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Abstract

Perceptual learning is characterized by an improvement in a perceptual task following practice. It was believed until recently to be driven mostly by bottom-up processes (Godde, Stauffenberg, Spengler & Dinse, 2000; Watanabe, Náñez & Sasaki, 2001; Hodzic, Veit, Karim, Erb & Godde, 2004). However, several studies have demonstrated that top-down processes, such as attention and task-related expectations, are necessary components of perceptual learning  (Shiu & Pashler, 1992; Fahle & Morgan, 1996; Ahissar & Hochstein, 1993, 2000, 2002; Seitz, Lefebvre, Watanabe & Jolicoeur, 2005). Here, we report an experiment that isolates top-down processes in perceptual learning, using the Gosselin and Schyns (2003) no-signal procedure. Results show that top-down processes are sufficient to produce large, long-lasting perceptual learning. The magnitude of the effect, transfer tests, and classification image analyses suggest that the modifications occur at the shape level of the memory representations and probably implicate neurons from the inferotemporal cortices.

Perceptual Learning Without Signal

The ability of the nervous system to improve in a perceptual task after training is known as perceptual learning (PL). Over the years, researchers have gathered evidence suggesting that PL can occur in the absence of attention (Godde et al., 2000; Hodzic et al., 2004), feedback (Fahle, Edelman & Poggio, 1995; Vaina, Sundareswaran, & Harris, 1995), or even conscious perception of the stimuli (Seitz, Nanez, Holloway, Koyama & Watanabe, 2005; Watanabe et al., 2001). This has led to the belief that PL can occur in a mostly bottom-up fashion (for an overview see Fahle & Poggio, 2002).

This belief, however, has recently been questioned. Several studies have shown that top-down processes are necessary to produce PL (Ahissar & Hochstein, 1993, 2000, 2002; Fahle & Morgan, 1996; Jiang & Chun, 2001; Seitz, Lefebvre at al, 2005; Seitz, Nanez et al, 2005; Seitz & Watanabe, 2003; Shiu & Pashler, 1992).  For example, Ahissar and Hochstein (1997, 2000, 2002) have shown that focused attention is necessary for PL in some experimental conditions; Watanabe, Seitz and colleagues, who once thought that bottom-up process are sufficient to produce PL (Watanabe et al, 2001), have demonstrated that attention sometimes needs to be temporally paired with – but not focused on – a feature for this feature to be learned.
Here, we show that top-down processes can be not only necessary but sufficient for PL, using a modified version of the Gosselin and Schyns’ no-signal procedure (2003; see also Gosselin, Bacon & Mamassian, 2004). These authors induced the perception of simple objects in noise fields containing no signal whatsoever and studied the subtending memory representations using classification image techniques. We have modified the original no-signal procedure to allow measurement of performance. We shall argue that any improvement following such no-signal practice can only be attributed to top-down determinants.
Methods

Participants

Seven psychology students aged between 22 and 29 were randomly allotted either to the experimental group (n=4) or to the control group. All students were naïve to the purpose of the experiment but they knew that there was no signal added to the noise fields. Only F.L. had previous experience with the no-signal procedure. All of them had normal or corrected-to-normal vision and they were tested binocularly. Informed consent was obtained from all participants before the beginning of the experiment and a monetary compensation was provided. This study conformed to the tenants of the Declaration  of Helsinki.

Apparatus

The experimental programs were run on a Macintosh G4 computer in the Matlab environment, using the Psychophysics toolbox (Brainard, 1997; Pelli, 1997). All stimuli were presented on a Sony Trinitron monitor (1024 x 768 pixels at 85 Hz), calibrated using a Samsung SyncMaster 753df photometer to allow linear manipulation of luminance. The resulting corrected table contained 137 luminance levels, ranging from 0.31 cd/m2 to 107 cd/m2. The background luminance was equal to 52.85 cd/m2. Participants were kept at a 57 cm distance from the monitor with a chin-rest.

Stimuli

Four 1/f2 random textures were created (Figure 1b). We assigned a pair of such textures (henceforth T1 and T2) to each participant.  These pair of textures were uncorrelated, of similar complexity and their luminance summed to zero.
Procedure
All experimental sessions (between 25 and 46) comprised 250 no-signal detection trials and two presentations of two target textures, randomly interleaved between the no-signal trials. Each texture presentation lasted 10 s and satisfied two constraints: 1) the first presentation of a texture had to come before the first no-signal detection trial of this texture; and 2) the second presentation of a texture had to occur before the last ten no-signal detection trials. The sequence of events in a no-signal detection trial was as follows (Figure 1a): First, either the cue ‘T1’ or ‘T2’ was presented at the center of the screen for 1 s. This indicated to the observer which texture she/he was required to detect. T1- and T2-trials were randomly ordered in a session. Second, a white Gaussian noise field (32 pixels2, spanning 1 deg2 of visual angle) was presented in the center of the screen for 500 ms, followed by a blank screen presented for 100 ms, then by another white Gaussian noise field presented for 500 ms, and finally by a blank screen presented for 100 ms. Participants had to decide which of these two white Gaussian noise fields was more similar to the cued texture. They knew they were presented noise fields with no signal. No feedback was provided.

