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Adult observers have surprisingly low calculation
efficiencies for letter recognition (see, e.g., Pelli, Burns,
Farell, & Moore-Page, 2006). Here, we examine the
possibility that this is partly due to observers’ neglecting
paper features (e.g., the absence of ascenders and
descenders in ‘o’). Each of 16 observers completed 5,000
trials of a single-letter two-alternative forced-choice
detection task. Using a combination of classification
image analyses and Bayesian statistical analyses, we
argue that between 60% and 75% of our participants
indeed neglected paper features.

Introduction

After years of reading and having to recognize
millions of words and letters, one would expect adults
to have become letter identification experts. Yet studies
have shown that letter discrimination calculation
efficiency is surprisingly low—ranging from 8% to 16%
(Gold, Bennett, & Sekuler, 1999; Parish & Sperling,
1991; Pelli, Burns, Farell, & Moore-Page, 2006; Tjan,
Braje, Legge, & Kersten, 1995).1 This low calculation
efficiency, Pelli et al. (2006) have argued, is the result of
human observers’ use of a suboptimal letter identifica-
tion strategy. Specifically, they suggest that rather than
the optimal template matching strategy, human ob-
servers recognize letters by detecting only a few features
(i.e., diagnostic regions of letter images).

These features by which letters are recognized have
been revealed by Fiset et al. (2008) using the Bubbles
technique. Notably, they showed that these letter
features coincide mostly with line terminations and, to
a lesser extent, with horizontal lines (see also Chung,
Tjan, & Lin, 2008; Lanthier, Risko, Stolz, & Besner,
2009; Szwed, Cohen, Qiao, & Dehaene, 2009). How-
ever, Fiset et al. (2008) overlooked an important aspect
of these letter features: They fall almost exclusively on
ink regions of letter images (see Fiset et al., 2008, figure
2; Fiset et al., 2009). This, as well as the fact that it was
overlooked, suggests that observers typically do not use
letter features falling on paper regions of letter images
in letter recognition. In other words, it appears that
observers rely on ink features—regions of ink in letter
images—but not on paper features—regions of paper
(without ink) in letter images. For example, observers
rely on the presence of an ink curve to recognize the
letter ‘o’—an ink feature—presumably to distinguish it
from the letter ‘c,’ but do not use the lack of ascenders
or descenders—paper features—to distinguish it from
the letters ‘b,’ ‘d,’ ‘p,’ ‘q,’ and ‘g.’

Neglecting paper features could represent a bottle-
neck for letter recognition. However, the fact that no
paper features attained statistical significance does not
provide support for this hypothesis: it remains unclear
whether observers did in fact fail to use paper features,
because not rejecting the null hypothesis is different
from supporting it. To circumvent this statistical
shortcoming, Bayesian statistics could be employed to
pit the null hypothesis against the alternative hypoth-
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esis (humans do not use paper features vs. humans do
use paper features; see Gallistel, 2009). Having said
that, the data from Fiset et al. (2008) lack the necessary
statistical power to obtain reliable individual results,
and group averages risk underestimating individual
differences. One could imagine, for example, that all of
the observers used paper features but that each used a
different set of paper features. In this case, the group
average would lead to the false conclusion that
observers did not use paper features. Conversely, it
could be that only a few of the observers used paper
features, but systematically so. Group averages would
then lead to the erroneous conclusion that all observers
used paper features.

In this study, 16 observers completed 5,000 trials of a
single-letter two-alternative forced-choice detection
task. We chose a detection task—with simple targets—
to maximize statistical power and obtain reliable
individual results on which to perform Bayesian
statistical analyses. Although the features that we
revealed are probably different from those that we
would have revealed in a letter identification task, they
allowed us to test the hypothesis that observers
typically neglect paper features.

Methods

Subjects

Sixteen psychology students between 19 and 27 years
of age participated in the experiment. All observers had
normal or corrected-to-normal vision.

Apparatus

The experimental programs were run on a Macin-
tosh G4 computer in the Matlab environment. All
stimuli were presented on a Sony Trinitron monitor
(1024 · 768 pixels at 85 Hz), calibrated using a
Samsung SyncMaster 753df photometer to allow linear
manipulation of luminance. The resulting corrected
table contained 101 luminance levels, ranging from 2.25
cd/m2 to 98.84 cd/m2. Observers were tested binocu-
larly and their head position was maintained at a
distance of 50 cm from the computer monitor by a chin
rest.

