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Abstract

Background: The face as a visual stimulus is a reliable source of

information for judging the pain experienced by others. Until now, most

studies investigating the facial expression of pain have used a descriptive

method (i.e. Facial Action Coding System). However, the facial features

that are relevant for the observer in the identification of the expression

of pain remain largely unknown despite the strong medical impact that

misjudging pain can have on patients’ well-being.

Methods: Here, we investigated this question by applying the Bubbles

method. Fifty healthy volunteers were asked to categorize facial

expressions (the six basic emotions, pain and neutrality) displayed in

stimuli obtained from a previously validated set and presented for

500 ms each. To determine the critical areas of the face used in this

categorization task, the faces were partly masked based on random

sampling of regions of the stimuli at different spatial frequency ranges.

Results: Results show that accurate pain discrimination relies mostly on

the frown lines and the mouth. Finally, an ideal observer analysis

indicated that the use of the frown lines in human observers could not

be attributed to the objective ‘informativeness’ of this area.

Conclusions: Based on a recent study suggesting that this area codes

for the affective dimension of pain, we propose that the visual system

has evolved to focus primarily on the facial cues that signal the

aversiveness of pain, consistent with the social role of facial expressions

in the communication of potential threats.

1. Introduction

The communication of pain provides an adaptive

advantage by signalling immediate threats to conspe-

cifics and by enabling the solicitation of protection,

appropriate care and moral support (Williams, 2002).

Vocalizations, posture, self-report and facial expres-

sion are cues an observer can rely on to detect one’s

pain (Hadjistavropoulos and Craig, 2002). When

asked to judge someone else’s pain, observers rely

mainly on non-verbal components and even more

so on facial expression (Poole and Craig, 1992; Wil-

liams, 2002).

The constituents of the facial expression of pain

have been described in studies using the Facial

Action Coding System (FACS; Ekman and Friesen,

1975). It includes brow lowering, cheek raising, lid

tightening, nose wrinkling, upper lip raising and eye

closing (Craig et al., 1992). Four core actions are

particularly consistent: brow lowering, orbit tighten-

ing, upper lip raising/nose wrinkling and eye closure

(Prkachin, 2009). This pattern of core Action Units

can be differentiated from the patterns coding for

the expression of the six basic emotions (Simon

et al., 2008).

Some data suggest that, when judging others’ pain

based on facial expression, human observers tend to
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underestimate the intensity of the sufferer’s pain

when compared with their own reports; practitioners

should thus be more sensitive to this bias, since it

seems to result in elevated risks of under-treatment

(Prkachin et al., 2007; see however Kappesser and

Williams, 2010). Moreover, observers are found to

be less accurate at identifying pain than other nega-

tive emotions and sometimes mistake pain for dis-

gust, fear and anger (Kappesser and Williams, 2002).

Despite the aforementioned findings and the estab-

lished importance of facial expressions in estimating

pain in others, little is known about the visual pro-

cesses implicated in recognizing pain. Descriptive

methods (e.g. FACS) allow researchers to pinpoint

the facial components that are involved in the recog-

nition of the expression of pain (Simon et al., 2008).

However, they involve making indirect inferences

about the information effectively used by the deco-

der to detect emotions.

Classification image techniques such as the Bubbles

technique (Gosselin and Schyns, 2001) have proven

to be valid and powerful research tools (e.g. Adolphs

et al., 2005, 2008; Dotsch et al., 2008; Lee et al.,

2011; Nielsen et al., 2006) to reveal which parts of

a visual stimulus are responsible for the performance

of observers in a specific categorization task. The

underlying logic of these techniques is the following.

If specific visual information is important for the task

at hand, depriving the observer of this information

(using additive noise or a mask) will strongly impair

his or her performance. In contrast, depriving the

observer of non-diagnostic information will not sub-

stantially alter performance. Here, observers were

asked to identify the emotions expressed by profes-

sional actors from small random samples of their

face. After performing thousands of trials, we corre-

lated categorization accuracy with the available

visual information (pixels that were revealed or not)

allowing a direct empirical examination of the diag-

nostic features used by human observers in pain cat-

egorization.

