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Classification images reveal the information sensitivity
of brain voxels in fMRI
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Reverse correlation methods have been widely used in neuroscience for
many years and have recently been applied to study the sensitivity of
human brain signals (EEG, MEG) to complex visual stimuli. Here we
employ one such method, Bubbles (Gosselin, F., Schyns, P.G., 2001.
Bubbles: A technique to reveal the use of information in recognition
tasks. Vis. Res. 41, 2261–2271), in conjunction with fMRI in the
context of a 3AFC facial expression categorization task. We highlight
the regions of the brain showing significant sensitivity with respect to
the critical visual information required to perform the categorization
judgments. Moreover, we reveal the actual subset of visual information
which modulates BOLD sensitivity within each such brain region.
Finally, we show the potential which lies within analyzing brain
function in terms of the information states of different brain regions.
Thus, we can now analyse human brain function in terms of the
specific visual information different brain regions process.
© 2008 Elsevier Inc. All rights reserved.

The use of reverse correlation methods in neuroscience, and in
neurophysiology in particular, has a long history (see Ringach and
Shapley, 2004). Recently similar methods have been applied by
researchers studying high-level vision in humans and non-human
primates (Adolphs et al., 2005; Gosselin and Schyns, 2001; Sekuler
et al., 2004; Smith et al., 2004; Neilsen et al., 2006, Neilsen and
Rainer, 2007). The great asset of these methods is that they provide a
fine grained representation of the stimulus information which is
optimal for some response function: for example, for a behavioural
decision or that which tunes a given population of neurons. On
each trial of an experiment observers are presented with randomly
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distorted stimulus information while the experimenter measures a
given dependent variable such as the correct performance of an
observer, or the amplitude of a brain signal. The given dependent
variable is then reverse correlated with the stimulus information
presented on each trial. Reverse correlation methods can depict the
information subspace that was most effective for a given brain
region (or a certain behaviour). This contrasts with the more
common forward correlation methods that detect brain regions (or
behaviour) correlating with significant variation of the inputs (e.g.
different object categories).

Recently, a particular instantiation of reverse correlationmethods
(i.e. Bubbles) has been applied to the analysis of human brain signals
such as EEG (Smith et al., 2004, 2006, 2007a; Schyns et al., 2003,
2007) and MEG (Smith et al., 2007b). Bubbles is an information
sampling technique that presents sparse samples of stimulus infor-
mation to an observer-for example, the image is randomly sampled
through Gaussian apertures either in the 2D image plane or in a 3D
space encompassing both the image plane plus spatial frequency
bands (see Fig. 1, and Gosselin and Schyns, 2001). By reverse
correlating observers’ performance with the information samples
Bubbles determines the information subspace that is diagnostic for a
particular behavioural decision. Analagously, by reverse correlating
a brain signal to the information samples Bubbles determines the
information subspace modulating that brain signal. For example,
Smith et al. (2004) have shown, that it is possible to characterise the
evolution of brain sensitivity to face information over the time
course of the N170 (eye sensitive stage) and P300 (task sensitive
stage) ERP components and further have found that different
diagnostic portions of the spatial frequency spectrum correlate with
different EEG temporal frequency bands in stimulus perception
(Smith et al., 2006). The method has also been used to demonstrate
that the N170 integrates visual information from the eyes of a face
downwards, terminating when the diagnostic feature relevant to the
current judgment is reached (Schyns et al., 2007).
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Fig. 1. Examples of original (first row) and sparse stimuli used (second row),
and (bottom two rows) behavioural classification images (thresholded and
mulitplied with an appropriate original stimulus image) revealing the
diagnostic visual information required by each observer (rows) for each
expression (columns).
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Building on these lines of research, we sought to apply Bubbles
to the analysis of fMRI data. Standard methods of fMRI data
analysis involve the contrast of activation patterns obtained from a
small number of experimental conditions of interest, relying essen-
tially on a subtractive method. Such methods do not have much
power to resolve questions regarding the fine-grained response
properties of given voxels in the human brain, beyond a basic
correlation of a given voxel with a given experimental condition.
More recent analysis methods (e.g. Kamitani and Tong, 2005;
Haynes and Rees., 2005; Haxby et al., 2001; Kriegeskorte et al.,
2006) have shown that it is possible to find reliable brain sensitivity
to specific types of information (e.g. visual category, orientation)
that is distributed weakly across many voxels, when the approach is
multivariate. Hence this kind of sensitivity is not evident from
standard, univariate, methods of analysis.

