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Which face cues are we using for gender discrimination?  Few studies have tried to answer this question and all of them 
suffer from poor external validity, using only a small set of grayscale stimuli, often distorted, and presented a large number 
of times.  Here, we reassessed the importance of facial cues for gender discrimination in a more realistic setting.  We ap-
plied Bubbles—a technique that minimizes bias toward specific facial features and does not necessitate the distortion of 
stimuli—to a set of 300 color photographs of Caucasian faces, each presented only once to 30 participants. Results show 
that the region of the eyes and the eyebrows—probably in the light-dark channel—is the most important facial cue for 
accurate gender discrimination; and that the mouth region is driving fast correct responses (but not fast incorrect re-
sponses)—the gender discrimination information in the mouth region is concentrated in the red-green color channel. To-
gether, these results suggests that, when color is informative in the mouth region, humans use it and respond rapidly; and, 
when itʼs not informative, they have to rely on the more robust but more sluggish luminance information in the eye-
eyebrow region. 
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Introduction 
Which face cues are we using for gender discrimina-

tion? Up until now, the small body of studies on this topic 
has highlighted the importance of the eyes, the eyebrows, 
the jaw and the face outline (e.g., Brown  & Perrett, 1993; 
Yamaguchi et al., 1995; Russell, 2003, 2005; Nestor & 
Tarr, 2008, submitted). Using Bubbles, Schyns, Bonnar and 
Gosselin (2002; see also Gosselin & Schyns, 2001) found 
that relatively coarse eye and mouth information (5.62-22.5 
cycles per face width for a face width subtending about 4 
cycles per degree of visual angle) were significantly corre-
lated with gender discrimination in humans. Relatedly, the 
distance between the brows and the upper eyelid was iden-
tified as the most reliable relational cue to gender in facial 
images (Campbell, Benson, Wallace, Doesbergh & Cole-
man, 1999; Burton, Bruce & Dench, 1993). Experiments 
investigating the role of pigmentation cues showed that 
human observers could rely on chromatic information—
mostly on the red-green axis—to categorize gender especially 
when minimal discriminative shape information were re-
vealed (Bruce & Langthon, 1994; Hill, Bruce & Akamatsu, 
1995; Tarr, Kersten, Cheng & Rossion, 2001; Tarr, Ros-

sion & Doerschner, 2002). The regions surrounding the 
eyes and the mouth were also found to be the most deter-
minant chromatically (Nestor & Tarr, submitted). 

All the studies cited above suffer from at least one of 
the following three major limitations that decrease their 
external validity. First, all of them—except Gosselin and 
Schyns (2001), Schyns et al. (2002), and Nestor & Tarr, 
2008—manipulated specific features and regions of the face 
with techniques such as morphing and caricaturing. These 
manipulations could have distorted the natural characteris-
tics of authentic faces. Moreover, selective manipulation of 
these features might have biased the results toward a lim-
ited sample of all the facial information available. Second, 
the face stimuli used in all of these studies—except the stud-
ies performed by Tarr and colleagues—were grayscale pic-
tures or they were controlled for different aspects (e.g., hair 
and ears removed, no makeup). In fact, the skin and hair 
reflectance properties of males and females differ (makeup 
only exaggerates these spectral dimorphism—Russell, 2003) 
and, as we have mentioned above, human observers can use 
these differences reliably. Third, all of these studies—except 
Nestor & Tarr, 2008—used a small set of faces that needed 
to be shown many times to each participant. This context is 
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likely to have promoted perceptual learning of the faces. 
Therefore, the results might reflect the peculiarities of the 
stimulus set rather than general characteristics of gender 
dimorphism. In fact, the repetition of the same face iden-
tity allows the subject to use a face identification strategy 
rather than a gender discrimination strategy. This may have 
artificially increased the role of eye region, a potent feature 
for face recognition (Sekuler, Gaspar, Gold, & Bennett, 
2004; Gosselin & Schyns, 2001; Schyns et al, 2002). 

