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Abstract

A smooth Gaussian random field with zero mean and unit variance is sampled on
a discrete lattice, and we are interested in the exceedence probability (P-value) of the
maximum in a finite region. If the random field is smooth relative to the mesh size, then
the P-value can be well approximated by results for the continuously sampled smooth
random field (Adler, 1981; Worsley, 1995a; Taylor and Adler, 2003). If the random
field is not smooth, so that adjacent lattice values are nearly independent, then the usual
Bonferroni bound is very accurate. The purpose of this paper is to bridge the gap between
the two, and derive a simple, accurate upper bound for mesh sizes in between. The result
uses a new improved Bonferroni-type bound based on discrete local maxima (DLM). We
give an application to the ‘bubbles’ technique for detecting areas of the face used to
discriminate fear from happiness.

1 Introduction

Let Z(x) be a D-dimensional stationary Gaussian zero mean, unit variance, random field sam-
pled on a uniform rectilinear lattice (see Figure ??). We are interested in good approximations
to

P = P
(

max
x∈S

Z(x) > t

)
(1)

where S ⊂ RD. Such a situation arises frequently in brain mapping, where Z(x) is a 3D image
of brain activity in response to a stimulus, sampled on a uniform lattice of voxels. The search
region S is usually the whole brain. We are interested in detecting those few isolated regions
in S where E(Z(x)) > 0, that is, those regions where brain activity has occurred. This is done
by thresholding the image at a high value t chosen so that if the entire image were null, the
exceedence probability is controlled to some small value such as 0.05. The threshold t is then
determined by equating (1) to 0.05 and solving for t (see Worsley, 2003, and references therein).
A 2D example is the ‘bubbles’ technique for revealing those areas of an image used in a visual
discrimination task (Gosselin & Schyns, 2001; Schyns et al., 2002; Chauvin et al., 2004). This
will be analysed in detail in Section 8.

The simplest bound on the P-value is the Bonferroni bound (BON):

P ≤ PBON = NΦ(t) (2)
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Figure 1: The problem. A smooth Gaussian random field Z(x) is sampled on a rectilinear
lattice, and we want to find a good approximation to the P-value of the maximum inside a
search regions S. For unsmoothed data (a), Bonferroni is accurate; for very smooth data (c),
the expected Euler characteristic method is very accurate; we seek a good approximation in
between (b). The data shown is actually a blow-up of the central portion of Figure 4.

where N is the number of lattice points inside S and Φ(z) = P(Z > z), Z ∼ N(0, 1). If the
random field is not smooth, so that its sampled values are roughly independent, then (2) is very
accurate, but if the random field is very smooth, then it becomes too conservative.

If the random field is smooth relative to the mesh size and S is convex or nearly so then very
accurate approximations to (1) have recently been found using the expected Euler characteristic
(expected EC, or XEC) of the excursion set of a continuously sampled random field (Adler,
1981; Taylor & Adler, 2003). In 2D, the EC counts the number of connected components
minus the number of holes in the excursion set, which for high thresholds takes the value 1 if
the maximum exceeds the threshold, and 0 otherwise. Hence XEC approximates the P-value
of the maximum for high thresholds. For an isotropic Gaussian random field the XEC depends
on the roughness of the random field measured by

Var

(
∂Z(x)

∂x

)
= λI, (3)

where I is the D ×D identity matrix. Then the XEC PXEC is

P ≈ PXEC =
D∑

d=0

µd(S)

(
λ

2π

)d/2
∂dΦ(t)

∂td
, (4)

where µd(S) is the d-dimensional Minkowski functional or intrinsic volume of S (Worsley,
1995a). In 2D, the intrinsic volumes are: µ0(S) is the EC of S (=1 if S is simply connected);
µ1(S) is half the perimeter length of S; µ2(S) is the area of S.

In the brain mapping literature, smoothness is conveniently measured by FWHM, defined
as follows. If Z(x) is modelled as white noise convolved with an isotropic Gaussian-shaped
filter, then FWHM is the Full Width at Half Maximum of this filter. FWHM is

√
8 log 2 times

the standard deviation of the Gaussian filter, and in terms of λ, it can be shown that

FWHM =
√

4 log 2/λ. (5)
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The XEC P-values (4) are then roughly proportional to the volume of S divided by FWHM D,
so that as the random field becomes less smooth, then these P-values become larger.

Figure 2 illustrates the point. Gaussian random fields were simulated on a 2562 lattice by
smoothing white noise with an isotropic Gaussian filter. For FWHM < 1 lattice step BON is
accurate; for FWHM > 5 lattice steps XEC is accurate.

A simple solution is to take the best of both, i.e. the minimum of the two P ’s or thresholds.
This will give P-values that are never more than twice the true value in the example in Figure
2. This method is currently used by the FMRISTAT (Worsley et al., 2002) and SPM software
(Frackowiak et al., 2003) for the statistical analysis of brain imaging data. The purpose of this
paper is to look for something better for the mid range of FWHM . Extensions to non-Gaussian
random fields are given in Worsley (2005).