The Bubbles method, like the newer multivariate techniques,
goes beyond standard methods of fMRI data analysis. The power
of Bubbles, however, is to provide a fine-grained description (2D
image) of the response properties of each individual voxel (these can
be summed across a collection of voxels to represent a region of the
brain) with respect to the visual information contained in complex
stimuli (hence it is univariate in the present implementation).
That is, in terms of describing what features of some (reasonably
complex) input stimulus (such as a face) correlate with modulations
of signal amplitudes at each specific voxel (i.e. to find the “optimal”
stimulus for each voxel relative to the given task). Thus, for instance,
we might expect a set of brain regions to highly correlate with the
presentation of the eyes when participants make fearful judgments to
faces (i.e. the diagnostic information), whereas to the mouth when
participants make happy judgments (e.g. Smith et al., 2005; Adolphs
et al., 2005; Schyns et al., 2007).

It is unclear from work using standard subtractive methods what
the regions usually activated in such expression categorisation tasks
actually do, in terms of the face information they are sensitive to.
Hence the potential of Bubbles is to provide such a characterisation,
an important step to depict the brain as an information processing
system (Smith et al., 2007a,b).

Our observers performed a 3AFC expressions categorization
task where they had to decide whether each sparsely sampled face
(see Fig. 1 and Methods) was a happy, fearful or neutral face. We
concurrently measured the fMRI BOLD signal elicited. We reverse
correlated BOLD amplitudes to information samples, after appro-
priate preprocessing, to reveal the ‘information states’ of each voxel
in the brain. That is, to reveal the facial information modulating each
voxel across different emotional expressions.

Methods

Stimuli

Original face stimuli were gray-scale images of five females and
five males taken under standardized illumination, each displaying
three facial expressions (happy, fearful, neutral). All 30 stimuli
(normalized for the location of the nose and mouth) complied with
the Facial Action Coding System (FACS; Ekman and Friesen,
1978), and form part of the California Facial Expressions (CAFE)
database (Dailey et al., 2001).

Participants

Two adult subjects (ETS and EGA) with normal (or corrected to
normal) vision participated in the study. Both gave informed consent
prior to taking part in the experiment. The procedure of the experi-
ment was approved by the local ethics committee in Frankfurt.

Imaging Methods

Participants performed multiple runs of the present experiment
(ETS— 20; EGA— 12), with between four and six runs collected in
each scanning session. Different scanning sessions were performed
on different days. During each functional run, we acquired 572 EPI
image volumes (17 slices, 3 Tesla Siemens Allegra and Trio,
TR=1000 ms, TE=30 ms, FA=62, 3.1×3.1×4 mm, PACE motion
correction, PSF distortion correction (Zeng and Constable, 2002;
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Zaitsev et al., 2004)) resulting in 11,440 EPI image volumes for ETS
and 6,864 for EGA. In addition we acquired a high resolution 3D
anatomical reference scan (magnetization-prepared rapid acquisi-
tion gradient echo MPRAGE sequence, TR, 2000 ms; TE, 4.38 ms;
FA, 15°; FOV, 240; voxel size, 1×1×1 mm3) for the first scanning
session and lower resolution reference scans (3D MPRAGE, TR,
1240 ms; TE, 2.6 ms; voxel size, 1×1×2 mm3) in some of the
subsequent scanning sessions, which were later aligned to the first
high resolution reference scan. MR Imaging was performed at the
Brain Imaging Center in Frankfurt (BIC-Frankfurt).