2. Method

2.1 Participants

Fifty participants (17 men) took part in the experi-

ment. All had normal or corrected to normal vision

and were paid for their participation. All participants

provided informed consent and received monetary

compensation for their participation. The local ethics

committee approved all procedures.

2.2 Material and stimuli

The stimuli were presented on a calibrated high-res-

olution CRT monitor with a refresh rate of 60 Hz.

Experimental programs were written using functions

from the Psychophysics Toolbox (Brainard, 1997;

Pelli, 1997) for Matlab (version 7.5; Mathworks,

Inc., Natick, MA, USA). Viewing distance was such

that stimuli spanned 5.72° 9 5.72° (256 9 256

pixels).

The stimuli were created from a validated database

(Roy et al., 2007; Simon et al., 2008) composed of

photos of 10 actors successively expressing one of

seven emotions (i.e. the six basic emotions and pain)

at a comparable strong intensity level or displaying a

neutral expression. The six basic emotions and the

neutral expression were included in the experiment

so that the results would represent the information

needed to differentiate pain from other emotions.

These 80 grey-scaled base photos had normalized

global orientation and lighting. They were also spa-

tially aligned so that the eyes and the nose of all

faces were as much as possible at the same position

without distorting the faces. A grey mask with an

elliptic hole was applied to each face to hide the hair

and the background.

On each trial, a ‘bubblized’ stimulus was created

as follows (see Fig. 1 for an illustration of the crea-

tion of a stimulus at a given trial). First, each image

was decomposed into five spatial frequency bands

of one octave each (128–64, 64–32, 32–16, 16–8
and 8–4 cycles/image or 42–85, 21–42, 11–21,
5–11, 3–5 cycles/face width; the remaining band-

width was used as constant background) using the

Laplacian pyramid (Burt and Adelson, 1983). The

rationale for sampling the stimulus in different

What’s already known about this topic?

• Specific groups of facial muscles are involved

in the facial expression of pain.

What does this study add?

• This study investigates what visual information

is efficiently used by the human visual system

to recognize pain.

• Accurate pain discrimination relies mostly on

the frown lines and the mouth.

• This visual strategy cannot be explained only

by the amount of information available in

these facial areas.
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frequency bands is based on a dominant theory in

vision. This theory proposes that the human visual

system analyses the complex luminance variations

that make up a visual stimulation using discrete

channels, each tuned to a specific spatial scale (De

Valois et al., 1974). The face information at the five

scales was then sampled using an opaque mask

punctured by randomly located Gaussian holes

(henceforth called ‘bubbles’) to avoid introducing

any spatial frequency artefacts. The size of the bub-

bles was adjusted according to frequency band so

that each bubble revealed 1.5 cycles of spatial infor-

mation (Fig. 1, second row). Because the size of the

bubbles increased as the spatial scale became coar-

ser, the number of bubbles differed across scales to

keep the size of the sampled area constant across

frequency bands. Note that the varying size of the

bubbles across spatial frequency bands allowed sam-

pling of features of various sizes ranging from very

small (e.g. an eye wrinkle in high spatial frequen-

cies) to very large (e.g. the whole face in low spa-

tial frequencies). Finally, the information revealed

by the bubbles was fused across the five frequency

bands to produce an experimental stimulus (Fig. 1,

third row). This resulted in a stimulus in which dif-

ferent facial features were revealed in different spa-

tial frequency bands, the combinations of which

varied across trials. These stimuli were then pre-

sented to the participants, and their categorization

accuracy was recorded to verify which facial fea-

tures in which spatial frequency band was corre-

lated with accuracy. The combinations of features

and spatial frequency bands that were correlated

with accuracy indicated the information used by

the participant to discriminate pain facial expres-

sions from other emotions. For more details about

the method see Gosselin and Schyns (2001, Experi-

ment 2).