2 Improved Bonferroni bounds

The problem of determining P in (1) can be boiled down to this. We have a set of events
Ax = {Z(x) > t} and we seek a good approximation to the probability of their (finite) union

P = P (∪x∈SAx) . (6)

We are interested in the case where S is large (typically 50,000) and P is small (typically
0.05). The Bonferroni inequality gives (2), but to do better, we should try to incorporate more
information. There is a long history of trying to improve the Bonferroni bound by adding or
subtracting more higher order terms of the form

P = P (∪x∈SAx) ≤
∑
J⊂S

(−1)|J |−1f(J)P (∩x∈JAx) (7)

for some positive function f on subsets of S. Of course with f(J) = 1 (7) is an equality, but the
idea is to set f to zero for most high order intersections, and still retain a sharp inequality. The
remaining terms, involving low-order intersections and hence low-dimensional integrals, can
then be evaluated numerically. A good example which works well when D = 1, S = {1, . . . , n}
and neighbouring values of Z(x) are highly correlated is

P (∪x∈S) ≤
n∑

x=1

P(Ax)−
n−1∑
x=1

P(Ax ∩ Ax+1) (8)

(Hunter, 1976; Worsley, 1982). It can easily be generalised by replacing the second summa-
tion over adjacent lattice points by a summation over edges of a tree on S. Tomescu (1986)
generalised it to hyper-trees. Naiman & Wynn (1972, 1977) considered the conditions on f(J)
under which (7) is an equality or inequality, with applications to importance sampling. There
has been recent work by Dohmen (2000, 2003) improving the results of Galambos & Simonelli
(1996) and Kwerel (1975) who considered the case where f(J) takes the same value for all
subsets J of the same size. Further work along these lines has been done by Kounias (1986)
and Grable (1993). A related problem, with links to False Discovery Rate, is addressed by
Simes (1986) and Sarkar (1998). Some of these methods have found applications in maximally
selected rank statistics (Hothorn & Lausen, 2003).

However none of these methods work well for the problem of a smooth random field sampled
on a rectilinear grid. The only exception is (8) in the 1D case, which turns out, as the mesh
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Figure 2: (a) Comparison of Bonferroni (BON), expected Euler characteristic (XEC) and pro-
posed Discrete Local Maxima (DLM) P-values for a 2242 lattice search region, as a function
of filter FWHM relative to mesh size, FWHM /v. The thresholds were the P=0.05 thresholds
based on 9999 simulations (True). Error bars are ±1 Sd. (b) Same as in (a), but replacing
P-value by threshold.
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size decreases, to approach the XEC result (4) which we know to be very accurate for high
thresholds, the ones of main interest. The reason is that none of the above improved Bonferroni
inequalities take direct advantage of the spatial correlation structure of Z(x).

Our proposed DLM method, introduced in the next section, does take into account the
spatial properties of Z(x), and it is very accurate as the mesh size decreases, approaching the
XEC result for large thresholds. However it is not strictly speaking an improved Bonferroni
inequality because it is not of the form (7). However it does rely on the Bonferroni inequality
applied to events other than Ax.

3 An improved Bonferroni-type bound based on discrete

local maxima

We now derive an improved Bonferroni-type bound that bridges the gap between small FWHM ,
where BON is accurate, and large FWHM , where XEC is accurate. The improved Bonferroni-
type bound is the expected number of discrete local maxima (DLM) above threshold:

P ≤ PDLM
∆
=

∑
x∈S

P(Z(x) > t and neighbouring Z’s < Z(x)). (9)

The 2D neighbours are those that differ by just one step in each lattice direction. In contrast,
PBON is the expected number of lattice points above threshold, and PXEC is the expected Euler
characteristic of the search region above threshold. We shall show that, like BON, DLM is
conservative, which is reassuring for practical applications, but unlike BON it is very accurate
for all FWHM ; for large FWHM and thresholds DLM converges to XEC.

The fact that DLM is an upper bound follows by noting that the event that {Z(x) > t}
somewhere in the search region is the union of the events {Z(x) > t and neighbouring Z ′s <
Z(x)} over all lattice points, then applying the Bonferroni inequality. Formally,

max
x∈S

Z(x) > t = ∪x∈S{Z(x) > t} = ∪x∈S({Z(x) > t} ∩x′∈N {Z(x′) < Z(x)}) (10)

where N = Nx is the set of neighbouring lattice points about x inside S. Then, by Bonferroni,

P = P(∪x∈S{Z(x) > t}) ≤
∑
x∈S

P({Z(x) > t} ∩x′∈N {Z(x′) < Z(x)}) = PDLM. (11)

We should note that (9) is not strictly speaking an improved Bonferroni inequality, since it
is not a function of the probabilities of intersections of events Z(x) > t. This will be discussed
more in Section 5.