Procedure

Observers each did a total of five blocks of 1,000
trials. On each trial, they were presented simulta-
neously with a noisy target and a noisy nontarget. The

remainder of the screen was midgray (50.55 cd/m2).
The target and nontarget each spanned 34 · 34 pixels
(about 18 of visual angle); they were centered along the
y-axis and had an eccentricity of 634 pixels (about 618
of visual angle) along the x-axis. The stimulus remained
on the computer monitor until a response was given.
Observers had to indicate whether the target was on the
left or right by pressing on the appropriate keyboard
response key. No feedback was provided to observers.

Unbeknownst to observers, none of the experimental
stimuli contained the target images: They only con-
tained white Gaussian noise (M ¼ 50.55 cd/m2; SD¼
20.38 cd/m2). On any given trial, however, one of the
two noise fields was always more correlated with the
target than the other. Such a no-signal procedure has
been used to probe the internal memory representation
of participants (see Dupuis-Roy & Gosselin, 2007;
Gosselin & Schyns, 2002, 2003; Smith, Gosselin, &
Schyns, 2012).

Stimuli

Thirteen subjects were told verbally at the beginning
of every 1,000-trial block that the target was a black
letter ‘X’ printed on a white square, that the letter was
formed by two thick diagonal bars crossing at the
center of the square and each touching corners of the
square, and that the black and white regions of the
target had exactly the same number of pixels. The only
image matching this target description is represented in
Figure 1a. They were also told that the nontarget was a
midgray square of the same luminance as the region of
the screen outside the stimulus. The other three
observers were shown the target reproduced in Figure
1a—a black letter ‘O’ printed on a white square—at the
beginning of every 1,000-trial block. They were also
shown an ‘‘easy’’ trial that clearly contained the target
‘O’ and the nontarget homogenous midgray square of
the same luminance as the region of the screen outside
the stimulus.

Results

Individual classification images

The optimal strategy to resolve this task consists in
cross correlating the difference between the target and
the nontarget—henceforth the optimal template—with
the difference between the left and right noisy squares
of the stimuli, and responding that the target is on the
left when the cross correlation exceeds a criterion and
that the target is on the right otherwise (Tjan et al.,
1995). In the present case, the optimal templates and
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the targets are linearly related, and all the pixels of the
optimal template—those corresponding to the ink and
paper regions of the targets—contribute equally to the
cross correlations.

To estimate the template of each observer for each
1,000-trial block, we performed a least-squares multiple
linear regression on the difference between every pair of
white Gaussian noise fields and corresponding re-
sponses (for details, see Dupuis-Roy & Gosselin, 2007).
The output of this regression was a plane of 34 · 34
regression coefficients—henceforth referred to as a
classification image (CI)—indicating the strength of the
association between the contrast value of a given pixel
in the noise field and the detection of the target letter.
For a linear observer, the expected value of the CI is
proportional to the template (e.g., Murray, Bennett, &
Sekuler, 2005). Light gray regions of the CIs represent
positive regression coefficients: pixels for which a high
contrast was correlated with the tendency to detect the
target. Dark gray regions represent negative regression

coefficients: pixels for which a low contrast was
correlated with the tendency to detect the target.
Midgray regions indicate regression coefficients near
zero; these had little to no impact on the detection of
the target letter. In other words, the nonzero elements
of a block CI depict the elements of the noise fields
which were used to determine the presence of the target
letter. Four individual CIs are represented in Figure 1c.