Experimental Paradigm

Prior to the experimental runs in the scanner, participants had to
achieve a criterion level (95%) of performance in expression
classification of the original face images used in the experiment.
Participants performed multiple runs of the main experiment,
where each run consisted of 138 trials. We discarded the first three
trials from each run in order to compensate for signal stabilisation.
We further controlled the assignment of expression to trials for a
history of two previous trials. Within each run each expression was
repeated 45 times (excluding the first three trials) across 10
identities, with the repetition of each identity for each expression
counterbalanced across couplets of runs. On each trial participants
were presented with a sparse version of one face (see Fig. 1, visual
angle of approximately 7 by 4.5 degrees), which we generated by
randomly sampling the 2D image space with Gaussian apertures
(sigma=0.28 degrees of visual angle), using the Bubbles technique
(Gosselin and Schyns, 2001). A different but constant number of
apertures were used for each expression based on pilot work, with
different participants, estimating the number required to keep
participants at 75% correct for each expression (17, 29 and 34, for
happy, fear and neutral respectively). Note that we only include the
neutral condition in order to obtain a reasonable level of task
complexity: if we only include happy and fear we risk observers being
able to determine the expression category solely on the basis of one
feature (such as the presence or absence of the wide open mouth) and
hence not process important information for the other category (i.e.
the eyes in fear). Including the neutral condition lessens the chance of
observers adopting such a strategy. As such, the fMRI data of the
neutral condition is not analysed in the present paper.

Participants had to judge the expression of the sparse stimulus
(happy, fearful or neutral) by pressing the appropriate response key.
A fixation marker (a small black and white checkerboard, 0.1X0.1
degrees) remained on the centre of the screen throughout all trials
in each run. After the first 400 ms of each trial (fixation), a sparse
stimulus appeared for 400 ms. There was then a response interval
of 3200 ms. Participants were required to maintain fixation on the
checkerboard throughout each run in order to decrease the chance
of any eye movements affecting the data.

Classification Image Analysis (1) — behaviour

On each trial of the expression categorization task, the randomly
located Gaussian apertures make up a two-dimensional mask (the
bubble mask) that reveals a sparse face. Observers will tend to be
correct when this sampled information is diagnostic for the
categorization of the considered expression. To identify the image
features used for each facial expression categorization, the
probability of being correct was computed per pixel. We compute
this by summing together all the bubble masks leading to correct
categorizations, for a given expression, and dividing the result by the
sum of all bubble masks shown (for correct and incorrect
categorizations) for that expression. This is analogous to performing
a least-square multiple regression. These probabilities were then
transformed into Z-scores and thresholded to locate the statistically
significant regions (pb .05, Cluster Test, Chauvin et al., 2006)
corresponding to the features used to accurately perform the
categorization of each expression. If multiplied with the original
face image the thresholded Z-score maps (see Fig. 1) reveal the
essential information necessary for performing the categorization
correctly: we refer to such information as the diagnostic information.

Classification Image Analysis (2) — brain

The following steps were carried out independently for each
observer. Functional data for each run of the experiment were slice
time corrected, corrected for 3Dmotion, temporally filtered (high pass
filtered at 0.01 Hz, and linearly detrended), and finally spatially
normalised into the Talairach space with Brain Voyager QX (Brain
Innovation, Maastricht, The Netherlands). Further analysis was
carried out in Matlab (Mathworks, Massachusetts, US). For every
trial, for each voxel and run, we select out the BOLD amplitude value
at a relatively early time point where we expected the haemodynamic
response function to capture valuable information, which here we
took at 4 s post-stimulus onset. We chose this delay after preliminary
analyses, similar to those which we report below, demonstrated that
good visual information sensitivity was found here. We then Z-scored
the selected BOLDdata independently for each voxelwithin each run.

For each voxel, independently for each expression, we define the
classification image as the sum of all the bubble masks leading to
greater than that voxel’s median BOLD amplitude, minus the sum of
all the bubble masks leading to less than that voxel’s median BOLD
amplitude (see Fig. 2). Thus we have one classification image per
voxel, per expression and per observer. The classification image
describes what visual information modulates BOLD activity for a
given voxel, expression and observer.

Diagnostic Information Sensitivity

Wemeasure the diagnostic information sensitivity of each voxel,
for a given expression and observer, by Pearson-correlating the raw
classification image (i.e. unthresholded) obtained for each voxel
with a diagnostic template (thresholded, liberally at zN1.96) ob-
tained from behaviour (see Figs. 1 and 2). This allows us to produce
an r-map of the brain where high values indicate regions which are
highly sensitive (i.e. have higher BOLD signal) to the information
required to perform the task. Note that we correlate both a mouth
(diagnostic template for happy) and an eyes (diagnostic template for
fear) template with the voxel-based classification images for each
expression independently. This allows us to separate out brain
regions which are sensitive to diagnostic information from those
sensitive to specific visual features across the expressions. Thus we
obtain four r-maps for each observer, consisting of both a mouth
(diagnostic for happy; non-diagnostic for fear) and an eyes
(diagnostic for fear; non-diagnostic for happy) sensitivity map for
each expression (happy and fear) analysed.