4 Evaluating the DLM P-value

It remains to calculate P({Z(x) > t} ∩x′∈N {Z(x′) < Z(x)}). This looks like an integral in
2D +1 Gaussian random variables, but the amount of integration can be substantially reduced
if we make more assumptions about the spatial correlation structure of the data. Consider the
case where the correlation function has the following form

ρ(w, y) = exp

(
−

D∑

d=1

td(wd − yd)
2/2

)
. (12)
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The nearest neighbour correlations are given by

ρd = exp(−tv2
d/2) (13)

where vd is the voxel size in the d-th direction.
The basic idea is to first condition on the central Z(x). Then the assumed Gaussian corre-

lation structure invokes a ‘Markovian’ property: it can be checked that neighbouring Z(x′)’s on
one lattice axis are conditionally independent of neighbouring Z(x′)’s on any other lattice axis.
We can now evaluate the conditional probability separately for each lattice axis, then multiply
them together, then finally integrate over the conditioned central Z(x). Dropping subscript d
and argument x, the correlation matrix of Z = Z(x) and its two neighbours Z1, Z2 on either
side of the same lattice axis is

Cor




Z
Z1

Z2


 =




1 ρ ρ
ρ 1 ρ4

ρ ρ4 1


 (14)

so that conditional on Z = z, the neighbours have a bivariate Gaussian distribution
[

Z1

Z2

] ∣∣∣∣ Z ∼ N2

([
ρz
ρz

]
,

[
1− ρ2 ρ4 − ρ2

ρ4 − ρ2 1− ρ2

])
. (15)

Letting X, Y be independent standard Gaussian random variables, Z1, Z2 can be written as

ρz + X(1− ρ2)/
√

2± Y
√

1− ρ4/
√

2 (16)

so that
P(Z1 < z,Z2 < z|Z = z) = P(X sin α± Y cos α < hz). (17)

The necessary bivariate integral can be reduced to a single integral by changing to polar coor-
dinates x = r cos θ, y = r sin θ and integrating the radius r analytically. The remaining integral
over the angle θ is, for z > 0,

P(Z1 < z, Z2 < z|Z = z) = 1− 1

π

∫ π

α

exp(−1
2
h2z2/ sin2 θ)dθ = Q(ρ, z), (18)

with a similar expression when z < 0. Recognizing that (18) is 1 − 2Φ(hz) if α = 0, and
changing the limits accordingly, gives, for all z,

Q(ρ, z) = 1− 2Φ(hz+) +
1

π

∫ α

0

exp(−1
2
h2z2/ sin2 θ)dθ, (19)

where

α = sin−1
(√

(1− ρ2)/2
)

, h =

√
1− ρ

1 + ρ
.

and z+ = z if z > 0 and 0 otherwise. Let φ(z) = exp(−z2/2)/
√

2π. Multiplying (18) together
over the lattice axes and integrating over z gives the DLM P-value,

P ≤ PDLM =
∑
x∈S

∫ ∞

t

(
D∏

d=1

Qx(ρd, z)

)
φ(z) dz (20)

where Qx(ρd, z) = Q(ρd, z) if all of the lattice neighbours of x are in S. If x is on the boundary
of S with just one neighbour in axis direction d, then Qx(ρd, z) = 1− Φ(hz), and is equal to 1
if x has no neighbours. This invokes a boundary correction, similar in purpose to the first D
terms in the summation in XEC (4).

We have proved a special case of the following theorem.
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Theorem 4.1 Suppose that the spatial correlation function of Z at two lattice points w, y that
are neighbours of x has the form

ρ(w, y) =

∫

[0,+∞)D

exp

(
−

D∑

d=1

(zd − yd)
2td/2

)
dνx(t) (21)

where the νx are probability measures on [0, +∞)D. Define the nearest neighbour correlations

ρd(x) =

∫

[0,+∞)

exp(−tv2
d/2) dνx,d(t)

where vd is the voxel size in direction d, νx,d is the d-th marginal of νx, and define the approxi-
mation

P̂DLM
∆
=

∑
x∈S

∫ ∞

t

(
D∏

d=1

Qx(ρd, z)

)
φ(z) dz. (22)

Then,
P ≤ PDLM = P̂DLM.

Proof: We first note that νx are assumed to be probability measures to ensure Z constant
variance 1. For simplicity, we consider discrete probability measures νx: the general case
involves simply replacing sums with integrals. Suppose that for the two neighbours (w, y) of x

Cov(Z(w), Z(y)) =
∑
i∈J

αi exp

(
−

D∑

d=1

tid(wd − yd)
2/2

)
(23)

for some index set J . That is, we assume that νx places weight αi ≥ 0 on the point ti =
(ti1, . . . , t

i
d). As a random field

Z(x) =
∑
i∈J

√
αiZi(x) (24)

in distribution, where

Cov(Zi(w), Zi(y)) = exp

(
−

D∑

d=1

tid(wd − yd)
2/2

)
(25)

Under our assumptions, the neighbouring Z(x′)’s on one lattice axis are no longer condition-
ally independent of neighbouring Z(x′)’s on any other lattice axis given Z(x). However, working
in a larger probability space on which the Zi’s are defined, this conditional independence does
hold when we condition on (Zi(x))i∈J . Further, for any two neighbours w, y of x

Cov

(
Z(w), Z(y)

∣∣∣∣Zi(x), i ∈ J

)
=

∑
i∈J

Cov

(
Zi(w), Zi(y)

∣∣∣∣Zi(x), i ∈ J

)

=
∑
i∈J

αi exp

(
−

D∑

d=1

tid(wd − yd)
2/2

) (26)

This implies that the conditional covariance matrix of the neighbours of x is block diagonal
with blocks of the form[

Z(w)
Z(y)

] ∣∣∣∣ Zi(x), i ∈ J ∼ N2

([
ρd(x)Z(x)
ρd(x)Z(x)

