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Summary

A key to understanding visual cognition is to determine

when, how, and with what information the human brain
distinguishes between visual categories. So far, the

dynamics of information processing for categorization
of visual stimuli has not been elucidated. By using an

ecologically important categorization task (seven
expressions of emotion), we demonstrate, in three

human observers, that an early brain event (the N170
Event Related Potential, occurring 170 ms after stimu-

lus onset [1–16]) integrates visual information specific

to each expression, according to a pattern. Specifi-
cally, starting 50 ms prior to the ERP peak, facial infor-

mation tends to be integrated from the eyes downward
in the face. This integration stops, and the ERP peaks,

when the information diagnostic for judging a particu-
lar expression has been integrated (e.g., the eyes in

fear, the corners of the nose in disgust, or the mouth
in happiness). Consequently, the duration of informa-

tion integration from the eyes down determines the
latency of the N170 for each expression (e.g., with ‘‘fear’’

being faster than ‘‘disgust,’’ itself faster than ‘‘happy’’).
For the first time in visual categorization, we relate

the dynamics of an important brain event to the dynam-
ics of a precise information-processing function.

Results and Discussion

We instructed three observers to resolve seven biologi-
cally relevant face categorizations (‘‘happy,’’ ‘‘fear,’’
‘‘surprise,’’ ‘‘disgust,’’ ‘‘anger,’’ ‘‘sad,’’ and ‘‘neutral’’) of
FACS-coded faces [17, 18] (five males and five females)
displaying each expression of emotion (for a total of
70 original stimuli). The experiment sought to establish a
one-to-one correspondence between random samples
of facial information presented on each trial (sampled
from the original faces, with Gaussian windows smoothly
revealing information from five nonoverlapping spatial
frequency—SF–bandwidths; see Figure 1) and behav-
ioral [19–21] and brain responses to this facial
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information [22–24]. With classification image techniques,
we estimated, for each observer, across the 21,000 trials
of the experiment (3000 trials per expression) how facial
information modulated behavior (categorization accu-
racy) and brain responses (modulations of EEG voltage
over the time course of the N170).

Facial Information Modulates Categorization

Accuracy
By using classification image techniques, we first ana-
lyzed for each observer, expression, and spatial fre-
quency band the diagnostic facial features associated
with categorization accuracy (set to be at 75% for each
individual expression, by calibrating online sampling
density). We then rendered the facial features diagnostic
of each expression with an effective image (see ‘‘(1) Com-
putation: Behavioral Classification Image’’ in Experimen-
tal Procedures in the Supplemental Data available online;
see ‘‘Behavior’’ in Figure 2 and Figures S2–S4 for the
spatial frequency decomposition of each behavioral
image). For illustration, the facial features diagnostic of
‘‘fear’’ are primarily the wide-opened eyes, whereas the
region around the wrinkled nose is diagnostic of ‘‘dis-
gust,’’ and the smiling mouth diagnostic of ‘‘happy.’’

Facial Information Modulates EEG Voltage

Again by using classification image techniques, we ana-
lyzed, at a 4 ms resolution, for each observer, expres-
sion, and spatial frequency band the facial features asso-
ciated with modulations of EEG voltages—measured on
the right and left occipitotemporal (OTR and OTL) elec-
trodes—with the largest negative deflection within the
140–212 ms time interval of the N170 (see Figure S1 for
the observers’ ERPs). For each expression and OTR
and OTL electrode, Figure 2 represents the EEG classifi-
cation images at each time step. Together, they form
‘‘movies’’ representing over time the dynamics of the
sensitivity of the EEG to facial features (see Figure 2
and ‘‘(2) Computation: Sensor-Based EEG Classification
Images’’ in the Supplemental Experimental Procedures).
For illustration, the gray-level OTR and OTL movies for
‘‘disgust’’ on Figure 2 reveal that the dynamics of sensi-
tivity of the EEG moves from the location of the eyes pro-
gressively toward the lateral sides of the wrinkled nose
over the N170 time course.

In the context of the categorization of seven facial ex-
pressions of emotion, we report the following three main
findings regarding the information processing function
of the N170: (1) The N170 integrates facial features over
time, starting 50 ms prior to the N170 peak; (2) the inte-
gration of facial information tends to proceed from the
eyes and moves down the face, irrespective of expres-
sion; and critically, (3) the integration of facial informa-
tion stops, and the N170 peaks, when the information
critical for behavior (i.e., a category decision) has been
integrated (e.g., the eyes in ‘‘fear,’’ the corners of the
nose in ‘‘disgust’’ or the mouth in ‘‘happy’’).
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Figure 1. Stimulus Generation Process