Significance of r-maps

We need to devise a method which will allow us to infer which
voxels, in a given r-map, display a non-chance relationship (r-value)



Fig. 2. Flow diagram indicating the main stages of fMRI data analysis. For a given observer, expression and voxel, we sort the bubble masks into two sums, those
associated with greater and those associated with less than median BOLD amplitude. We form the voxel-based classification image as the difference of these two
image sums. We then correlate all the voxel-based classification images, for a given expression and observer, with both a mouth (diagnostic for happy) and an
eyes (diagnostic for fear) feature template, resulting in a mouth and an eyes r-map for that specific expression and observer.
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with the relevant template. In order to assess the significance of the r-
values in our r-maps, we perform a randomisation test where we
create a series of null distributions, one per voxel, independently for
each expression, observer and template (note we have an
independent set of classification images for each expression and
observer). To create one such series, we randomly permute the
mapping of BOLD amplitudes to bubble masks 999 times, while
each time using the given mapping to create a classification image
for each voxel (this preserves within each randommapping the inter-
correlational structure of the real BOLD data). We correlate, on each
mapping, each voxel’s classification image with the relevant
template to obtain the set of r-values for that mapping. The null
distribution for any voxel is simply the distribution of r-values which
we obtain for that voxel across the 999 randommappings. The (one-
sided) p value for a given voxel is simply the probability of
observing the actual r-value (or greater) in the null distribution (we
compute it as the number of times a value equal to, or greater than the
Table 1
Regions showing significant information sensitivity for each combination of obse

Observer Expression Template Region

ETS Happy D (mouth) Anterior cingula

Posterior cingul
Middle tempora
Inferior occipita

ETS Happy AD (eyes) Nil
ETS Fear D (eyes) Superior frontal
ETS Fear AD (mouth) Lingual gyrus

Cuneus
Parahippocampa

EGA Happy D (mouth) Insula
Precuneus

EGA Happy AD (eyes) Nil
EGA Fear D (eyes) Nil
EGA Fear AD (mouth) Nil

p-maps were thresholded at pb=.05 voxel wise and further cluster size thresholde
D=diagnostic template, AD=anti-diagnostic template.
actual r occurs in the null distribution, as our hypothesis is one
sided). Thus we obtain a p-map for each expression, template and
observer. Finally, in order to correct for multiple comparisons, we set
a cluster level threshold (see Goebel et al., 2006; Forman et al., 1995)
for each p-map independently, based on keeping the probability of
observing a false positive cluster at 0.05 (voxel-wise p values are
first thresholded at pb=0.05 in this procedure).

Information States of Brain Regions

In addition to discovering where significant information
sensitivity is present across the brain, we also want to be able
to describe the specific visual information each sensitive region is
maximally modulated by. To describe the information state of a
whole brain region, i.e. a cluster of voxels displaying significant
information sensitivity (such as left Anterior Cingulate or right
Fusiform Gyrus) for a particular observer, expression and
rver, expression and feature template

Laterality TAL Cluster size

te Left −4 42 5 645
Right 7 36 8 384

ate Right 3 −59 17 303
l gyrus Right 41 −64 28 412
l gyrus Left −10 −92 −7 490

gyrus Left −23 41 39 340
Right 17 −89 −4 506
Left −4 −72 21 313

l gyrus Left −16 −30 −3 308

Right 44 −2 12 328
Right 13 −57 19 400

d to ensure the probability of observing a false positive cluster was b=.05.
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template, we sum together all the voxel-based classification
images (across voxels) within that region for the given observer
and expression, and threshold the resulting image at z N=1.96 to
reveal the visual information which modulates activity within this
region.
Fig. 3. Regions displaying significant diagnostic information sensitivity on happy t
feature; excluding right anterior cingulate, first row) and the visual information e
significant sensitivity to the mouth (diagnostic feature; first row) and the visual in
Reverse Analysis

In order to corroborate our analysis we performed a reverse
analysis: independently for each observer, we ran a GLM with four
regressors. Each regressor represented, for a given expression, the
rials. (A) Regions displaying significant sensitivity to the mouth (diagnostic
ach region is responding to (second row) for ETS. (B) Regions displaying
formation each region is responding to (second row) for EGA.