]
,

[
1− ρd(x)2 ρd(x)4 − ρd(x)2

ρd(x)4 − ρd(x)2 1− ρd(x)2

])
(27)

where the neighbours w and y are along the d-th axis. The rest of the proof proceeds identically
to the special case above, which corresponds to the case when νx is a point mass. ¤
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5 Relationship between BON, XEC and DLM

When the voxels are independent (ρd = 0), PDLM is very slightly smaller than PBON but slightly
larger than the true P , specifically,

P̂DLM =
(
1− (1− P )(2D+1)/N

)
N/(2D + 1). (28)

In fact the difference is hardly noticeable in Figure 2 at FWHM = 0.
For large FWHM relative to v, we now show that PDLM converges to PXEC for large thresh-

olds when the correlation function is a mixture of axis aligned Gaussian kernels, specifically,

P̂DLM = PXEC × (1 + O(1/t2)). (29)

First change variables to y = exp(−1
2
h2z2/ sin2 θ) so that the integral in (19) becomes

hz

∫ exp(−z2/(1+ρ)2)

0

1

−2 log y
√
−2 log y − h2z2

dy. (30)

This is in fact a more convenient form for numerical integration. When the mesh size v ap-
proaches 0, ρ ≈ 1− λv2/2 → 1 and h ≈ v

√
λ/2 → 0. From (19) and (30)

Q(ρ, z) ≈ vz
√

λ√
2π

(1 + B) (31)

where B ≤ (2/
√

π) exp(−z2/4)/z3, which is negligible for large thresholds. Integrating over z
in (20) we obtain

P̂DLM ≈
∑

x

(
D∏

d=1

λ
1/2
d

)
(V/N)(2π)−(D+1)/2tD−1 exp(−t2/2)(1 + O(1/t2))

≈
[∑

x

(
D∏

d=1

λ
1/2
d

)
/
∑

x

|Λ|1/2

]
× PXEC (32)

for large t. If the correlation function is a mixture of axis-aligned Gaussian kernels, the constant
appearing in front of PXEC above is 1 and P̂DLM = PDLM: this gives the leading term of XEC.

Can we extend DLM to give the remaining terms? To do this, we might be tempted to
replace DLM with a ‘discrete EC’, by analogy with XEC. Another way of counting the EC
of the (continuously sampled) excursion set in 2D is to count the number of continuous local
maxima, minus saddle points, plus minima of Z(x) inside the excursion set. This suggests that
instead of counting discrete local maxima, we can subtract discrete local saddle points and add
discrete local minima. This turns out to be remarkably easy - the resulting adjustment to DLM
removes the troublesome integral from (19) and replaces it with simply

Q(ρ, z) = 1− 2Φ(hz). (33)

Unfortunately this heuristic does not work. The number of discrete local maxima minus saddle
points plus minima is not the EC of the discretely sampled excursion set, as can be seen from a
simple example of a diagonal “ridge” of local maxima, each contributing +1, with no discrete
saddle points or local minima, yet the excursion set can be simply connected with an EC of
+1.
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There is one exception: in the 1D case the number of discrete local maxima minus minima
is the EC of the discretely sampled excursion set. The reason is that excursion sets in 1D
are intervals, and each interval must contain at least one local maximum and one less local
minimum. So in this case DLM with (33) counts the number of such intervals, and so it is an
upper bound on the P-value P , slightly tighter than the DLM with (19).

Another way of counting the intervals in the excursion set is to count the upcrossings of
the threshold t by the process Z(x). In other words, assuming a unit 1D lattice, we count the
events {Z(x) < t ∩ Z(x + 1) > t}. The expectation of this is in fact identical to the simplest
improved Bonferroni inequality (8), so we are back where we started. Incidentally, this shows
why (8) works so well for 1D random fields. We might be tempted to extend this idea to
higher dimensions and count multidimensional upcrossings in a way similar to the Hadwiger
characteristic (Adler, 1981; Worsley, 1995b). However the extra complication, plus the tricky
question of how to add a boundary correction, does not seem to be worth the very slight
tightening of the bound on P .

Finally, of course, we could attack the discrete EC directly. It can be defined in 2D as
the number of lattice points, minus the number of lattice edges, plus the number of lattice
squares (or faces) inside the excursion set (Adler, 1981). We can then find its expectation, but
unfortunately the Markovian property does not help us to cut down the number of integrals,
which grows exponentially in D.

To pursue this properly, we must resort to a specially developed discrete Morse Theory
(Forman, 1998; Lewiner et al., 2004) which incorporates events involving all 2D voxels in a
cell (cube of adjacent voxels) rather than the 2D + 1 neighbouring voxels on the axes. There
is nothing in principle to prevent us from calculating XEC defined in this way, but again in
practice there is no Markovian property and so no nice reduction in the number of multiple
integrals. Moreover the expected discrete EC is still only an approximation to P , not a bound.

6 Non-Gaussian spatial correlation

Evaluating PDLM relied heavily on the particular form of the covariance (23) as a mixture of axis-
aligned Gaussian kernels. Not every covariance function has this representation, for instance
these conditions rule out negative nearest neighbour correlations. In Appendix B, we give some
conditions, in the stationary setting, under which the covariance of Z can be approximated by
mixtures of axis-aligned Gaussian kernels in such a way that the inequality

PDLM ≤ P̂DLM (34)

still holds. Generally, the correlation function of Z must behave like the Laplace transform of
a probability measure, at least near 0, rather than just the Fourier transform which is always
true by the spectral representation theorem.