2.3 Procedure

Each trial began with a fixation cross displayed on

the centre of the screen for 500 ms. A bubblized

stimulus was then presented for 500 ms on the

centre of the screen. The chosen stimulus duration

is enough to achieve high levels of accuracy in a

facial expression categorization task (Calvo and

Lundqvist, 2008). Each participant completed a total

of 4000 trials (25 blocks of 160 trials). Subjects

were asked to identify the perceived emotion by

pressing the corresponding key on the computer

keyboard. No response time limit was imposed

and no feedback was provided. The next trial

occurred 500 ms after the participant’s response.

Figure 1 Stimuli creation. The original stimulus is decomposed in five spatial frequency bands (first row). Randomly positioned gaussian apertures

are created for each band (second row). The size and number of apertures are adjusted for each band. The first two rows are then multiplied

pixel-by-pixel (third row). The five resulting stimuli are then fused to create the final stimulus.
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Mean accuracy was maintained at 56.25% correct

across all emotions (half-way between chance –
12.5% correct – and perfect recognition – 100%

correct) by adjusting the number of bubbles (i.e.

the amount of visual information revealed) on a

trial-by-trial basis using an adaptive procedure

(QUEST; Watson and Pelli, 1983).

2.4 Data analysis

We first calculated the unbiased hit rates (see Wag-

ner, 1993) for each emotion, and submitted them

to a repeated measure ANOVA with the eight

expressions as the within-subject factor. We also

calculated the hit and false alarm rates separately. A

repeated measure ANOVA was performed on the hit

rates with the eight expressions as the within-sub-

ject factor. Two chi-square tests were performed on

the pain false alarm rates (e.g. respond it’s ‘pain’

when, in fact, the face expresses disgust) and the

pain omission rates (e.g. respond ‘disgust’ when, in

fact, the face expresses pain) to evaluate if errors

were evenly distributed. These analyses were per-

formed with SPSS 16.0 (SPSS Inc, Chicago, IL,

USA).

To pinpoint the visual information used by

human observers to discriminate pain from other

facial expressions, we computed a ‘classification

image’ for each participant, each expression and

each spatial frequency band. A classification image

is obtained by calculating a weighted sum of all

the bubbles masks presented to the participant,

using the accuracy of the participant transformed

into z-score values as weights. This procedure

amounts essentially to a multiple linear regression

on the bubbles masks and on the accuracy. The

result of this analysis indicates which facial areas

in each spatial frequency band are positively corre-

lated with accurate pain recognition. The classifica-

tion images were transformed into z-scores using

the uninformative area around the face stimulus as

a reference noise distribution. A group classification

image was then computed for each emotion by

summing the individual classification images and

by dividing the sum by the square root of 50, i.e.

the number of participants. Finally, the Pixel test

(Chauvin et al., 2005) was applied to the group

classification images to determine the critical z-

score value for statistical significance (p < 0.05 fam-

ily-wise, one-tailed). The statistical threshold pro-

vided by this test corrects for multiple comparisons

while taking the spatial correlation inherent to

structured images into account.

3. Results

3.1 Identification accuracy

On average, 149.2 bubbles (SD = 127.2) were neces-

sary to maintain accuracy at 56.25%. Average accu-

racy across all participants was 61.7%, indicating

that the algorithm used to adjust performance

worked reasonably well. Table 1 displays the hit

rates, unbiased hit rates, and proportion of confusion

error for each pair of emotions. To summarize,

happy expressions were correctly identified on

85.7% of the trials (�9.1%), followed by surprise

(69.7 � 11.5%), sadness (64.1 � 11.2%), anger

(61.5 � 11.1%), fear (58.7 � 12.6%), neutral

(57.1 � 10.4%), pain (49.4 � 14.0%) and disgust

(47.4 � 12.3%). There was a significant effect of

emotion on the hit rates [F(7, 57) = 54.37,

p < 0.001]. This was also true for the unbiased hit

rates [F(7, 57) = 136.19, p < 0.001] Post hoc analysis

using Tukey’s HSD criterion indicated that the pain

hit rate was significantly lower (p < 0.05) than that

of all other emotions, except for disgust which did

not differ significantly from pain. The same post hoc

analysis on the unbiased hit rates indicated that pain

recognition was significantly lower (p < 0.05) than

all other emotions, except for disgust and neutral

expressions which did not significantly differ from

pain. Therefore, in accordance with previous studies

(Kappesser and Williams, 2002; Simon et al., 2008),

pain exhibited one of the lowest correct recognition

rates of all the emotions that we tested.

