2 is

S4, the two eyes (encoded in purple) with a .38 probability. From the two eyes at time 2 (i.e. S4,2), the most likely transition at time 3 is S7 (encoding all three features), with a

probability of 1. Halting states (i.e. S7) are those for which there is no transition to any other state. (c) Most likely state transitions. Across categorizations (compare GENDER

and EXNEX), diagnostic information is reached within two transitions and is represented by schematic faces surrounded by a black box. Note also the progression in the

content of the information states: the transition to a feature combination (e.g. one eye and the mouth) can only be reached from one of the component features, never from

S0,0. Similarly, the probability of a transition from S0,0 directly to S7 (comprising all three features) is 0. Adapted, with permission, from Ref. [25].

Box 1. Outstanding questions

� What is the relationship between the distinct neural microstates

observed in EEG, reflecting stable topography of the brain electric

landscapes [11,12] and macrostates of information processing?

� Can the reverse-correlation based, reverse engineering approach

be extended from single or a small number of EEG electrodes to

the many cortical sources of oscillatory cortical activity as

measured with MEG [27] to identify independent information

processing networks in the brain?

� How are the different oscillatory networks reported in MEG data

[27] related to the processing of different sorts of features (e.g.

fine scale versus coarse scale [16]) and/or different cognitive

functions (e.g. attention and memory).

� Reverse correlation is a multiple linear regression. It therefore

assumes a linear mapping between visual information and brain

signals. This mapping will determine the estimates of information

states of the brain. When should nonlinear regressions be used?
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cessing (processing the features subtending the percep-
tion of ‘Voltaire’ versus ‘The Nuns’ in an ambiguous
figure).

Conclusions
The approach presented here uses reverse correlation to
understand cognitive functions from brain measurements
and behaviour. Starting with the information goals of a
cognitive task (‘What information is computed?’ – i.e. Diag-
nostic information), we apply reverse correlation to time-
resolved brain measurements to model an algorithm of the
cognitive function resolving these information goals. That
is, a model showing the transitions of the information
processing states of the brain between stimulus onset
and behaviour. This approach attempts to address the
question of ‘How is information computed in the brain?’
Here, we discuss a number of questions for future research
(see also Box 1).
25
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One important question concerns the meaning of the
computed information states. They reveal that the brain
‘does something’ to specific visual features at different time
points. What is unclear is what this ‘doing something’ is.
Revealing the information over which an information pro-
cessing function is performed (e.g. the contra-lateral eye) is
not sufficient. We must also understand what this infor-
mation processing function is (e.g. ‘expecting the contra-
lateral eye’, ‘attending to it’, ‘encoding it’, ‘recognizing it’,
‘memorizing it’ and so forth). Drawing definitive inferences
about functional information from brain imaging data is a
generic difficulty, given that it logically represents a
‘reverse inference’ (Ref. [17]; see also Ref. [18] for discus-
sions of the ‘sufficient’ neural systems that perform a
particular cognitive function; see Ref. [19] for discussions
of how different coordinations of large scale cortical net-
works can implement different cognitive functions).

In Figure 5, state transitions occurred over one or two
electrodes. Extrapolating from the MEG data presented in
Figure 2 and Figure 4, state transitions could potentially
be measured across voxels in the 3D microstates of the
brain, to describe the dynamics of information processing
networks. Notwithstanding the sheer complexity of the
combinatorial explosion arising from centimetre spatial
resolution and millisecond temporal resolution, resulting
in thousands of separate precise measurements, a crucial
problem is that of determining functional causality in the
sense of ‘F causes G’. Ideally, one might want to track the
‘information flow’ of macrostates, starting from the expec-
tation of task relevant information (e.g. the mouth in
‘happy’) in frontal or pre-frontal cortex, to the encoding
of this information in occipito and occipito-temporal cortex,
to categorization or perceptual decision in parietal cortex
(all of this of course with possible mutual interactions
between the listed cortical regions). However, in doing
so, one needs to allow distal transitions to be modelled,
in which distal happens both in time (because there is a
priori no reason why two different states contiguous in
time are causally related) and space (because there is a
priori no reason why two different states proximal in space
are causally related). If causality were resolved, one would
derive a probabilistic automaton forming a network, in
which the nodes represent functional regions of the brain
going through different information processing states over
the time course of processing. The automata presented
Figure 3 are, in this sense, over-simplified. They are
derived from a single electrode, eliminating the problem
of transitions in the 3D space of the brain and they assume
that temporal contiguity between states warrants causal-
ity. One approach would be to consider brain regions as
pairs of variables and examine their causal relationships
(e.g. with Granger Causality [20] or Dynamic Causal Mod-
elling [21]). Still, it will require considerable conceptual
and formal developments to expand from ‘single electrode
automata’ to ‘networks of nodes automata’. Nevertheless,
the main point remains that we can start relating stimulus
26
to behaviour in the brain via the dynamics of a set of
information processing states and their transitions. This
is one important step towards Turing’s original agenda of
understanding the brain as a machine that processes
information.
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