Here, we reassess the importance of facial cues for gen-
der discrimination in a more realistic setting: We apply 
Bubbles—a technique that minimizes bias toward specific 
facial features and does not distort stimuli—to a set of 300 
color images of Caucasian faces that were presented only 
once to 30 participants. 

Methods 
Subjects 

Thirty students from the University of Montreal and 
McGill University were recruited to participate to the ex-
periment. All participants had normal, or corrected to 
normal vision. Informed consent was obtained before the 
beginning of the experiment and a monetary compensation 
was provided. 

Stimuli 
Stimuli were generated from 300 color images of Cau-

casian faces (150 females), chosen on Internet with the 
intent of ecological representativity. The only other charac-
teristics required for selection were a clear gender member-
ship, a neutral expression and a frontal view. Thus, no 
special attention was paid to lighting, file format, image 
size, age of depicted individual, etc.. Subsequent transfor-
mations applied on the images were also kept to a minimal. 
A series of rotations, scalings and translations were applied 
to the faces to minimize the square of the distance between 
handpicked landmarks around the eyes (four landmarks 
each), the eyebrows (two landmarks each), the nose (four 
landmarks) and the mouth (four landmarks); the average 
interpupil distance was 40 pixels (1.03 deg of visual angle). 
Note that these transformations are linear and therefore do 
not modify any relations between features. Six instances of 
the resulting face images are shown on Figure 1a.  

Stimuli were created by sampling the face images by 
presenting them behind an opaque mask punctured by an 
adjustable number of randomly located one-pixel holes 
(henceforth called ‘bubble mask’) and smoothed with a 
Gaussian kernel having a full-width half maximum of 9.42 
pixels (0.24 deg of visual angle). The result, illustrated in 
Figure 1c, is a partly revealed face on a mid-gray back-
ground. 

 

Figure 1. a) Three women and three men from our face data-
base; and the average of all 150 women and 150 men from our 
face database. b) A stimulus are generated by a overlaying an 
opaque gray mask punctured by a number of randomly located 
Gaussian apertures on a face. 

Apparatus 
The experimental programs were run on a Macintosh 

G4 in the Matlab environment, using functions from the 
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). All 
stimuli were presented on a Sony Trinitron monitor (1024 
x 768 pixels at a refresh rate of 85 Hz). We determined the 
relationship between RGB values and luminance levels 
(measured with a Samsung SyncMaster 753 df photometer) 
for each color channel independently; the three bestfitted 
“gamma” functions were used in the computation of image 
statistics. Participants were seated in a dim ambient-lighted 
room at a distance of approximately 75 cm from the com-
puter monitor. 

Procedure  
Each participant was submitted to 300 trials and, im-

portantly, each trial involved a different face. The presenta-
tion order of the 300 faces was randomized. In a given trial, 
one stimulus—a sparsely sampled face—appeared at the cen-
ter of computer monitor and remained there until the par-
ticipant had indicated the gender of the stimulus by press-
ing a labelled keyboard key. No feedback was provided. The 
number of bubbles per image was adjusted on a trial by trial 
basis to maintain performance at 75% correct using 
QUEST (Watson & Pelli, 1983). 

Results and discussion 
Participants used an average of 27.06 bubbles and re-

sponded correctly on 74.74% of the trials. The average 
response time was 1.63 sec. The correlation between re-
sponse time and accuracy was -0.1216 (p<0.001). There was 
a slight bias toward responding “man” (52.18% of the tri-
als, p<0.01) rather than “woman”. No difference was ob-
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served between female and male participants (51.58% and 
52.72%, ns). 