Shown in the first row: On each trial a randomly chosen original stimulus is decomposed into five nonoverlapping spatial frequency (SF) bands of

one octave each (120–60, 60–30, 30–15, 15–7.5, and 7.5–3.8 cycles/face). Shown in the second row: Gaussian apertures each revealing six cycles

per face, irrespective of SF band, are randomly positioned (standard deviations of the bubbles were 0.36, 0.7, 1.4, 2.9, and 5.1 cycles/degree of

visual angle from the fine to the coarse SF band). Shown in the third row: The SF-band facial information from the first row is sampled with the

Gaussian apertures of the second row. The addition of the randomly sampled face information from each SF band produces one stimulus image.
(1) The N170 Integrates Facial Features over Time

To frame the function of the N170, every 4 ms we com-
puted on OTR and OTL electrodes the overall quantity
of SF information to which the EEG was sensitive (see
‘‘(3) SF Information Measurement over the Time Course
of the ERP and Its Integration’’ over the N170 in the Sup-
plemental Experimental Procedures). The red curves in
Figure 2 (dashed for OTL) report this measure. It is im-
mediately apparent that an almost monotonic increase
in SF information sensitivity is followed by an almost
monotonic decrease, itself followed by the ERP peak
(indicated with a blue box in Figure 2). This shape of the
information sensitivity curve characterized all seven ex-
pressions and three observers, both on OTL and OTR
(n = 42, see Figures S5 and S6 for further illustrations).

The red curves reflect a dynamic of information sensi-
tivity characteristic of thederivative of an integrated func-
tion: The instantaneous slope of the ERP would closely
reflect the slope of an information accumulation function.
To test this hypothesis, we integrated the red curves over
time to produce the black curves (see Figure 2, OTL
dashed) and correlated, independently for each observer
and electrode, the resulting integrated function with the
ERP curve of each expression (represented in blue in Fig-
ure 2, OTL dashed). We computed confidence intervals
by using a bootstrap with replacement, 999 resampling
trials, at p < .05 [25]. Table 1 presents the correlations
averaged across expressions, for each observer and
OTL and OTR electrodes. The high correlations suggest
that the unfolding of the N170 on both electrodes closely
reflects processes of integration of SF information start-
ing from approximately 50 ms before the N170 peaks.
(2) The Integration of Facial Information Tends to

Proceed from the Eyes and Moves down the Face
Information integration across expressions was similar
on both electrodes, for all observers. For illustration, con-
sider Figure 3 in which three plots represent a different
observer (see ‘‘(4) Further Characterization of Facial In-
formation Integration’’ in the Supplemental Experimental
Procedures). The x coordinate of each plot indicates the
time interval of the ERP on both electrodes; the y coordi-
nate represents the y face coordinate of the maximum of
SF information present in the EEG classification images
and summed across all expressions. At each time step,
two points (one for OTL, one for OTR; see blue circles)
illustrate the relationship between the dynamics of the
N170 and the information that is being integrated—the
background face should only be used to facilitate the y
coordinate localization of the facial features correspond-
ing with the SF information maxima. Linear regressions
(performed collapsing OTL and OTR coordinates) indi-
cate linear relationships between the two factors (p < .05,
confidence interval indicated in green). Thus, OTL and
OTR N170s tend to integrate facial features from the top
of the face (i.e., the eyes) and progress downward on a
vertical axis to the bottom of the face (see also Figure S7
for illustrations of individual examples of scanpaths per
observer, expression, and electrode).
(3) The Integration of Facial Information Stops,
and the N170 Peaks, when Diagnostic

Information Is Reached
The integration scanpath on the face suggests that the
latency of each ERP could depend on the vertical dis-
tance of the expression-specific diagnostic information
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Figure 2. The N170 Integrates SF Facial Information

Illustration for UM and expressions ‘‘fear,’’ ‘‘disgust,’’ ‘‘happy.’’ Shown under ‘‘Behavior’’: Representation of the facial SF features required for

correct behavior. Shown in the left panel: For left and right occipitotemporal electrodes (OTL and OTR, OTL dashed lines), the blue curves

indicate the typical N170 negative deflection. With Bubbles, we derive, in a movie of classification images, the dynamics of the sensitivity of

the N170 to any facial information (see the OTL and OTR classification images; time resolution is 4 ms). Note that this analysis concerns strictly

the EEG: It is not related to behavior at this stage. The red curves quantify this sensitivity to facial information, which peaks for each expression

and electrode before the ERP peak (indicated with blue boxes). The color coding of the classification images localizes this SF information in the

face, with red indicating higher information values and blue indicating lower information values. The black curves integrate the red curve over

time—they are negated and rescaled to the ERP peak for comparison purposes—demonstrating that the N170 reflects a process that integrates

facial features over time. The dashed yellow boxes indicate the maximum of the integration of the information required for categorization behav-

ior (the diagnostic information). (See ‘‘(3) SF Information Measurement over the Time Course of the ERP and its Integration’’ in the Supplemental