We now give a heuristic argument that (34) holds, even if the local spatial correlation
structure is not an axis-aligned mixture of Gaussian kernels. It can be shown using Hadamard’s
inequality that for any positive definite matrix Λ the product of the diagonal elements is greater
than the determinant, so that the term in square brackets in (32) is greater than or equal to 1.

This implies that P̂DLM > PXEC for large thresholds and large FWHM , suggesting that DLM is
conservative if the Gaussian spatial correlation function is not aligned with the axes. Since the
spatial correlation function of any smooth SPM looks locally like a mixture of Gaussians (both
are locally quadratic), then this suggests that DLM is always conservative for large FWHM .
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It is also slightly larger than the true P-value when FWHM = 0, so this suggests that DLM
is conservative for all FWHM even if the local spatial correlation is not axis-aligned Gaussian.
Further evidence from simulations is given in Worsley (2005).

7 Simulations

The methods were compared on simulated data that matched the ‘bubbles’ data in Section
8. A 2562 image of independent zero mean, unit variance Gaussian random variables was
smoothed with a Gaussian shaped filter to generate a smooth random field Z(x). The filter was
normalised to preserve the unit variance of the smoothed image. Fourier methods were used
for the convolution, so the smoothed image was periodic. A search region S of size 2242 was
chosen that was far enough from the boundary of the 2562 image that the periodicity could be
ignored. The maximum of Z(x) inside S was recorded.

This was repeated M = 9999 times. The (M + 1)P th largest maximum of Z(x) inside S
estimates the true threshold (unbiasedly if the simulated values were uniform). The standard
deviation of this estimate was itself estimated by specifying a small width δ = 0.02, then by

(M + 1)(P + δ)th− (M + 1)(P − δ)th

2δ

√
P (1− P )

M + 2
. (35)

This is based on the usual linear approximation to the variance of function of a random variable.
The first term is an estimate of the inverse of the probability density, the second square root is
the standard deviation of the sample P-value. Results for a P = 0.05 threshold are shown in
Figure 2 for FWHM ranging from 0 (no smoothing) to 10 mesh units.

The DLM P-value is always an accurate upper (conservative) bound on the true P-value,
which almost equals BON when FWHM = 0 and slightly overestimates XEC when FWHM > 6.
In between DLM is better than either of them. The greatest discrepancy occurs at FWHM = 3,
where the DLM P-value is about half either of the others.

8 Application to the ’bubbles’ experiment

We give an application to the ‘bubbles’ technique for detecting areas of the face used to dis-
criminate fear from happiness. The data come from the control subjects analysed in Adolphs
et al. (2005). Subjects were shown a 2562 image of a face that is either fearful or happy. The
images were masked apart from a random number of localised regions or ‘bubbles’ that reveal
only selected parts of the face (see Figure 3). The subject was then asked whether the partially
revealed face is fearful or happy, and the trial was repeated ≈2,970 times on each of 10 subjects.

The masked image was generated as follows. The original image I0 was smoothed by an
isotropic Gaussian filter with FWHM i = 7.05 × 2i−1, to produce images Ii, i = 1, . . . , 5. The
smoothed images were differenced to produce images Di = Ii−1 − Ii, i = 1, . . . , 5 that reveal
image features at five different scales. Differenced image Di was then multiplied by a mask
consisting of the sum of a random number of isotropic Gaussian ‘bubbles’, each with width
2FWHMi . The bubble centres were chosen at random from the 2562 pixels. The number of
bubbles for each scale was a multinomial random variable with probabilities inversely propor-
tional to bubble area (FWHM 2

i ), so that equal areas were revealed by each of the 5 bubble
sizes, on average. The total number of bubbles was chosen dynamically to maintain a 0.75
probability of correctly identifying the face.
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Figure 3: Bubbles experiment. The subject is asked to discriminate between the happy (a)
and fearful (b) faces on presentation of the stimulus (d) which is one of the two faces (here the
fearful face) partially revealed by random ’bubbles’ (c). The 2242 search region S is inside the
black frame in (a) and (b).
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Figure 4: Bubbles analysis. Top row: Z(x) and 2242 search region S (black frame) smoothed
with increasing FWHM Gaussian filters; Rows 2-4: images in first row thresholded at the P =
0.05 level using the BON, XEC and DLM methods. Excursion sets, revealing the underlying
fearful face, have been outlined in black to make them easier to identify. Note that DLM does
as well as either BON or XEC at detecting facial features that discriminate between fear and
happiness, the upper eyes and upper lip.

At each pixel x, let p̂C be the proportion of bubbles centred at x in the nC correctly
classified stimuli, and let p̂I be the proportion in the nI incorrectly classified stimuli. The
number of bubbles per stimulus, m = 16.5 on average, was adjusted to maintain the success rate
nC/(nC + nI) ≈ 0.75. If face discrimination is unrelated to the bubbles, then these proportions
are expected to be p = m/2562. The test statistic Z(x) is then defined as

Z(x) =
p̂C − p̂I√

p(1− p)(1/nC + 1/nI)
. (36)

We only used the information contained in the bubble centres, ignoring the information con-
tained in the bubble FWHM s.