Linear Classification Image Analyses 
To uncover which facial cues led more often to 

accurate or faster correct gender discrimination, we 
performed three least-square multiple linear regressions: 
one between discrimination accuracies (predictive variable) 
and bubble masks (explanatory variable); another between 
quartiles of response time on correct trials and bubble 
masks1; and, a final one, between quartiles of response time 
on incorrect trials and bubble masks. The outcome of these 
regressions are three 128 by 128 planes of regression 
coefficients which are called classification images (Eckstein 
& Ahumada, 2002; Gosselin & Schyns, 2004). We 
summed classification images across participants and 
smoothed the resulting group classification images with a 
Gaussian kernel having a full-width half maximum of 16.48 
pixels. The statistical analysis was restricted to the area of 
the classification images that could contain face 
information; the complementary area, which was irrelevant 
to the task at hand, was used to estimate the mean and the 
standard deviation of the null distribution and to trans-
form the smooth classification images into Z-scores. Any 
significant positive local divergence from uniformity in our 
smooth group classification images would indicate that the 
corresponding part of the stimuli led to more accurate 
responses, faster correct responses, or faster incorrect 
responses. We therefore conducted one-tailed Pixel tests 
(Chauvin, Worsley, Schyns, Arguin & Gosselin, 2005) on 
the Z-scores smooth group classification images 
transformed into Z-scored (Sr = 3469; for accuracy: Zcrit = 
3.7 and Zmax = 6.48; for response time: Zcrit = 3.5 and Zmax = 
4.04; p < .05). The statistical threshold provided by this test 
corrects for multiple comparisons while taking the spatial 
correlation inherent to our technique into account. 

Figure 2 displays the average women (column 1) and 
men (column 2) overlaid with a contour-plot representation 
of the accuracy and correct response time classification 
images. Nothing reached statistical significance in the in-
correct response time classification image. The colored 
pixels enclosed by the dotted black lines are statistically 
significant: the region of the eyes and eyebrows lead to 
more accurate and faster correct gender discrimination; this 
eye-eyebrow region is wider and more bilateraly distributed 
in the correct response time classification image (row 1) 
than in the accuracy classification image (row 2); and facial 
cues leading to fast correct responses also included the 
mouth region as well as the space between the mouth and 
the nose. That the mouth is significantly correlated with 
correct response time but is correlated neither with 
incorrect response time, nor with accuracy might seem 
puzzling. Close examination of the data shows that the 
relatively few correct answers given when the mouth was 

 
 

revealed led to very short reaction time, which suggests that 
the mouth would become significantly correlated with 
accuracy if more data were collected. 

 

Figure 2. Displays the average men (column 2) and women 
(column 1) superimposed on a contour plot of classification im-
ages derived from accuracy (row 1) and response time (row 2). 
The colored pixels enclosed by the dotted black lines are statisti-
cally significant (p<.05). 

Beyond Linear Classifications Images 
The linear classification image analyses confirmed that 

the eye-eyebrow region contains the most important cues 
for gender discrimination. However, they do not allow to 
identify more precisely the nature of these reliable cues, at 
least more directly. For example, we could wonder if these 
cues are mostly red-green pigmentation cues, as proposed 
by Tarr and colleagues? It’s not so much a limit of the 
methodology than a limit of the search space we chose to 
explore—image location. In fact, Nestor and Tarr 
(submitted) have used classification images to probe the use 
of color directly during gender discrimination. On each 
one of 20,000 trials, color noise was added to the same 
androgynous morph and participants had to decide 
whether it looked more like a man or a woman. If we 
cannot address the color question directly, we can provide—
based on the 300 faces of our face set—image statistics 
about the discriminative color information that was 
available within the eye-eyebrow region. 
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Figure 3. Contour plots of the color maps superimposed to the 
average man (column 1) and woman (column 2). Dotted lines 
define clusters significantly correlated with accurate (white) and 
correct fast responses (black). The contour plot summarizes the 
spatial modulation of available information (d’s) in the dark-light 
(row 1), red-green channel (row 2) and yellow-blue (row 3) chan-
nels. The color-labelled lines of isovalued d’s correspond to 
percentile 95%, 85%, 75%, 25%, 15%, and 5%.  