Experimental Procedures for details).
from the two eyes. In this case, the eyes in ‘‘fear’’ would
lead to an early ERP, and the mouth in ‘‘happy’’ would
lead to a later ERP; see ‘‘Behavior’’ in Figure 2 (see also
Figure S1 for the ERPs). We tested this hypothesis for
each observer, electrode, and expression (n = 42) by ex-
tracting the SF information common to the behavioral
and to the EEG classification images—i.e., by computing
an intersection between the thresholded behavioral and
EEG classification images (see ‘‘Time Course of the
N170 and Diagnostic Information’’ in the Supplemental
Experimental Procedures). The resulting function re-
flects only the integration of diagnostic, behavior-rele-
vant information in the EGG classification images over
time. We computed the maxima of this integration over
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the time course of each ERP (maxima are rendered with
yellow boxes in Figure 2) and regressed them with the
ERP latencies. In Figure 4, the resulting regressions
present a linear relationship between the timing of the
maximum integration of diagnostic information and the
latency of the ERP. Thus, the N170 latency marks then
the end of a process, starting at the location of the
eyes and ending at the location of the expression-spe-
cific diagnostic information, that integrates SF facial fea-
tures. This explains why ‘‘fear’’ (involving mostly the
eyes) peaks earlier than ‘‘disgust’’ (involving the corners
of the nose) and ‘‘happy’’ (involving the mouth). It also
implies that the information processed over the N170
conveys sufficient information for predicting categoriza-
tion behavior.

We have shown in three observers that the dynamics
of the N170 wave, on the left and right occipitotemporal
regions, closely correlate with a function integrating fa-
cial features over time. This integration proceeds over
a 50 ms time window prior to the N170 peak, in a scan-
path starting from the location of the eyes downward
in the face. We have shown that the vertical distance be-
tween the two eyes and the facial location of the expres-
sion-specific diagnostic information (e.g., the mouth in
‘‘happy’’) determines the latency of the N170 for this ex-
pression. Note that we have confined the analysis to the
relationship between N170 latencies and the underlying
information processing function (see Garrod, Schyns
and Smith, Neuroimage, 36, Supp 1, S42 (2007) for a dis-
cussion of how the information processing function of
amplitude could be isolated).

Table 1. Observer, UM, LP, and LF, Mean Correlations, n = 7

Expressions, and SDs between the ERP Curves and the Function

of Integration of SF Facial Information, on Electrodes OTL and OTR

OTL OTR

M STD M STD

UM 0.98 0.02 0.97 0.03

LP 0.93 0.06 0.97 0.02

LF 0.93 0.04 0.98 0.01
The N170 ERP Reflects a Cognitive Process
There has been considerable debate regarding the na-
ture of category effects on the N170 [1–16]. The evidence
reported here demonstrates that the N170 reflects a pro-
cess under cognitive control, not a low-level effect. In re-
capitulation, the N170 curve (on OTL and OTR) integrates
SF information over time with evidence for a mixture of
automatic and goal-directed control. It is automatic be-
cause it tends to start with the eyes and then integrates
information downward on the y axis of the face plane. It
is goal directed because the downward integration stops
when the diagnostic features have been integrated.
Thus, claims to the effect that low-level properties might
explain modulations of the N170 will need to be revised
[26]. Specifically, if a process integrates information, in-
cluding diagnostic information, variations in the location
of this information in the stimulus will have an impact on
the shape of the N170—as demonstrated here between
the early ERP to the eye information in ‘‘fear’’ and the
late ERP to the mouth information in ‘‘happy.’’ However,
as we have shown, it is the knowledge of the location of
the information used in the image, together with an un-
derstanding of the dynamics of the overall processing
of this information (here from the eyes to the mouth),
that enables specific predictions about the shape of
the N170 ERP.

Automatic and Goal-Directed Control
of Information Integration

An important question for future research concerns the
precise nature of the ‘‘automatic’’ versus ‘‘goal-di-
rected’’ aspect of the SF integration process. Crucial
to this is the suggestion that prefrontal cortex (PFC) is in-
volved in task-dependent, adaptive coding in working
memory, attention, and control [27]. The difficult ques-
tion is how these different regions interact to process
the visual and semantic information leading to different
categorizations of a given stimulus. Recent thinking
[27, 28] suggests that top-down expectations from PFC
become coupled with the visual occipital cortex and the
fusiform gyrus so that task-dependent representations
for recognition could be progressively constructed.
Figure 3. The Integration of Facial Informa-

tion Tends to Proceed from the Eyes down

to the Bottom of the Face

For each observer (UM, LP, and LF), least-

mean square linear regression of the location

of the maximum of SF information (summed

by time window over all seven expressions)

within the image space in the vertical dimen-

sion (y axis of each image) with the temporal

dynamics of the N170 signal (x axis of each

image). For each observer, we pooled data

over electrodes OTR and OTL, for a total of

two data points per time point. Blue circles in-

dicate individual data points (N170 latency, y

coordinate of maximum SF information). The

red line indicates the linear regression of

the data points, and the flanking green boxes

the confidence intervals (p < .05). Note that

the scanpaths are undefined outside the time

points indicated on the x axis of the image.