The unsmoothed image Z(x) is shown in the top left panel in Figure 4. This was then
smoothed by Gaussian filters of FWHM=1.5, 3, 6, 12 and 24 pixels (top row) normalised to
preserve the variance. Note that Z(x) is a linear function of the ≈29,700 binary images of
presence/abscence of bubble centres (1=bubble centred at x, 0=otherwise), so that smoothing
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each of the binary images, then calculating a Gaussian statistic for comparing their means, is
equivalent (up to a constant) to smoothing Z(x). The search region S is the interior of the
black frame. Three methods for thresholding at P = 0.05 were used: BON, XEC and DLM
(rows 2 to 4). Note that the third image (FWHM = 3) is where DLM outperformed both
BON and XEC in the simulations (Figure 2). The fourth image (FWHM = 12) is close to
the smoothness of the smallest bubbles (FWHM = 14.1). The BON method picks up some
discriminatory features in the eyes, but as the smoothing increases, it does not do as well as
XEC. XEC on the other hand, fails to pick up any features when there is little or no smoothing.
DLM combines the beat of both: it does as well as BON at low smoothness, and almost as well
as XEC at high smoothness. Recall that DLM, like BON, is an upper bound, so it is always
conservative, whereas XEC is merely an approximation.

The analysis we have presented here is preliminary. A natural question is what amount of
smoothing to use. Although one can make a good argument that the amount of smoothing
should match the size of the bubble (here at least 14), from a purely inferential point of view,
the optimal smoothing should match the shape of the underlying signal, by the well-known
Matched Filter Theorem of signal processing. In other words, a filter the same size as the eyes
might be optimal at detecting bubble centres clustered in the eye region. A formal analysis can
be done by searching over filter width, as well as pixel location, known as scale space (Siegmund
& Worsley, 1995). The price to pay for this is an increase in threshold; for searching over a 10
fold scale range from 10 to 100 FWHM the threshold is t = 4.31, as opposed to 4.23 – 2.95
at fixed scales from 10 to 100 FWHM . Scale space local maxima (in 3D) detected the eyes at
FWHM ≈ 25 pixels (Zmax ≈ 17.2) and the mouth at a higher smoothness of FWHM ≈ 40 pixels
(Zmax ≈ 8.0) - there were no other local maxima above threshold. These estimated FWHM s
are indeed maximum likelihood estimates of the true FWHM s of the Gaussian shaped signals
added to the unsmoothed Z(x) (Siegmund & Worsley, 1995).

Appendix

A Accuracy of the DLM P-value

In the continuous setting, PXEC is known to be a very accurate approximation to (1). From
(Taylor et al., 2005)

PXEC = P ·
(
1 + Oe(e

−u2/2σ2
c (Z))

)

for some critical variance σ2
c (Z) of the process Z where Oe is to be interpreted as “exponentially

of order of”. In other words, the relative error is exponentially small in u2.
The expected number of local maxima above a given level is has the same exponential

behaviour, so one might ask how accurate PDLM is being the expected number of discrete local
maxima above a given level. Here, we show that its relative error is also exponentially small.
Our proof holds for any covariance structure as well as non-regular lattices, however we can only
work out PDLM explicitly only if the covariance function is a mixture of axis-aligned Gaussian
kernels, in which case PDLM = P̂DLM. It should be emphasized that the results below refer to
PDLM and not the approximation P̂DLM.

Theorem A.1 Let (Z(x))x∈S be a centered, zero mean Gaussian field on the finite set S and
PDLM be the expected number of discrete local maxima of Z on S based on a given neighbourhood
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structure (graph) G. Then,

lim inf
t→∞

−t2

2
log (PDLM − P ) = 1 +

1

σ2
c,DLM(Z, G)

(37)

where the critical variance is given by

σ2
c,DLM(Z, G)

∆
= max

x∈S
max

y∈S\ eN

1 + ρ(x, y)

1− ρ(x, y)
(38)

Above, ρ is the correlation function of Z and Ñ = N ∪ {x} is the set of neighbours of x
(including x itself) determined by G.

Proof:
The proof is based on the following equality, assuming that ties have probability 0

P =
∑
x∈S

P (Z(x) > t, Z(x) > Z(y) ∀y 6= x)

=
∑
x∈S

E
(
1{Z(x)>t} · 1{Z(x)>Z(y) ∀y 6=x}

)
.

(39)

Therefore,

PDLM − P =
∑
x∈S

E
(
1{Z(x)>t} ·

(
1{Z(x)>Z(y) ∀y∈N} − 1{Z(x)>Z(y) ∀y 6=x}

))
.

=
∑
x∈S

E
(
1{Z(x)>t}1{Z(x)>Z(y) ∀y∈N} ·

(
1− 1{Z(x)>Z(y) ∀y 6∈ eN}

))
.

=
∑
x∈S

E
(
1{Z(x)>t} · 1{Z(x)>Z(y) ∀y∈N} · 1∪

y∈S\fN {Z(y)>Z(x)}
)

≤
∑
x∈S

E
(
1{Z(x)>t} · 1∪

y∈S\fN {Z(y)>Z(x)}
)

.