The confusability matrix (Table 1) shows the dis-

tribution of the participant’s responses (hit and false

alarm rates) for all eight emotions. A chi-square test

of independence indicated that pain false alarm rates

were not evenly distributed across other emotions

(v2(6, N = 50) = 2.91, p < 0.001). More specifically,

post hoc paired t-tests with Bonferroni correction for

multiple comparisons revealed that sadness and dis-

gust were perceived as pain significantly more often

than the other emotions (p < 0.001). Other than

these two emotions, happiness was also frequently

mistaken for pain more often than the other emo-

tions (p < 0.001). Inversely, surprise rarely led to

pain perception (p < 0.001). An uneven distribution

of errors was also observed for the pain omission

rates (v2(6, N = 50) = 3.05, p < 0.001). Post hoc

analysis with paired t-tests indicated that pain

expressions were more often mistaken for disgust

and for sadness than for any other emotion

(p < 0.001). Again, pain was less often confounded

with surprise than with any other emotions

© 2015 European Pain Federation - EFIC� Eur J Pain 19 (2015) 852--860 855
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(p < 0.001). This pattern of hit and false alarm rates

is similar to those previously reported in studies that

did not alter the appearance of the facial expressions

(Kappesser and Williams, 2002; Smith et al., 2005;

Roy et al., 2007; Simon et al., 2008).

3.2 Efficient information for pain identification

The red blobs in Fig. 2A are the areas of the face

that were significantly correlated with the accurate

discrimination of pain from other facial emotions. To

summarize, participants efficiently used the informa-

tion around the frown lines region at scales from 11

to 85 cycles per face width, the corners of the mouth

at scales from 21 to 42 cycles per face width and the

entire mouth at 11–21 cycles per face width. No

information was used effectively by human observ-

ers in spatial frequency bands lower than 11 cycles

per face width.

These Bubbles results explain at least qualitatively

the pain false alarm rates in the emotion confusion

matrix. We can think of the filters that are derived

using Bubbles as lenses that the brain uses to look at

stimuli. Any facial emotion that looks like pain

through those pain filters, i.e. which reveal the

frown lines and the corners of the mouth, should

lead to pain false alarms. The frown lines of sad faces

are remarkably like those of pain faces. The corners

of the mouth of happy faces are almost identical to

those of pain faces. Both the corners of the mouth

and the frown lines of disgust faces resemble those

of pain faces. Inversely, any facial emotion that does

not look like pain through the pain filters should

rarely lead to pain false alarms. Neither the corners

of the mouth nor the frown lines of surprise faces

resemble those of pain faces.

3.3 Ideal observer

The results obtained with the Bubbles method give

information about the visual strategy used by the

participants. This strategy may stem from the mental

representations of pain the participants have

encoded in memory, from the available information

in the stimulus or both (Gosselin and Schyns, 2002).

Mental representations are not necessarily a perfect

copy of the visual world, and may imply, to some

extent, an interpretation of the world in which more

emphasis is put on some visual information and less

on other. It is possible to verify how close the partic-

ipants’ strategy was to one in which they would

only rely on the available information by conducting

an ideal observer analysis. Because the mental repre-

sentations given to the ideal observer are a perfectT
a
b
le

1
C
o
n
fu
sa
b
ili
ty

m
a
tr
ix

d
e
p
ic
ti
n
g
th
e
p
ro
p
o
rt
io
n
o
f
re
sp
o
n
se
s
(c
o
lu
m
n
s)

fo
r
e
a
ch

ta
rg
e
t
e
m
o
ti
o
n
p
re
se
n
te
d
(r
o
w
s)

in
(A
)
h
u
m
a
n
o
b
se
rv
e
rs

a
n
d
(B
)
a
n
id
e
a
l
o
b
se
rv
e
r.