_________________

Insert Figure 1 here

_________________

T1-sessions comprised 240 T1-trials and 10-trials whereas T2-sessions comprised 240 T2-trials and 10 T1-trials.  Participant did no more than one experimental session per day. Three of the four participants in the experimental group completed 36 or more T1-sessions over a period of two months. Two of these three observers did two transfer tests and, after a one-year interruption, ten more T1-sessions. The rationale for the additional tests will be given below. The fourth participant in the experimental group (B.B.) abandoned after 25 T1-sessions. His data was nonetheless included in the group analyses.
Participants were paired (see Figure 1b) according to the targets to detect (T1 and T2) and the randomization. The latter determined the order of the texture presentation, the sequence of T1- and T2-trials and the noise fields. Hence, paired participants only differed in the number of times they attempted to detect each of these textures.
The control condition consisted of a T1-session preceding and following 34 blank sessions, completed at a rate of a maximum of one per day over a period about two months. Each blank sessions only comprised two 10 s presentations of the two target textures. Control participants were asked to carefully attend to these stimuli and remember them the best they could as that they would have to complete a second T1-session at the end of the experiment. The aim of this control condition was to provide an estimation of the contribution of T1 and T2 presentations on no-signal PL.

Results

Performance measurement

In the Gosselin and Schyns no-signal procedure (2003; see also Gosselin et al., 2004), it was impossible to decide whether a response was correct or incorrect. In our version of the procedure, however, the target texture is always more correlated with one white Gaussian noise field than with the other. Figure 2 shows the performance of the first 25 T1-sessions
, averaged across the four experimental participants. The solid red curve represents T1-performance, the solid blue curve depicts T2-performance, and the solid black curves best describe the performance. The mean T1-performance clearly increases, starting at 53.3% (ns) and finishing at 63.5% (p<.05). Whether T1-learning is a consequence of the no-signal practice or the presentation of T1 twice per session remains to be examined.

______________
Insert Figure 2 here

______________
Contribution of the top-down component
To isolate the contribution of the top-down component of PL, we contrasted the learning of two unfamiliar textures (T1 and T2). You will remember that, in each T1-session, participants were exposed twice to T1 and to T2, but more crucially, they did 24 times more T1 no-signal detection trials than T2 no-signal detection trials. Because both textures were equal with regard to the duration and the frequency of their presentation, any difference between T1- and T2-learning can be ascribed to the amount of no-signal detection trials. T1- and T2-learning are not directly comparable because of sample size. To resolve this problem, we performed a Bootstrap analysis in which a population of T1-slopes was computed on randomly drawn samples of 10 T1-trials (e.g., Efron & Tibrishiani, 1986). The distribution of these T1-slopes had a mean of 0.33 and a standard deviation of 0.21. The probability of observing the T2-slope of the experimental group (i.e., -0.24) given T1-performance is less than 0.3%. Similar analyses were run on individual data. Results are shown in Table 1.

_________________

Insert Table 1 here

_________________

Although all individual observers exhibited the overall trend, only I.F. (p<.0006) and F.L. (p<.0088) reached statistical significance. Importantly, this result cannot be explained by intrinsic features of the textures: F.L. and I.F. were assigned the same pair of textures but in a counter-balanced way (see Figure 1b). Henceforth, we will focus on these two participants. Figure 3 shows their performance on T1-sessions (red curves). The thick solid black curves are the best-fitted log-log lines to the accuracy of the first 36 T1-sessions, and the thick dotted curves are the forecasted accuracies based on these best fits. The gray areas delimit the confidence interval (p<.05). The thin dotted lines show the statistical threshold calculated from a Bonferroni-corrected, one-tail binomial test (p<.05). T1-performance clearly improved during the first 36 T1-sessions. This is also reflected in the increasing number of T1-sessions above statistical threshold with practice.