(40)

In other words,

PDLM − P =
∑
x∈S

P
(
Z(x) > t, ∃ y ∈ S \ Ñ s.t. Z(y) > Z(x)

)
.

Now,

{Z(y) > Z(x)} =

{
Z(y)− ρ(x, y)Z(x)

1− ρ(x, y)
> Z(x)

}

and for each y 6= x

Zx(y)
∆
=

Z(y)− ρ(x, y)Z(x)

1− ρ(x, y)

is a centered Gaussian random variable independent of Z(x) with variance

σ2
r(x, y) =

1 + ρ(x, y)

1− ρ(x, y)
.
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Therefore, the random field (Zx(y))y∈S\ eN is independent of Z(x) and

PDLM − P =
∑
x∈S

P
(
Z(x) > t, ∃ y ∈ S \ Ñ s.t. Z(y) > Z(x)

)

≤
∑
x∈S

P
(
Z(x) > t, ∃ y ∈ S \ Ñ s.t. Z(y) > t

)

=
∑
x∈S

∑

y∈S\ eN
Φ(t) · Φ (t/σr(x, y))

≤ N2 1

t2
exp

(
−

(
1 +

1

σ2
c,DLM(Z, G)

)
t2

2

)
.

(41)

The last inequality is quite conservative as the number of neighbours whose variance achieves

σ2
c,DLM(Z,G) = max

x∈S
max

y∈S\ eN
σ2

r(x, y)

is typically much smaller than N . ¤
The usefulness of this bound depends on a well-chosen G. For instance if GBON is a graph

with N nodes and no edges, then PDLM = PBON, and the theorem says exponential rate of
decay is given by the maximal off-diagonal entry in the correlation matrix of (Z(x))x∈S. When
the parameter space S consists of points of a regularly sampled lattice in RD with isotropic
covariance function and edge lengths v then

σ2
c,DLM(Z,GBON) =

1 + ρ(v)

1− ρ(v)
.

In order to beat Bonferroni then, one should choose G so that

σ2
c,DLM(Z, G) < σ2

c,DLM(Z,GBON).

If S is as above and GNN is the nearest neighbours graph with 2D neighbours then the critical
variance is achieved at the 2nd nearest neighbours and

σ2
c,DLM(Z, GNN) =

1 + ρ(
√

2v)

1− ρ(
√

2v)

which is generally smaller than σ2
c,DLM(Z, GBON) particularly when ρ is Gaussian as will be the

case below.
In summary, PDLM is exponentially sharper than PBON. However, unlike PXEC in the con-

tinuous setting, not all terms of PDLM are exponentially sharp in general. By terms, we are
referring to the terms in the inclusion-exclusion expansion

P (Z(x) > t, Z(x) > Z(y), ∀y ∈ N )

= E
(
1{Z(x)>t}

(
1− 1∪y∈N {Z(y)>Z(x)}

))

= P(Z(x) > t)−
∑
y∈N

P(Z(x) > t, Z(y) > Z(x)) + . . .
(42)

The third order terms are of the form

P(Z(x) > t, Z(x) > Z(y), Z(x) > Z(w)).
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If the covariance function is Gaussian and w and y are chosen along different axes then the
above probability is exponentially of order

exp

(
−

(
1 +

2(1− ρ(v))

1 + ρ(v)

)
t2/2

)

and it can be easily verified that

1 + ρ(v)

2(1− ρ(v))
< σ2

c,DLM(Z, GNN).

Therefore, for v fixed, the third (and higher order) terms are exponentially smaller than the
error PDLM − P.

B Bounds for PDLM for non-Gaussian spatial correlations

In this section we give precise conditions under which

PDLM ≤ P̂DLM

when Z is the restriction of a stationary random field to S but its correlation function does not
satisfy (23). For 1 ≤ d ≤ D, let ed be the unit step in axis direction d.

Theorem B.1 Suppose that Z(x), x ∈ ZD is a zero-mean, unit variance stationary Gaussian
random field. Define its nearest neighbour correlations

ρd = Cov(Z(x), Z(x + ed)), 1 ≤ d ≤ D

and its second order nearest neighbour correlations

Σij = max (Cov(Z(x± ei), Z(x± ej))) , 1 ≤ i, j ≤ D.

Suppose it is possible to define a random variable X ∈ [0, 1]D such that

E(Xd) = ρd = ρ 1 ≤ d ≤ D

E(XiXj) ≤ Σij 1 ≤ i, j ≤ D.
(43)

Then,
PDLM ≤ P̂DLM . (44)

Proof: The proof is based on the following equality for PDLM(x), the contribution of an
interior site x to PDLM.

PDLM(x) = E
(
P

(
max

y=x±ed

Z(y) ≤ Z(x)

∣∣∣∣Z(x)

)
1{Z(x)>t}

)
.