A lesson from the ‘X’ group classification image

Next, we computed the group CI for the 12 observers
that detected the target ‘X’ by summing all their block
CIs, irrespective of observer, by smoothing the (mirror-
padded) result slightly (full width at half maximum ¼
4.71 pixels), and by transforming it into z-scores.
Figure 1b shows this group CI. The pixels range from
black (z-score¼�12.12) to white (z-score¼ 12.12). The
contour of the target ‘X’ is superimposed in red on the

Figure 1. (a) ‘X’ and ‘O’ targets. (b) ‘X’ group classification image (CI) smoothed with a Gaussian kernel with a standard deviation of 2

pixels and transformed into z-scores. Key z-scores are shown on the color bar. The statistical thresholds were obtained using a two-

tailed pixel test (Chauvin, Worsley, Schyns, Arguin, & Gosselin, 2005). The red lines superimposed on the group CI trace the

boundaries between the ink and paper regions of the ‘X’ target. (c) Scatter plot of the individual composite z-scores calculated using

the best-fitted targets. The x-axis and y-axis give the ink and the paper composite z-scores, respectively. The overall composite z-

scores of individual observers are depicted by their target letters, and the average of all observers by the intersection of the two

standard error bars. Red letters correspond to observers who used ink features but not paper features. Four individual CIs are also

shown, with red lines that trace the boundaries between the ink and paper regions of their best-fitted targets and with associated

goodness of fits.
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group CI. A dark ‘X’ printed on a midgray square is
distinctly visible. This suggests, as predicted by our
hypothesis, that observers used ink but not paper
features to detect the ‘X’ target. More specifically, like
the subjects for Fiset et al. (2008), our observers appear
to have used the line intersection and the four line
terminations. However, regions of significant negative
correlations in the group CI spread outside of the target
‘X’ ink region into its paper regions. This suggests that
some participants exaggerated the size of the ink
region. In other words, some participants appear to
have had trouble with the constraint dictating that the
black and white regions of the target had exactly the
same number of pixels. This could interfere with the
testing of our hypothesis—that paper features are
neglected—because the summing of dark pixels (nega-
tive z-scores) from some observers with bright pixels
(positive z-scores) from other participants could
artificially result in an average z-score near zero. We
would thus be more likely to erroneously conclude that
paper features were not used to perform the task.

Individual Bayesian analyses

Therefore, we proceeded to test our hypothesis
controlling for this particular source of variance. Three
steps were required. First, we needed to account for
individual variations in ink-to-image-area ratio. To do
this, we computed individual CIs by summing the five
block CIs of each individual. Figure 1 shows four of
these individual CIs: They were smoothed and trans-

formed into z-scores. Then we best-fitted each subject’s
individual CI with an image identical to her or his
target letter, but with a varying stroke width, resulting
in a best-fitted target (R2: M ¼ 0.03; SD¼ 0.03; min ¼
0.003; max ¼ 0.14).

Second, for each of the 16 subjects and each of the
five blocks, we computed two composite z-scores (i.e.,
the sum of all z-scores within a region divided by the
square root of the number of z-scores within this
region): one composite z-score for the best-fitted ink
region and another for the complementary paper
region. The odds for one subject (#5 in Table 1) favored
the null hypothesis over the alternative hypothesis for
both ink and paper regions, which indicates that he or
she did not perform the task properly. The two overall
composite z-scores of the other subjects (i.e., the sum of
the composite z-scores of the five blocks divided by

ffiffiffi

5
p

)
are represented on the scatter plot of Figure 1c. The x-
axis and y-axis correspond, respectively, to the overall
composite z-score of the best-fitted ink area and to the
complementary paper area overall composite z-score.
Individual observers are depicted by a letter ‘X’ or ‘O’
depending on their target letter, and the average of all
observers by the intersection of the two standard error
bars.

Finally, we tested our hypothesis. We predicted that
observers would use ink features but not paper
features. Standard statistical tools are inappropriate
because, at best, they would allow us to conclude that
(a) the composite z-scores are significantly greater in
the best-fitted ink area than in the complementary
paper area or (b) the composite z-scores are signifi-