Fig. 4. Regions displaying significant sensitivity on fear trials for observer ETS. The first column shows the brain region significantly sensitive to the eyes
(diagnostic feature; upper row) along with the visual information this region responds to (lower row) while the remaining columns show those brain regions
significantly sensitive to the mouth (non-diagnostic feature; upper row) and the visual information each region is responding to.
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correlation between each bubble mask shown, and a given feature
template (i.e. mouth or eyes; two expressions× two features=4
regressors). This allows us to search for voxels displaying a sig-
nificant relation between BOLD amplitude and the amount of
visual feature (mouth or eye) information revealed. We performed
this analysis first of all using a HRF sample point of 4 s post-
stimulus (for comparability to our forward analysis). Due to the
relative ease with which such an analysis can be run in comparison
with our forward analysis, we also ran the analysis sampling the
HRF every second between 2 and 8 s post stimulus for a richer
representation of the underlying effects.
Results and discussion

We show, in Fig. 1, the visual information which each
participant required to correctly classify the sparse faces for each
expression (note we do not analyse the neutral condition in what
follows). Replicating previous work, we find that the eyes are
especially important for correct classification of fear whereas the
mouth is important for correct classification of happy faces (e.g.
Smith et al., 2005; Adolphs et al., 2005; Schyns et al., 2003).
Independently for each observer and expression, we Pearson-
correlated their voxel-based classification images with both an eye
(diagnostic for fear) and a mouth (diagnostic for happy) feature
template (see Methods, Diagnostic Information Sensitivity).
Significant regions (voxel wise pb=.05, cluster level pb=.05,
cluster size of 300 voxels) of information sensitivity for
each combination of expression, feature template, and observer
are reported in Table 1.
Regions of Brain Sensitivity to Diagnostic Information

Fig. 3A shows the brain regions, for observer ETS on happy
trials, responding significantly to diagnostic information (the
mouth) alongside the face information each region is sensitive to.
We find significant sensitivity in the anterior cingulate bilaterally
and in right posterior cingulate. These regions are known to be
important in the processing of facial emotion (e.g. Bush et al.,
2000; Britton et al., 2006 — anterior; Winston et al., 2003a —

anterior and posterior). In addition, we find significant sensitivity
in both the right middle temporal gyrus and in left inferior occipital
gyrus, both of which are areas important in face perception (Haxby
et al., 2000) and have been found active in facial expression tasks,
albeit for different expressions than happy (e.g. Fitzgerald et al.,
2005). Fig. 3A also shows the face information each of these
regions is maximally sensitive to: thus we can ascribe specific
information content to the processing of each of these regions. We
are the first to demonstrate that this putative network of regions
important in emotion recognition is highly sensitive to the face
information needed for correct behavioural performance (note that
no significant sensitivity to the eyes is found anywhere in the brain
on happy trials).

Turning now to the same condition for observer EGA (see Fig.
3B), we find two different regions showing significant sensitivity:



Fig. 5. Comparison of forward (Bubbles) and reverse (GLM) analysis methods. (A) Comparison of the two methods for diagnostic (mouth) information on happy
trials (Bubbles-blue; GLM-green). (B) Comparison of the two methods for diagnostic (eyes) information on fear trials (Bubbles— red; GLM— yellow). Note
that we use a different threshold for each method (Bubbles tN1.5; GLM tN1.8) reflecting the relative power of each method to detect significant regions.
AC=Anterior Cingulate; MTG=Middle Temporal Gyrus; SFG=Superior Frontal Gyrus.
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right insula and right parietal cortex (precuneus). The insula is
another structure that has been found to be important in expression
tasks (e.g. Winston et al., 2003a; Britton et al., 2006; Adolphs, 2002)
while precuneus activation has also been reported (e.g. Wang et al.,
2004; Habel et al., 2005, with respect to induction of sad emotions).
We defer a comparison of the brain regions showing sensitivity across
our two observers to a later section (see Reverse Analysis and
Supplementary Tables 1 and 2).