Suppose it is possible to construct an X and define PX to be the distribution of

− log(X) = (− log(X1), . . . ,− log(Xd))
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on [0, +∞)D Let Z̃(x) be a stationary random field on ZD with covariance function

Cov
(
Z̃(x), Z̃(y)

)
=

∫

[0,+∞)D

exp

(
−

d∑

d=1

td(xd − yd)
2

)
dPX(t). (45)

Our assumption (48) implies that

Cov

(
Z(x± ei), Z(x± ej)

∣∣∣∣Z(x)

)
≤ Σij − ρ2 ≤ Cov(Xi, Xj) = Cov

(
Z̃(x± ed)

∣∣∣∣Z̃(x)

)

ij

(46)

with equality for the variances. Slepian’s inequality then implies that

P
(

max
y=x±ed

Z(y) ≤ Z(x)

∣∣∣∣Z(x)

)
≤ P

(
max

y=x±ed

Z̃(y) ≤ Z̃(x)

∣∣∣∣Z̃(x)

)
, (47)

from which (49) follows. If equality holds in (46), then it is easy to see that equality holds.
¤

Remark: Stationarity can be relaxed somewhat above, however it is would still be necessary
to assume that nearest neighbour correlations are identical over the whole search region in order
to use Slepian’s inequality (cf. Theorem 2.2.1 of Adler & Taylor, 2005). The condition on Σij

becomes local, i.e. for each x we must find a random variable X satisfying (48), though ρ
cannot vary with x. The conclusion will likely also be an upper bound, unless equality in (48)
can be achieved for every x.

Constructing such a random variable X may be non-trivial: for one thing, Σ must have non-
negative entries. Further, if Z is the restriction of a stationary process on RD to ZD then the
conditions above essentially state that there must exist a probability measure PX on [0, +∞)
such that

Cov(x, y) = ρ(x− y) ≥ MX

(−(x1 − y1)
2, . . . ,−(xD − yD)2

)

where

MX(t) = E

(
exp

(
D∑

d=1

tdXd

))

is the moment generating function of X ∼ PX , or the Laplace transform of X.

Corollary B.1 Suppose that Z(x), x ∈ ZD is a zero-mean, unit variance stationary Gaussian
random field. Define its nearest neighbour correlations

ρd = Cov(Z(x), Z(x + ed)), 1 ≤ d ≤ D

and suppose its second order nearest neighbour correlations have the following symmetry

Σij = Cov(Z(x + ei), Z(x± ej)), 1 ≤ i, j ≤ D.

Suppose it is possible to define a random variable X ∈ [0, 1]D such that

E(Xd) = ρd 1 ≤ d ≤ D

E(XiXj) = Σij 1 ≤ i, j ≤ D.
(48)

Then,
PDLM = P̂DLM. (49)

Proof: Since we are not interested in using Slepian’s inequality, we can drop the restriction
that ρd are identical which was necessary to establish that Z̃(x ± ed) and Z(x ± ed) have the
same variance. ¤
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C Non-lattice sampled data

In some cases the random field Z is not sampled on a lattice, but rather a triangulated surface
S. In this case, each point can have differing numbers of neighbours and there is no natural
correspondence between opposite pairs of edges, as in the lattice. However, the results of
Section A still hold: if we can evaluate PDLM for the graph based in the triangulation, we will
generally have a bound that is exponentially sharper than Bonferroni. This implicitly assumes
that connectivity of nodes in the triangulated surface is at least approximately related to the
covariance of Z, which would be the case of Z is thought of as the restriction of an isotropic
random field to the triangulated surface S. The results of Section A show that, even when it is
possible to evaluate PDLM not all terms in the expansion (42) are exponentially sharp. In fact,
the only terms that were exponentially sharp were the terms

P(Z(x) > t, Z(y) > Z(x), y ∈ N )

= P(Z(x) > t, Zx(y) > Z(x), y ∈ N )

=

∫ ∞

t

Φ(z/σr(x, y))φ(z) dz

(50)

This suggests an approximation of PDLM including only the terms (50), i.e.

PDLM ≈ NΦ(t)−
∑
x∈S

∑
y∈N

∫ ∞

t

Φ(z/σr(x, y))φ(z) dz. (51)

However, this would not be a bound on P . To remedy this we could include the next term in
the inclusion exclusion expansion

∑
x∈S

∑

y,w∈N ,y 6=w

P (Z(x) > t, Z(y) > Z(x), Z(w) > Z(x)) (52)

yielding a final upper bound

PDLM ≤ NΦ(t)−
∑
x∈S

∑
y∈N

∫ ∞

t

Φ(z/σr(x, y))φ(z) dz

+
∑
x∈S

∑

y,w∈N ,y 6=w

∫ ∞

t

(∫

[z,∞)2

e−wwwΣ−1
x,y,wwwwt/2

2π|Σx,y,w|1/2
dwww

)
φ(z) dz,

(53)

where

Σx,y,w =

(
σr(x, y) ρ(y,w)−ρ(y,x)ρ(w,x)

(1−ρ(y,x))(1−ρ(w,x))
ρ(y,w)−ρ(y,x)ρ(w,x)
(1−ρ(y,x))(1−ρ(w,x))

σr(x, w)

)
. (54)

While this is indeed an upper bound for PDLM and hence for P itself, the results of Section
A suggest the added accuracy obtained by adding these terms is generally undetectable on an
exponential scale. Unfortunately, as the mesh of the surface goes to 0, the approximation (53)
does not approach PXEC if D > 2.

With highly convoluted triangulations such as the cortical surface, it may be the case that
the nearest point to a given node is not a neighbour of the given node. In the results of (Taylor
et al., 2005), in the continuous setting, this is analagous to a “global overlap”. To improve the
accuracy of (53) it is likely a good idea to add such points to N .
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