The blue ‘T2’ represents the performance in the first transfer test (i.e., 240 T2-trials and 10 T1-trials). This T2-transfer test allows us to double-check that T2-performance is not predicted by the T1-learning curves. Because both T2-transfer tests are under the statistical threshold and outside the prediction intervals, it seems unlikely that T2-performance is part of T1-learning. This evidence, along with the previously discussed Bootstrap analyses, show that part of the observed PL is due to no-signal practice. At this stage, we cannot say with certainty whether or not some PL is attributable to the repeated presentations of the textures. The control condition measures the effect of these repeated presentations. The pre-tests (55.42%, 55.42%, and 51.67%) and post-tests (55%, 44.17%, and 49.58%, in the same order) performance was not significantly different. This clearly indicates that 34 sessions of exposure to the textures does not result in measurable PL using our experimental procedure.

The failure of the first transfer test also indicates that the improvement in T1-sessions did not stem from a tuning to the spatial frequencies or to orientations of T1 because T1 and T2 had similar energy spectrums. The second transfer test consisted in a T1-session, except that the two textures were rotated 90 degrees counterclockwise. Subjects were informed of this alteration to their target textures. This session was designed to assess the orientation specificity of the observed PL. The performance at this second transfer test (64.58% and 61.25% – see rotated ‘T1’ in Figure 3) falls within the prediction interval (p<.05). The observed PL thus appears invariant to a 90-degree counterclockwise rotation.

Finally, we assessed the retention of PL without signal by measuring performance in ten T1-sessions completed after a one-year interruption. Only two of the twenty new data points fell outside the prediction area (p<.05), one per participant. One of these outliers was above the prediction interval. Thus PL without signal is remarkably resistant to the passage of time.

_________________

Insert Figure 3 here

_________________

Modification of the memory representation

Next, we examined the impact of this top-down PL on the memory representations of our participants. We performed linear multiple regressions on the Gaussian noise fields (explanatory variables) and the responses (predictive variable) of F.L. and I.F.. We did this at three critical moments during the experiment: 1) the first three sessions, 2) the three sessions corresponding to half the performance range
, and 3) the last three sessions. The more contrasted the pixels of the resulting classification images (CI), the more determinant these pixels are in the response of the observers (e.g., Eckstein & Ahumada, 2002; Gosselin & Schyns, 2003).

We also performed linear multiple regressions on the Gaussian noise fields and the correct responses. These ideal CIs can be understood as benchmarks to which human CIs can be compared. The colored pixels in Figure 4 reached statistical significance (p<0.0083) in a two-tail Pixel test
 (Chauvin, Worsley, Schyns, Arguin & Gosselin, 2005). The first row displays pixels with a statistically significant positive contrast (bright) and the second row displays pixels with a statistically significant negative contrast (dark). Green pixels reached significance only for the ideal observer, red ones only for the human observer, and yellow ones for both. The information used by both humans and ideal (yellow pixels) increased with training. Remarkably, no dark pixel reached significance for the human observers whereas an approximate equal number of dark and bright pixels reached significance for the ideal observer. It is not yet clear, however, whether this is related to intrinsic properties of the pair of textures shared by F.L. and I.F. because the CIs of the other experimental subjects (not shown) do not exhibit such bias.

_________________

Insert Figure 4 here

_________________

Discussion

We observed an improvement in the ability of human observers to detect an unfamiliar visual texture embedded in white Gaussian noise fields. These fields never contained any consistent shape. Of course, the correlation between individual noise fields and the target textures slightly varied across trials; it is these slight variations that allowed the participant to classify the stimuli. Nonetheless, the impact of these variations depends entirely on the participant’s top-down processes. F.L. and I.F. were presented the same sequence of noise fields; they saw the same two target textures the same number of times; they only differed in the number of times they attempted to detect each of these textures; and they exhibited orthogonal perceptual learnings. Thus the noise fields are best understood in our experiment as a probe that does not bias behavior.
We contrasted two learning conditions (T1- and T2-learning), which differed in the number of no-signal trials they comprised. The experimental participants showed, on average, a significant 10.2% increase of T1-accuracy but no improvement of T2-performance. All participants exhibited this trend and two of them reached statistical significance. Such T1-over-T2 learning advantage reflects the impact of the no-signal practice. No PL was found in control participants who were exposed to the textures but, unlike the experimental participants, were not submitted to extensive no-signal practice. Intrinsic differences between the textures (e.g. saliency or complexity) cannot explain the T1-over-T2 learning advantage because their assignment was counterbalanced across participants. Likewise, the difference between the experimental sessions (i.e., sequences of noise fields and target presentations) cannot explain the T1-over-T2 learning advantage because F.L. and I.F. were submitted to the same experimental sessions. Altogether, these results suggest that we have successfully isolated top-down PL.