(See ‘‘(4) Further Characterization of Facial

Information Integration’’ in the Supplemental

Experimental Procedures for details).
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The evidence of information integration reported here
also suggests a progressive integration of information
over the left and right occipitotemporal region. For con-
trol, we would predict a strongly overlapping fronto-oc-
cipitotemporal network responsible for the implementa-
tion of top-down expectations that allow for the effective
integration (i.e., encoding and retention) of visual cate-
gorization information over short periods of time.

Implications of Diagnostic Information

We demonstrated that the integration of the expression-
specific diagnostic information occurs just before the
N170 peaks, on the left and right occipitotemporal elec-
trodes (see Figure 4). Consequently, in a time window
ranging from approximately 160–205 ms, there is enough
information in the brain (though split between two hemi-
spheres), to determine the emotional category of the
input stimulus, a category-specific effect. The idea of
category-specific effects on the N170 has never been
conclusively associated with the specific information
of a behavioral categorization response (e.g., the left
corner of the nose on OTL and the right corner of the
nose on OTR for ‘‘disgust,’’ see Figure 2). Our findings
extend those demonstrating that inferior temporal-
cortex neurons in nonhuman primates are sensitive to
diagnostic object properties [29–32]. They also open
the interesting prospect of predicting behavior from
a brain signal measured as early as 160–200 ms after
stimulus onset, a critical finding for ‘‘mind reading’’ [33].

However, there is considerable lateralization of the
diagnostic information observed over the N170 (e.g.,
see ‘‘disgust’’ in Figure 2). This raises the question of
whether interhemispheric integration of diagnostic in-
formation, after its extraction over the N170 time course,
is required for perceptual decision [23]. A better

Figure 4. The Integration of Facial Information Stops, and the N170

Peaks, when Diagnostic Information Has Been Integrated

Least-mean square linear regression of the ERP latencies (x axis)

with latency of maximum of diagnostic SF integration (y axis). Blue

circles indicate individual data points (N170 latency, latency of max-

imum of diagnostic SF integration). The red line indicates the linear

regression of the data points, and the flanking gray boxes the confi-

dence intervals (p < .05). Data were pooled across three observers,

two electrodes, and seven expressions, for a total of 42 (maximum of

diagnostic information, ERP latency) coordinates.
understanding of the dynamics of information process-
ing, from its lateralized extraction to its integration for
perceptual decision, will be critical for understanding
categorization processes.

Experimental Procedures

Subjects, Stimuli, and Task

We used Bubbles to synthesize sparse versions of the original stim-

uli by randomly sampling facial information from five one-octave

nonoverlapping SF bands (see Figure 1 and [19, 20]). During the

experiment, three observers categorized by expression 21,000 of

these sparsely sampled expressive images while we concurrently

recorded their EEG. Online calibration of sampling density ensured

75% accuracy per expression.

Data Collection

We used sintered Ag/AgCl electrodes mounted in a 62-electrode

cap at scalp positions including the standard 10-20 system posi-

tions along with intermediate positions and an additional row of

low occipital electrodes. Linked mastoids served as initial common

reference, and electrode AFz served as the ground. Analysis epochs

for correct, nonartifact trials were generated beginning 500 ms prior

to stimulus onset for 1500 ms and were rereferenced to average

reference. For each observer, we selected a left and right occipito-

temporal electrode on the basis of those electrodes recording the

highest amplitude of the N170 peak.

Computations

We reverse correlated the location of the sampled information with

behavioral response to represent in the three dimensions of image

sampling the combination of SF bands and image features diagnos-

tic for the categorization of each expression (see [19–21] for further

details and see [21, 24, and 34] for discussions of Spatial Frequency

integration for perception and recognition). Similarly, we applied

Bubbles to the single-trial raw electrode amplitudes to ascertain

the facial information systematically correlated with modulations

of the EEG signal [22–24] over the time course of the N170. From

the EEG classification images, we inferred the information process-

ing function of the N170.

Supplemental Data

Additional Experimental Procedures and seven figures are available

at http://www.current-biology.com/cgi/content/full/17/18/1580/

DC1/.
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