# Target

Ink Paper

Statistical model

standard deviation

Range of

alternative prior Odds

Statistical model

standard deviation

Range of

alternative prior Odds

1 ‘X’ 1.50 �7.68 to �3.81 1.55 · 1013 0.97 �0.74 to 1.63 0.11

2 0.66 �1.68 to 0.10 4.14 0.66 �0.21 to 1.33 0.22

3 1.08 �4.46 to �1.76 3.44 · 107 1.22 0.23 to 3.16 108.09

4 0.81 �2.48 to �0.49 4.50 · 103 0.83 �0.51 to 1.750 0.73

5 1.60 �2.80 to 1.54 0.20 1.23 �1.12 to 2.20 0.18

6 1.40 �6.14 to �2.68 5.37 · 106 0.54 �1.72 to 0.34 164.05

7 1.09 �8.17 to �5.19 7.36 · 1035 1.20 �1.48 to 1.45 0.18

8 0.79 �3.36 to �1.39 5.73 · 108 3.87 �8.72 to 0.44 0.99

9 1.38 �3.42 to 0.44 4.11 1.35 �0.32 to 2.63 4.02

10 1.31 �3.91 to �0.72 422.82 1.01 �1.10 to 1.36 0.10

11 2.85 �11.83 to �4.92 6.26 · 1011 1.76 �6.81 to �2.18 1.49 · 108

12 1.13 �11.11 to �8.44 6.52 · 1076 1.61 �1.53 to 2.68 0.17

13 1.18 �4.38 to �1.80 9.03 · 106 0.58 �0.25 to 1.25 0.15

14 ‘O’ 1.38 �2.39 to 0.80 0.64 0.63 1.01 to 2.69 9.47 · 106

15 0.63 �5.41 to �3.87 4.41 · 1059 1.54 �2.09 to 2.08 0.15

16 1.67 �4.12 to �0.29 11.49 2.79 �3.73 to 3.61 0.28

Table 1. Summary of the individual Bayesian analyses.
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cantly greater than zero in the best-fitted ink area but
not in the complementary paper area. The first would
not eliminate the possibility that paper features are also
used, and the second would not support the null
hypothesis that paper features are not used. Thus, we
turned to Bayesian statistics, which have the power to
test our hypothesis (see, e.g., Gallistel, 2009; Kruschke,
2010).

For each observer, we performed two Bayesian
statistical analyses: first, for the composite z-score of
the best-fitted ink region, and second, for that of the
complementary paper region. These analyses closely
followed Gallistel (2009). To summarize, we computed
the posterior likelihood probability that ink features
were used given the ink region composite z-scores, and
the posterior likelihood probability that ink features
were not used given the ink region composite z-scores.
The ratio of the sum of these posterior likelihood
probabilities indicates how many times it is more likely
that ink features were used rather than not, given the
data. Odds greater than 1 favor the alternative
hypothesis, and odds smaller than 1 favor the null
hypothesis. We performed the same analysis for the
composite z-scores of the paper region. Results are
summarized in Table 1. The fifth column shows the
odds for the ink region, and the eighth column for the
paper region. The other columns detail the parameters
used for the analyses.2

Conclusion

Nine out of the 15 observers that performed the task
properly used ink features but not paper features to
detect their targets. The data of one of the remaining
observers (#8 in Table 1) who used ink features to
detect the ‘X’ target does not allow us to say if he or she
also used paper features (i.e., odds ; 1). The other five
observers did use paper features, contrary to our
hypothesis. In fact, one of these observers (#14) used
paper features but not ink features to detect the ‘O’
target. The four remaining observers (#3, #6, #9, and
#11) used both ink and paper features. Notably,
however, for two of these four observers (#6 and #11),
paper features were represented in dark shades, albeit
in lighter shades than their ink features. We propose
that these dark paper features may have originated
from within-subject variations of the internal memory
representation of the target. An observer who neglected
paper features could, for example, have changed her or
his memory representation of the target after two thirds
of trials to one with larger strokes. In this case, the best-
fitted target would match the memory representation
used for the greatest number of trials, and some of the
ink features of the target memory representation with

larger strokes would incorrectly be identified as dark
paper features. Therefore, we take the evidence from
these two dark-paper-feature observers to be ambigu-
ous relative to our hypothesis. In sum, 9 out of the 12
observers who obtained unambiguous results in our
experiment neglected paper features in detecting their
targets.

One caveat is that some of the observers who appear
to have neglected paper features might have misun-
derstood the task: They might have looked for a white
square nontarget rather than the midgray square
designated by our instructions. Under this interpreta-
tion, the paper region of the optimal template is no
longer diagnostic for the task, and subjects would not
be expected to have used it. In fact, in work by Tjan
and Nandy (2006, experiment 2), three subjects
performed a letter ‘o’ detection task in which the
nontarget was of the same color as the paper region of
the target, and indeed, none of those subjects used
paper features. Tjan and Nandy also asked three
subjects to participate in letter ‘o’ versus ‘x’ discrimi-
nation tasks (experiments 1 and 3). In this case, paper
regions of the optimal template are diagnostic of the
task, and all subjects did use paper features in addition
to ink features. These two sets of results from Tjan and
Nandy give some credence to this ‘‘misunderstanding’’
possibility.