We converted these face images to Lab color space 
because its channels represent perceptually relevant color 
opponent processes: L corresponds to the light-dark 
process, a to the red-green process, and b to the yellow-blue 
process. Then, we computed d’ on each pixel of the three 
Lab channels—we will call the resulting d’ planes color 
maps. This metric could be interpreted as the information 
available in a given pixel of a given color map to 
discriminate the gender. More specifically, a pixel’s d’ is the 
distance (in standard deviation units) between the mean of 
the distribution of this pixel’s value for male faces and the 
mean of the distribution of this pixel’s value for female 
faces. The three color maps are represented as contour 
plots in Figure 3. Color lines delimit isovalued d’ corre-
sponding to percentiles of 95%, 85%, and 75%. Warm 
colors were used for regions where men are lighter, redder 
or yellower than women; and cold colors for regions where 
men are darker, greener or bluer than women. To help 
with interpretation, the contour plots were placed over an 
image of the average men (column 1) and women (column 

2). Thick dotted lines were added to delineate the signifi-
cant regression coefficients found in the accuracy (white) 
and the correct response time classification images (black). 

The light-dark color map depicts the information that 
has been mainly investigated in the litterature so far. It 
shows the availability of prominent gender cues in the 
temporal side of the brows and the eyes, over the upper lip, 
and under the commissure of the chin and the lower lip 
(Russell, 2003, 2005). Note also the luminance information 
located on the face outline near the cheeks. On average, 
this channel has higher d’s than the other color channels 
(mean d’s: light-dark = 0.36, red-green = 0.27, yellow-blue = 
0.21). This set of informative features overlap substancially 
with the features found in the accuracy and correct 
response time classification images. The most informative 
pixels in the red-green color map—the second most 
informative color channel—are localized on the lips but are 
also distributed on the maxilla region and near the chin-
lower lip commissure. The upper lip is a feature also found 
in the correct response time classification image. In 
comparison, the yellow-blue channel contains less 
information allowing to distinguish males from females. 
The most informative yellow-blue cues are clustered on the 
temporal sclera, on the nasal side of the brows and on the 
outer portion of the hair. None of these features is found 
in the classification images. 

 
 Eyes Brows Eyelids Eyes, 

brows and 
eyelids 

Observed 
Accuracy 

0.7216 0.7329 0.6897 0.7626 

Predicted 
accuracy 

0.6082 0.7471 0.6612 0.8216 

N 194 87 307 269 

Table 1. The first row shows the mean accuracy observed when 
areas are revealed separately (columns 1-3) and together (col-
umn 4). The second row indicates the average accuracy pre-
dicted from linear regression. The last row displays the number 
of trials that were used to compute these statistics. 

Another cue that has already been targeted as the one 
of the most discriminative information for gender 
categorisation is the eyelid-brow distance (Burton, Bruce & 
Dench, 1993; Campbell et al., 1999), i.e. the distance 
between the center of the upper eyelid and the center of 
the bottom part of the eyebrow. If the participants used this 
cue they needed, in order to us it, to see part of the eye, the 
eyelid and the brow together. Therefore, the performance 
observed in the trials in which these regions were presented 
together (see Table 1, first row) should be higher than the 
performance predicted by the linear combination of these 
regions presented individually with the appropriate weights 
from the accuracy classification image (see Table 1, second 
row).  

In fact, predictions made from the accuracy linear 
regression explains the observed the performance observed 
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when the eye, the eyelid and the brow are seen together. 
Moreover, image statistics computed on the 300 faces from 
our database indicate that this relational cue provide little 
discriminative information: the d’ of the eye-eyelids 
distance—measured from handpicked landmarks—is 0.91. 
In sum, these results do not support the use of the eyelid-
brow distance in our experiment. Further analyses would 
be required to assess the use of other distance cues. How-
ever, Nestor and Tarr (2008) performed a similar analysis 
on all pairwise conjunctions between the forehead, the 
eyes, the ears, the upper and lower part of the nose, the 
cheeks, the mouth, and the chin, and failed to found evi-
dence for nonlinear use of information during their gender 
discrimination task. 