Fig. 4 shows the significantly sensitive (voxel-wise pb=.05;
cluster threshold pb=.05) regions to both diagnostic (eyes) and non-
diagnostic (mouth) information for observer ETS on fearful trials
(nothing significant at these thresholds for EGA, most likely due to
the smaller number of trials collected for this participant). The only
region sensitive to the diagnostic information is the superior frontal
gyrus whereas we find that the lingual gyrus, cuneus and para-
hippocampal gyrus are all sensitive to the mouth. More specifically,
it seems that the latter regions are responding to a conjunction of eye
and mouth information on fear trials. All these regions have been
implicated in facial expression processing (e.g. Fitzgerald et al.,
2005; Fu et al., 2007).
If we examine which regions are sensitive on fearful trials
for observer ETS, under the liberal threshold (see Supplementary
Table 1; see Supplementary Table 2 for EGA under a liberal
threshold), we find reliable fusiform gyrus sensitivity to both the
eyes and the mouth. This is consistent with previous reports of
enhanced rFFA (right Fusiform Face Area; see Kanwisher and
Yovel., 2006) activation to fearful faces (e.g. Vuilleumier et al.,
2003; Winston et al., 2003b; Fitzgerald et al., 2005). This contrasts
with the pattern observed on happy trials, where there is no evidence
of rFFA sensitivity whatsoever. It might seem, moreover, somewhat
surprising that we find no reliable amygdala sensitivity on fearful
trials, for either observer (even under the more liberal threshold)
given the wealth of evidence highlighting the connection between
amygdala activity and fearful faces (e.g. Whalen et al., 2004;
Vuilleumier et al., 2003; Morris et al., 1996). It is important to
realise, however, that our scanning protocol was not optimised for
targeting this region: we sought to optimise the signal originating
from the occipito-temporal areas.

Thus, in summary, we have shown that the Bubbles method can
be used with fMRI to localise sensitive brain regions, in theoretically



Fig. 6. Comparison of ETS and EGA for an HRF sample point of 4 s post-stimulus (GLM). (A) Areas observed sensitive for EGA to the diagnostic feature for
each expression (happy—green; fear—yellow). (B) Areas observed sensitive for ETS to the diagnostic feature for each expression (happy—green; fear—
yellow). Note we use a different threshold for the two observers (EGA tN1.5; ETS tN1.8) reflecting the fact that there are different numbers of trials per observer.
STS=Superior Temporal Sulcus; AC=Anterior Cingulate; C/PrC/PC=Region including cuneus, pre-cuneus bordering posterior cingulate.
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meaningful brain areas, and to depict the visual information pro-
cessing strategies of each such region.
Reverse (GLM) Analysis

In order to corroborate the results obtained with the Bubbles
approach, we also performed a reverse analysis (see Methods).1 As
opposed to sorting bubble masks as a function of BOLD amplitude,
deriving a classification image and correlating this with feature
templates (as one does in the forward analysis) we here assign each
trial a continuous value which measures the extent to which the
bubble mask for that trial is a good representation of either the eyes
or the mouth (different regressors), independently for each expres-
sion (four regressors in total). This allows us to search for brain
1 We are most grateful to an anonymous reviewer for pointing out the
feasibility of such an approach.
regions displaying a strong relation between BOLD amplitude and
the presence of an important visual feature (i.e. the eyes or the
mouth) by using a standard GLM.

We present, in Fig. 5, a comparison of the two methods of
analysis for an HRF sample point of 4 s (for observer ETS): we
observe a good degree of agreement for each expression. Note the
clear agreement, for diagnostic happy, in bilateral anterior cingulate
and right middle temporal gyrus (good agreement is also present
for posterior cingulate and inferior occipital gyrus though harder to
visualise on the flatmap projection), and for diagnostic fear, in the
superior frontal gyrus (left). Thus we have corroborated our main
results by two different approaches. The results for the second
observer (not shown) are comparable.