E
m
o
ti
o
n
p
re
se
n
te
d

E
m
o
ti
o
n
p
e
rc
e
iv
e
d

P
a
in

D
is
g
u
st

F
e
a
r

H
a
p
p
y

N
e
u
tr
a
l

A
n
g
e
r

S
a
d
n
e
ss

S
u
rp
ri
se

(A
)

P
a
in

0
.4
9
4
3
(0
.2
9
7
)

0
.0
9
4
7

0
.0
3
6
5

0
.1
5
0
2

0
.0
2
1
7

0
.0
4
0
8

0
.1
5
3
3

0
.0
0
8
5

D
is
g
u
st

0
.1
5
8
1

0
.4
7
4
4
(0
.2
9
8
7
)

0
.0
2
7
3

0
.0
2
7
3

0
.0
4
5
1

0
.1
4
9
1

0
.1
1
1
9

0
.0
0
6
8

F
e
a
r

0
.0
3
2
6

0
.0
3
2
4

0
.5
8
6
5
(0
.3
7
5
5
)

0
.0
1
8
3

0
.0
3
0
1

0
.0
4
2
7

0
.0
6
0
6

0
.1
9
6
8

H
a
p
p
y

0
.0
2
5
9

0
.0
1
0
3

0
.0
1
3
0

0
.8
5
7
3
(0
.6
0
8
7
)

0
.0
5
9
5

0
.0
0
7
4

0
.0
1
8
4

0
.0
0
8
2

N
e
u
tr
a
l

0
.0
2
9
3

0
.0
3
6
5

0
.0
3
4
6

0
.0
7
5
9

0
.5
7
0
7
(0
.3
0
0
3
)

0
.0
2
8
3

0
.1
4
9
6

0
.0
7
5
1

A
n
g
e
r

0
.0
3
4
8

0
.0
3
1
4

0
.0
3
1
4

0
.0
4
1
8

0
.1
3
8
7

0
.6
1
5
3
(0
.4
1
0
4
)

0
.0
2
5
6

0
.0
1
5
3

S
a
d
n
e
ss

0
.0
7
7
3

0
.0
1
8
6

0
.0
1
8
6

0
.0
2
2
5

0
.1
9
0
7

0
.0
1
8
4

0
.6
4
1
1
(0
.3
5
5
2
)

0
.0
1
1
0

S
u
rp
ri
se

0
.0
0
7
7

0
.1
7
3
5

0
.1
7
3
5

0
.0
1
5
6

0
.0
6
2
2

0
.0
1
3
6

0
.0
2
0
8

0
.6
9
7
2
(0
.4
7
9
8
)

(B
)

P
a
in

0
.6
6
0
7
(0
.4
5
0
9
)

0
.0
5
5
7

0
.0
3
7
3

0
.0
6
0
1

0
.0
4
6
0

0
.0
5
8
1

0
.0
5
2
9

0
.0
2
9
3

D
is
g
u
st

0
.0
4
3
4

0
.6
7
0
5
(0
.4
2
3
0
)

0
.0
3
2
9

0
.0
5
0
9

0
.0
5
0
7

0
.0
6
6
8

0
.0
4
4
1

0
.0
4
0
7

F
e
a
r

0
.0
3
3
9

0
.0
3
8
6

0
.6
6
9
9
(0
.4
5
2
2
)

0
.0
4
2
2

0
.0
4
9
8

0
.0
4
6
7

0
.0
4
9
8

0
.0
6
9
0

H
a
p
p
y

0
.0
6
0
4

0
.0
6
2
8

0
.0
3
7
1

0
.6
2
2
6
(0
.3
9
0
0
)

0
.0
6
6
8

0
.0
5
5
9

0
.0
5
5
8

0
.0
3
8
7

N
e
u
tr
a
l

0
.0
4
5
5

0
.0
6
4
6

0
.0
5
2
7

0
.0
6
6
9

0
.5
3
3
5
(0
.2
9
4
8
)

0
.0
7
4
0

0
.0
9
7
1

0
.0
6
5
8

A
n
g
e
r

0
.0
4
8
9

0
.0
7
8
7

0
.0
4
5
5

0
.0
5
9
5

0
.0
6
8
3

0
.5
8
3
9
(0
.3
4
1
3
)