Conclusion 
Which face cues are we using for gender 

discrimination? All studies that have previously attempted 
to answer this question suffered from poor external 
validity. They typically manipulated specific features and 
regions of the face with techniques such as morphing and 
caricaturing. These manipulations probably altered the 
natural characteristics of faces, and biased the results. We 
sampled unaltered face photographs with minimum bias by 
presenting them behind mid-gray opaque masks punctured 
by a number of randomly located Gaussian apertures. 
Furthermore, the face stimuli that have been used typically 
in gender discrimination experiments are grayscale 
photographs, normalized and controlled for different 
aspects. Our results can be considered as more 
representative of genuine gender discrimination because 
our face stimuli were real-life colour photographs and, 
therefore, were not (artificially) controlled for luminance, 
chrominance, background, hair and makeup. Previous 
studies on facial gender discrimination cues used a small set 
of faces that needed to be shown many times to each 
participant; therefore, the results might reflect the 
peculiarities of small stimulus sets overlearned by 
participants rather than general characteristics of gender 
dimorphism. We used a set of 300 face photographs that 
were presented only once to each one of our 30 
participants. 

To uncover which facial cues led more often to 
accurate or faster correct gender discrimination, we 
performed three classification image analyses: on 
accuracies, on correct response times, and on incorrect 
response times. The accuracy classification image 
confirmed that the eye-eyebrow region is the most 
important cue for gender discrimination (e.g., Brown  & 
Perrett, 1993; Yamaguchi et al., 1995; Schyns, Bonnar & 
Gosselin, 2002). Linear predictions made on a sub-set of 
our trials showed that participants did not use the eyelid-
brow distance information, a distance cue that Burton, 
Bruce and Dench (1993) and to Campbell et al. (1999) 
stated was one of the most reliable for gender 

discrimination. In fact, we discovered that the eyelid-brow 
distance has a small signal-to-noise ratio for gender 
discrimination. 

Image statistics computed on the Lab channels showed 
that the highly discriminative information contained in the 
eye-eyebrow area is mostly concentrated in the light-dark 
channel. This suggests that humans discriminate face 
gender based on a linear combination of luminance cues 
within the eye-eyebrow region.  There is no inconsistency 
between our results and Tarr and colleagues’ results about 
the important role of color in face gender discrimination 
(Tarr, Kersten, Cheng & Rossion, 2001; Tarr, Rossion & 
Doerschner, 2002; Nestor & Tarr, 2008, submitted). They 
showed that participants relied on pigmentation cues 
(especially from the red-green channel) when minimal or 
no luminance information is available. Similarly, Yip and 
Sinha (2002) showed that color cues play a role in face 
identification when shape attributes are degraded. Yip and 
Sinha proposed that the contribution of color may lie not 
so much in providing diagnostic cues to identity as in ai-
ding low-level image-analysis processes such as segmenta-
tion; and the same could be proposed about face gender 
discrimination. 

This being said, the incorrect and correct response time 
classification images suggest a more ubiquitous role for 
color in face gender discrimination. The mouth region is 
significantly correlated with correct fast responses (but not 
with incorrect fast responses) and the most discriminative 
information in the mouth region is concentrated in the 
red-green channel. This suggests that humans do use 
chromatic cues for discriminating face gender: When it’s 
informative, they use it and respond rapidly (for evidence 
that color is perceived faster than shape, see Moutoussis 
and Zeki 1997a; 1997b; Holcombe & Cavanagh, 2001); 
when it’s not, they have to rely on the more robust and 
more sluggish luminance cues. The infero-temporal cortex, 
which is involved in both face perception and color 
perception (Clark et al., 1997; Edwards, Xiao, Keysers, 
Foldiak & Perrett, 2003), provides the ideal locus for such a 
dual strategy. 
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Footnotes 
1For the regression on accuracy, we subtracted the 

mean of the bubble masks that led to an incorrect response 
from the mean of the bubbles masks that led to a correct 
response. And, for the regression on response time, we 
summed 1.5 times the mean of the bubble masks that led 
to a correct response and to a response time in the fastest 
quartile, 0.5 times the mean of the bubble masks that led to 
a correct response and to a response time in the second 
quartile, -0.5 times the mean of the bubble masks that led 
to a correct response and to a response time in the third 
quartile, and -1.5 times the mean of the bubble masks that 
led to a correct response and to a response time in the 
slowest quartile. Prior to these computations, every bubble 
mask was divided by the number of one-pixel holes it con-
tained to give equal weight to all bubble masks. 
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