In addition to corroborating our main results with two different
methods, we present in Fig. 6, a (whole-brain) comparison between
our two observers for a HRF sample point of 4 s (note we set
different thresholds per observer due to the different number of trials
collected). We observe an overlap in sensitivity in three main
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regions: bilateral anterior cingulate, right superior temporal sulcus
(around Middle Temporal Gyrus), and a region around cuneus / pre-
cuneus bordering posterior cingulate. Given the different number of
trials obtained for each observer we believe the agreement seen is
reasonable. Thus thewhole-brain projection, at offset thresholds, has
shown that there are several regions of consistent sensitivity across
observers.

Furthermore, due to the relative ease of performing the GLM,
we were able to run this analysis over a series of HRF sample
points. We show the results of such an analysis in Fig. 7A. Note the
gradual emergence and disappearance of strong bilateral activity
around the middle temporal gyri, and the region encompassing the
Fig. 7. Diagnostic information sensitivity as a function of HRF sample point (obse
expression (happy—green; fear—yellow—both tN1.8) across a range of HRF sam
ROIs for each expression (happy: left anterior cingulate, right middle temporal g
(tN1.99, cluster threshold of 300 voxels) at a HRF sample point of 4 s post-stim
brain areas as shown in (A) and (B). MTG=Middle Temporal Gyrus; C/PrC/PC=
cuneus / precuneus bordering posterior cingulate, at a time frame
of 3 to 7 s post-stimulus. We observe this pattern more strongly for
diagnostic happy than diagnostic fear but it seems to be present in
both cases. Note, in addition, the strong activity in the anterior
cingulate region for diagnostic happy (this is only observed
fleetingly for fear). Thus, we can be confident of the important role
these regions play in the present task.

In Fig. 7B, we also present a time course analysis for several
ROIs defined significant at an HRF sample point of 4 s. These plots
clearly show the relevant areas responding selectively to either
diagnostic happy (left anterior cingulate; right middle temporal
gyrus) or diagnostic fear (left superior frontal gyrus). Thus it seems
rver ETS). (A) Flatmap projection of the sensitive diagnostic areas for each
ple points for observer ETS. (B) Time course of beta weights for selected

yrus; fear: left superior frontal gyrus). The ROIs are defined as significant
ulus. (C) The diagnostic information for each expression modulating the
Region including cuneus, pre-cuneus bordering posterior cingulate.



Fig. 8. Hierarchical cluster analysis (single linkage algorithm using correlation distance metric) of the regions displaying diagnostic information sensitivity for
ETS on happy trials (pb .1 voxel wise, arbitrary cluster threshold of 300 voxels, Bubbles analysis). Each row represents a different cluster of brain regions, with
the second image in each row representing the cluster centroid of the given cluster (the first image is the thresholded version of the given centroid). The right hand
side of each cluster shows the classification images for each different region assigned to that cluster.

2 The probability, assuming independence of all selected brain regions,
would be 0.2^8. Note that the same pattern (each pair of bilateral structures
being grouped together in the same cluster) is evident for all cluster sizes
ranging from 2 to 6, and that for cluster sizes of 7 to 9, the same three out of
four of the bilateral structures are grouped together. Thus the ability to
classify bilateral structures in terms of the visual information they are
modulated by is non-chance.
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that the highlighted regions do show selective sensitivity for the
diagnostic feature of one given expression.

Information of Sensitive Brain Regions

We now highlight the potential which lies in directly analysing
the actual visual information that modulates each sensitive brain
region, for a given observer, expression and template. Fig. 8 shows,
on the right hand side, the classification images for all brain regions
sensitive to diagnostic information (at a liberal threshold there are 18
such regions) for observer ETS on happy trials (defined from the
Bubbles analysis method). We have picked out this combination of
observer, expression and template for the purposes of providing a
demonstration. Although there may not seem to be large differences
in visual information use across these 18 regions, there are certainly
subtle differences in the use of information, especially as concerns
themouth. It can clearly be seen that the similarity of information use
between related brain areas, in particular between the left and right
anterior cingulate (Fig. 8, fourth row) and the left and right lingual
gyrus (Fig. 8, first row) is high. We formalised these notions by
performing a cluster analysis on the classification images shown on
the right hand side in Fig. 8. The images are in fact shown organised
by clusters in Fig. 8, where each row represents a different cluster,
with the cluster centroid presented second from the left hand side. It
is clear that on all possible occasions where bilateral sensitivity was
evident those bilateral structures are grouped together by the cluster
analysis. The probability of observing this pattern by chance for each
pair of bilateral structures is low.2 Thus our method may provide a
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way to identify candidate networks of brain regions solely in terms
of the stimulus information they are maximally responsive to.