0
.0
6
2
4

0
.0
5
2
7

S
a
d
n
e
ss

0
.0
5
4
4

0
.0
4
8
8

0
.0
5
1
9

0
.0
5
9
8

0
.0
9
7
3

0
.0
6
4
9

0
.5
7
0
2
(0
.3
3
2
6
)

0
.0
5
2
7

S
u
rp
ri
se

0
.0
2
0
9

0
.0
4
3
5

0
.0
6
5
0

0
.0
3
2
0

0
.0
5
3
1

0
.0
4
8
7

0
.0
4
5
1

0
.6
9
1
6
(0
.4
5
9
7
)

H
it
s
a
re

p
re
se
n
te
d
in

th
e
d
ia
g
o
n
a
l
in

b
o
ld
,
u
n
b
ia
se
d
h
it
s
b
e
tw

e
e
n
p
a
re
n
th
e
se
s,

w
h
ile

o
m
is
si
o
n
s
(r
o
w
s
–
re
g
u
la
r
fo
n
t)
a
n
d
fa
ls
e
a
la
rm

s
(c
o
lu
m
n
s
–
re
g
u
la
r
fo
n
t)
a
re

re
p
o
rt
e
d
fo
r
e
a
ch

e
m
o
ti
o
n
in

th
e
re
st

o
f
th
e
m
a
tr
ix
.

856 Eur J Pain 19 (2015) 852--860 © 2015 European Pain Federation - EFIC�

Pain recognition in facial expressions C. Roy et al.



copy of the visual stimulation, its strategy only

reflects the available information in the stimuli.

Thus, to uncover the information that was available

to our human observers to discriminate the expres-

sion of pain from the expression of other emotions,

we submitted an ideal observer to the same Bubbles

experiment as our human observers (e.g. Gosselin

and Schyns, 2001). The ideal observer performed the

same number of trials per emotion as human partici-

pants, and the number of bubbles was set to the

average number of bubbles used by the human par-

ticipants. An adjustable quantity of white Gaussian

noise was added to the faces prior to sampling them

with Gaussian apertures, to equate human and

model performance (i.e. 56.25%). On each trial, the

model determined the Pearson’s correlation between

the sparse input (i.e. the noisy face revealed by bub-

bles) and each of the 80 base photos as revealed by

the same bubble mask. The categorization response

was the emotion of the face with the highest correla-

tion with the stimulus. In other words, the ideal

observer categorization answer (‘pain’, ‘anger’, etc.)

corresponded to the emotion expressed by the face

in the whole databank that was the most visually

similar to the stimulus in the trial when ‘viewing’

only parts of the expression revealed by the bubbles

on this particular trial.

The confusability matrix of the ideal observer is

presented in Table 1b. Interestingly, pain has one of

the highest hit rates for the ideal observer, whereas

it has one of the lowest for human observers. Fur-

thermore, the false alarm and omission rates of the

ideal observer are homogenous across emotions

(respectively v2(6, N = 1) = 1.60, p = 0.95 and v2(6,
N = 1) = 2.67, p = 0.85) unlike for human observ-

ers.

Next, to reveal directly the information available

to discriminate the expression of pain from the

expression of other emotions, we computed the clas-

sification images of the ideal observer using the same

procedure as described in section 2.4. Fig. 2B shows

the result of this analysis. Again, red blobs corre-

spond to regions that attained statistical significance.

To summarize, the ideal observer used most effec-

tively the information contained in the eye region at

high spatial frequencies (scales from 21 to 85 cycles

per face width), in parts of the lips at mid-to-high

spatial frequencies (scales from 21 to 42 cycles per

face width), in the mouth region at lower frequen-

cies (scales from 3 to 21 cycles per face width) and

in the nose region at very low spatial frequencies

(scales of 3–5 cycles per face width). The differences

between the classification images of the human

observers and that of the ideal observer imply that

human observers are not entirely signal driven, and

that they are in part influenced by the mental repre-

sentation of pain they encoded in memory.