That being said, the Tjan and Nandy letter
discrimination results are not necessarily incompatible
with ours, because some of our observers—25% to
40%—did use paper features as well. Furthermore, the
five subjects tested by Fiset et al. (2008) in two 26-letter
identification tasks and the four subjects tested by Fiset
et al. (2009) in a 26-letter identification task appear to
have neglected paper features. Altogether, we feel
confident concluding that a majority of observers
neglect paper features in letter recognition tasks.

As we point out in the Introduction, the absence of
ascenders and descenders—paper features—in the letter
‘o’ would help distinguish it from ‘b,’ ‘d,’ ‘p,’ ‘q,’ and
‘g.’ But the letter ‘o’ is far from being an exception. We
have computed the pixel-by-pixel differences between
every letter image and every other letter image (i.e., ‘a’
vs. ‘b,’ . . ., ‘z’; ‘b’ vs. ‘a,’ ‘c,’ . . ., ‘z,’ etc.) and, using the
resulting templates, calculated the average proportion
of nonzero pixels falling in the ink region. This
computation indicates that paper features account for
more than 50% of all available information for letter
identification. Adding spatial uncertainty and using
different font families had little impact on the results.3

In all fairness, this estimation somewhat exaggerates
the importance of paper features relative to ink features
for letter recognition. In addition to the letter
identification information that they carry, ink features
allow the localization of letters: Where there’s ink,
there’s a letter. Paper features do not provide this kind
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of information. Once the letter has been coarsely
localized, however, paper features become as important
as, if not more important than, ink features for letter
identification. Therefore, neglecting paper features
represents a major efficiency bottleneck for letter
identification.

Keywords: letter recognition, efficiency, classification
images, Bayesian statistics
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Footnotes

1 Parish and Sperling (1991) actually report a 42%
letter recognition efficiency. Pelli et al. (2006) indicate,
however, that this is a mistake and that the actual
calculation efficiency was around 16%.

2 More specifically, the prior probability distribution
of the hypothesis that the composite z-scores of the ink
region (vs. paper region) for each individual are equal to
zero (the null hypothesis) is a Dirac delta function
centered on 0; and the prior probability distribution of
the hypothesis that the composite z-scores of the ink
region (vs. paper region) for each individual are different
from zero (the alternative hypothesis) is a rectangular
probability distribution function. The range of this
probability distribution was set to the range of the
individual empirical data (see columns 4 and 7 in Table
1). We assumed a normal statistical model and estimated
its standard deviation from the empirical data (see
columns 3 and 6 in Table 1). We then computed the
likelihood function given our experimental data. We
multiplied point by point the likelihood function of the
ink region (vs. paper region) with the two prior
probability distributions to get the posterior likelihood
functions of the ink region (vs. paper region). We
integrated the two posterior likelihood functions of the
ink region (vs. paper region) to get the marginal
likelihoods. The ratio of the marginal likelihood of the
alternative hypothesis and the marginal likelihood of the
null hypothesis tells us to what extent the hypothesis that
the composite z-scores of the ink region (vs. paper region)

are different from zero is more likely than the hypothesis
that the composite z-scores of the ink region (vs. paper
region) are equal to zero (see columns 5 and 8 in Table 1).

3 The proportions of diagnostic pixels occupying
paper regions of the letter images with and without
Gaussian position uncertainty (SD ¼ 0.25 · letter
width) for different font families: Künstler¼ 0.573 and
0.581, Bookman¼ 0.573 and 0.581, Courier ¼ 0.576
and 0.584, Sloan¼ 0.573 and 0.581, Baskerville¼ 0.615
and 0.627, Arial ¼ 0.572 and 0.587, Gill Sans ¼ 0.574
and 0.586, Futura¼0.556 and 0.561, Times¼0.593 and
0.602, Helvetica¼ 0.573 and 0.581. On average, with
position uncertainty¼ 0.578 and without¼ 0.587.
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