Fine and Jacobs (2002) compared the magnitude of PL in 16 psychophysical studies with signal. The d’ gain observed in the study most similar to ours – a band-passed (2-4 cycles per image) random texture discrimination task – was of about 2.25 after four sessions (Gold et al., 1999); we observed a d’ gain of about 2.28 after four sessions. The largest d’ gain reported in the Fine and Jacob review is of about 5; we observed a d’ gain of about 4.17 near the learning asymptote. Thus the contribution of the top-down component of PL appears to be quite substantial. Neither current connectionist models of learning, nor classical learning theories can account for this result.
What is the nature of this top-down PL? The absence of transfer between the T1- and the T2-texture indicates that the learning is not caused by changes resulting from characteristics shared by T1- and T2-trials. Indeed, it cannot be the consequence of spatial frequency or orientation tuning because the two textures had similar energy spectrums. Furthermore, it cannot be the consequence of a task-specific improvement such as the capacity to integrate an increasing amount of pixels because the task was the same for T1- and T2-trials. In fact, only the shapes of the textures differed in T1- and T2-trials. Classification image analyses allowed us to visualize the transformation occurring in the shape of the memory representations of these textures. Comparison between human and ideal classification images showed an enlarging overlap. This improvement at the level of the shape of the memory representation (Fine & Jacobs, 2002; Riesenhuber & Poggio, 2004), the total gain and the rate of PL without signal (Fine & Jacobs, 2002), its rotation invariance (Riesenhuber & Poggio, 2004), and its long-lasting effects (Watanabe et al., 2002) are consistent with the involvement of neurons in the inferotemporal cortices.

We have shown that top-down processes are not only necessary but sufficient to produce large, long-lasting PL. More work is needed to examine precisely the nature of the top-down component of PL. We believe that the no-signal procedure employed will be an important tool for this endeavor.
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Figure Caption

Figure 1. (a) The sequence of events in a no-signal detection trial was as follows: First, either the string of characters ‘T1’ or ‘T2’ was presented at the center of the screen for 1 s. This indicated to the observer which texture she/he was required to detect. Second, a white Gaussian noise field was presented in the center of the screen, followed by a blank screen, then by another white Gaussian noise field, and finally by a blank screen. Participants had to decide which one of two white Gaussian noise fields was most similar to the cued texture (T1 in this case). (b) All textures and their assignment to the four experimental participants (left) and the three control participants (right). Participants were also paired on the randomization, which determined the order of the texture presentation, the sequence of T1- and T2-trials and the noise fields. Hence, paired participants were presented the same sequence of noise fields; they saw the same two target textures the same number of times; they only differed in the number of times they attempted to detect each of these textures. 

Figure 2. Percentage of correct responses averaged across the four participants for the first 25 T1-sessions. T1-performance is in red and T2-performance is in blue. The best-fits are in black. The dotted lines indicate the statistical threshold calculated from a Bonferroni-corrected, one-tail binomial test (p<.05). The length of the error bars is equal to two standard errors.

Figure 3. The performance of I.F. and F.L. in T1-sessions is displayed as red curves and the best-fitted log-log lines as solid black curves. The bold dotted black curves indicate the T1-performance predicted from the first 36 T1-sessions. The performance of I.F. and F.L. in the T2-transfer session is represented by a blue 'T2' and that in the orientation transfer test by a rotated red 'T1'. The right panel depicts T1-performance of I.F. and F.L. after a one-year break. The gray area is the 95% prediction interval. The thin dotted line is the statistical threshold calculated from a Bonferroni-corrected one-tail binomial test (p<.05).

Figure 4. Bright and dark pixels reaching statistical significance (p<.05) in the classification images of human observers (red), ideal observer (green), and both types of observers (yellow) at three critical stages of learning: the first three sessions;  the three sessions at the mid performance range (sessions 4 to 6 and 7 to 9, for F.L. and I.F., respectively); and the last three sessions.

Tables

Table 1. Column 2: Slopes of the best-fitted line on T2-performance. Columns 3 and 4:  The mean and the standard deviation of the simulated null distribution of T1-slopes (n=10,000) calculated from samples of 10 T1-trials. Column 5: The probability of observing the T2-slope given the simulated population.

	Participants
	T2-slope
	Parameters of the simulated T1-slopes null distribution 
	p T2-slope | T1-trials



	
	
	
[image: image1.wmf]
	S
	

	B.B.
	-0.06
	0.20
	0.42
	ns

	E.M.
	0.08
	0.27
	0.25
	ns

	F.L.
	-0.46
	0.12
	0.24
	< .0088

	I.F.
	-0.58
	0.21
	0.24
	< .0006


� Twenty-five experimental sessions is the least completed by an experimental participant.


� We fitted the following bilinear curve to the T1-performance data points:


y = b1x + a1


when x < x0, and 


y = a2


when x ( x0, where a2 is the learning asymptote.


� The CIs were smoothed using a Gaussian kernel with a standard deviation of 3.96 pixels and Z-scored prior to the Pixel tests.
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