4. Discussion

4.1 Main results and interpretation

The main goal of the present study was to identify

the visual information used effectively by healthy

human observers to discriminate the facial expres-

sion of pain from the facial expression of other emo-

42–85  All bands 21–42     11–21 5–11     3–5 
A

B

Figure 2 Classification images of the pain expression for the human observers (A) and the ideal observer (B). On the leftward image, the facial

areas that were significantly correlated with the correct identification of pain in each spatial frequency band were combined to create the ‘optimal’

stimulus. The second image on the left up until the rightward image show, in red, the regions significantly correlated with accurate recognition in

their corresponding spatial frequency band (indicated in cycle per face).
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tions. To achieve this aim, we used the Bubbles

method, which asked observers to discriminate facial

emotions from randomly sampled regions of a face.

We found that accurate pain discrimination relied

mostly on the frown lines region (between 11 and

85 cycles per face width), on the corners of the

mouth (between 21 and 42 cycles per face width)

and on the entire mouth (between 11 and 21 cycles

per face width). No information was used effectively

in spatial frequency bands lower than 11 cycles per

face width. So, among the facial action units identi-

fied in the literature as being present in the expres-

sion of pain (nose wrinkling, upper lip raising, brow

lowering, cheek raising, lid tightening and eye clos-

ing; Prkachin and Craig, 1995), human observers

seem to rely only on two: the wrinkles between the

eyes and the mouth.

Do human observers use these facial cues because

they contain more information for the task at hand

than any other facial cue? A rigorous way to charac-

terize the information available to discriminate the

expression of pain from the expression of other emo-

tions is to perform an ‘ideal observer’ analysis. The

most informative facial cues for the task are the eyes

(from 21 to 85 cycles per face width), parts of the

lips (from 21 to 42 cycles per face width), the mouth

(from 3 to 21 cycles per face width) and the nose

(from 3 to 5 cycles per face width). Thus, both the

human observers and the ideal observer use the

mouth area, although only the ideal observer uses

the mouth area in very low spatial frequencies.

The higher sensitivity of the human visual system

to middle spatial frequencies (De Valois et al., 1974)

might explain why the human observers did not use

the mouth in the lower spatial frequencies. How-

ever, the most intriguing finding is the use of frown

lines by human observers in the three highest spatial

scales despite this facial cue not being used at all by

the ideal observer. One potential explanation comes

from a study by Kunz et al. (2012). These research-

ers proposed that the facial expression of pain might

encode both the sensory and the affective dimen-

sions of pain. The sensory dimension of pain refers

to the quality, intensity and spatio-temporal charac-

teristics of the sensation, whereas its affective dimen-

sion refers to the negative valence and aversiveness

inherent to the painful sensation (Melzack and Ei-

senberg, 1968). On the one hand, Kunz and col-

leagues showed that increasing the affective

component of the sufferer’s pain experience through

suggestions specifically enhances the activation of

the levator labii superioris muscle (responsible for lip

raising) and of the corrugator muscle (responsible for

the contraction of the eyebrows) in the pain facial

expression. On the other hand, they showed that

increasing the sensorial aspect of the participants’

experience specifically enhances the activation of the

orbicularis oculi muscle (responsible for the contraction

of the muscles surrounding the eyes). In the light of

these results, the use of the frown lines by our par-

ticipants could possibly mean that human observers

are tuned to the sufferer’s emotional nociceptive

experience more than their sensorial experience.

This effect contrasts with the pattern observed in the

ideal observer where the inferior part of orbicularis

did contribute to optimal performance (see Fig. 2).

This implies that the sensorial cue of the pain

expression was discriminant in our task, but not

used by the human observer; and that the affective

cue of the expression pain was not discriminant, but

was used by human observers. In other words, our

results may indicate that more emphasis was put on

the affective than on the sensorial visual cue in the

participants’ mental representations of pain, thus

leading them to use more the former than the latter

while they attempt to discriminate pain from other

expressions. Obviously, this suggestion is speculative

and needs some direct empirical support.