General discussion

In summary, we have mapped out the information sensitivity of
the brain for the categorization of two emotions, happy and fearful,
and two observers, depicting the brain regions which are
significantly modulated by the diagnostic (and non-diagnostic)
information for each categorisation. In addition, we have shown the
‘information state’ of each such brain region: that is, the visual
information in a face which modulates the activity of the given
region. Furthermore we have corroborated our results by performing
a reverse (GLM) analysis and extended that analysis to range across
different HRF sample points. Finally, we have shown the potential of
analysing the function of a set of brain regions in terms of the visual
information they process. We now turn to comment upon some
specific aspects of our methodology.

We contrasted two complementary methods of analysis in the
present work: one based on pre-existing work with Bubbles (see e.g.
Schyns et al., 2007) and a novel randomization test, the other based
on the GLM. The most important point is the degree of agreement
between the two methods: although the two techniques are not
always equal in terms of power (the GLMwould seem to have more,
on thewhole) by using offset thresholds the overlap is very high. The
fact that we can replicate our results with two different analysis
methods gives us confidence in the validity of applying Bubbles to
fMRI. We also note that while the Bubbles analysis and the GLM
give similar results the Bubbles method provides a richer represen-
tation than the employed GLM — i.e. a two dimensional classifi-
cation image representing the visual information modulating the
BOLD signal for each voxel in the brain. Although we have
simplified here by correlating such classification images with feature
templates this is not the only approach one could take.

A different type of approach, and one which is perhaps intuitively
more appealing, would be to perform a PCA or a spatial ICA on the
voxel-based classification images. This would give a natural means
of grouping a specific configuration of visual information with a
specific set of brain regions whilst making use, simultaneously, of the
whole visual information space. As the present method does
not make use of the whole information space, it is possible that
sensitivity to different configurations of visual information exists
within the brain but that we have not picked it up: we can, however,
be sure that we have captured the information sensitivity of the brain
to both the eyes and the mouth for each expression considered (i.e.
the critical visual information in the present task). Thus Bubbles does
provide, in principle, a richer representation of the response properties
of brain voxels. It would also be interesting, as an aside, to perform
the Bubble analysis in a multivariate manner since different types of
information have been shown to be detectable by univariate and
multivariate methods of analysis (see e.g. Kriegeskorte et al., 2006).

We have, in addition, shown the potential of analysing the
activity of a set of brain regions in terms of the information they
process: our analysis successfully grouped together bilateral brain
areas more often than would be expected by chance. Extending this
analysis to incorporate time as a factor (as we have done with the
GLM method) we will potentially be able to trace the flow of visual
information from one brain region to another.

On a different note, now that the validity of the basic method
has been established we can foresee several potentially fruitful
applications: for instance, what visual information is the amygdala
modulated by in a multiple facial expressions task? There have been
suggestions that the eyes are critical in fear (e.g. Whalen et al., 2004)
but other work suggests that the amygdala is activated similarly in
response to all emotions (e.g. Winston et al., 2003a). Thus it would
be interesting to discover whether the amygdala is sensitive to the
diagnostic information for the judgment at hand (e.g. the eyes in fear,
the mouth in happy) or to a particular configuration of visual infor-
mation across expression (perhaps the eyes). We would, however,
have to adapt our scanning procedure to maximise the signal coming
from the amygdala area to answer this question.

Thus, in sum, we have put forward a new method with which to
study the brain in the realm of high-level vision experiments. We
have shown that it is possible to depict the visual information which
modulates activity in different regions of the brain, separating out
real sensitivity from noise. Further, our technique suggests that many
important regions involved in facial expression processing are
sensitive to the diagnostic information of the judgment at hand.
Finally, by contrasting the information processing strategies of
different brain regions, our method may provide a new way to
identify candidate neural networks. We have now a new set of tools
which allow us to analyse human brain function in an information
processing space.
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