The utilization of the mouth area by both the ideal

observer and the human observers may appear

incongruent with the finding that the appearance of

the mouth area is unreliably linked to pain (Prka-

chin and Solomon, 2009). In the present study, the

expressions from a limited set of 10 actors were

used, and the finding that the mouth was used by

the ideal observer indicates that this area was very

informative to discriminate pain from the other emo-

tions expressed by these actors. It is possible that the

set of stimuli did not perfectly reflect the individual

variations of pain expressions, and that the reliance

on the mouth area would have been lower using a

set of stimuli comprising more individuals. However,

a recent study suggests that modifications in the

appearance of the mouth area (e.g. lip raising and

mouth opening) during pain expression are quite

frequent, and are in fact present in the first two clus-

ters out of four when a cluster analysis is performed

on the pain facial expressions across a large sample

of individuals (Kunz and Lautenbacher, 2014).

4.2. Methodological implications

The present study proposed an alternative tool to

descriptive methods to investigate the visual proper-

ties of the facial expression of pain. Description of

the facial movements activated in another person’s
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face relies on indirect assumptions and is therefore

imprecise when it comes to understanding the obser-

ver’s visual information processing. Notably, such

techniques do not take into account the mental rep-

resentation of observers and their impact on visual

processing. In previous studies, the ‘Bubbles’ tech-

nique allowed significant findings in clinical popula-

tions about emotional facial expressions processing

(e.g. Adolphs et al., 2008; Lee et al., 2011). More

interestingly, literature has shown that identifying

visual cues allowing correct emotion recognition in

normal population can help normalize patient per-

formances. For example, Adolphs et al. (2005) have

described the case of S.M, a patient with bilateral

amygdala damage who could not recognize fear in

others’ face. She was found to use an atypical visual

strategy to extract information in facial expressions

when compared to peers; she did not spontaneously

look at the eyes when asked to categorize facial

expressions, although they are critical for identifying

fear. Explicitly suggesting to S.M to look at this

region when looking at someone’s face normalized

her performance. Such evidences suggest that inves-

tigating visual processing of the facial expression of

pain with methods that directly assess information

extraction is critical for a complete understanding of

correct and incorrect pain identification and judg-

ment.

4.3 Limitations and further perspectives

The stimuli used here have been taken from a data-

bank of professional actors expressing strong pain.

Further validation of the present results with sponta-

neous facial expression of pain varying in their

intensity is required. In fact, as a first step to under-

stand the visual processes underlying pain recogni-

tion, we chose to use professionally simulated

emotions to control the identity of the expressers

(the same person expressing all emotions), the emo-

tion intensity (difficult to control in natural settings),

purity of emotions (the less mixture possible) and

visual properties (luminance, head position, etc.). Of

course, this methodological choice limits the general-

ization of the results. Knowing that the intensity of

some facial actions differ in spontaneous and simu-

lated expressions (Littlewort et al., 2009), one could

argue that the visual information identified here

would have been different with spontaneous pain

expressions. This certainly needs further investiga-

tion. Similarly, although many studies in the face

perception field using the Bubbles method have led

to results congruent with studies using a different

methodology, it remains possible that the method

interacted with the normal visual strategy used to

recognize an expression of pain.

Moreover, validating the cues identified here in

other types of categorization tasks (e.g. judging the

intensity of the pain) would be helpful in determin-

ing to what extent the results could be applied to

clinical contexts. Knowing that static and dynamic

facial expression differ in their treatment (Haxby

et al., 2000; Adolphs et al., 2003; Kilts et al., 2003;

LaBar et al., 2003), that the rhythm of the expres-

sion deployment is of central importance in the rec-

ognition process (Kamachi et al., 2001) and that

temporal information of pain expression can help

discriminate real from faked pain (Hill and Craig,

2002), further studies should use dynamic stimuli.

Finally, one should also consider that the

acknowledgement of others’ pain is a far more com-

plex phenomenon than the identification of the

facial expression and rely on complex considerations

about personal and contextual factors in both the

sufferer and the observer. Further studies should aim

to consider this process in a broader psychosocial

context.
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