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Using identical stimuli across experimental conditions 
has the tremendous advantage that one does not have to 
worry about potential low-level confounds, such as differ-
ences in luminance, contrast, or spatial frequency, when 
studying higher level visual processes. For example, Tanaka 
and Curran (2001) presented the same set of dog and bird 
images to a group of dog experts and to a group of bird 
experts. The differences in brain activity observed when 
the experts categorized objects in their domain of exper-
tise relative to when they categorized objects outside their 
domain could thus not be due to stimulus characteristics. 
In some studies on visual perception, however, it is impos-
sible to use the same physical stimuli across psychologi-
cal conditions. For instance, studies in which the domain-
specificity versus domain-generality accounts of face 
processing are examined typically involve comparisons 
between faces and nonface objects, such as comparisons of 

the inversion effect for faces and houses (e.g., Yin, 1969). 
When comparing effects across categories, one encounters 
the problem that there might be overall low-level differ-
ences between stimulus types or differences in the amount 
of within-category variation, which could potentially result 
in biases unrelated to the higher level processes meant to 
be studied. In general, when using different stimuli across 
conditions, one has to be careful to disentangle low-level 
and high-level factors (Fründ, Busch, Körner, Schadow, & 
Herrmann, 2007; Itier & Taylor, 2004; Luck, 2005; Rous-
selet, Macé, Thorpe, & Fabre-Thorpe, 2007; Sadr & Sinha, 
2001, 2004; VanRullen & Thorpe, 2001).

Variations in low-level properties are thought to have 
contributed to controversies in the literature (e.g., Bentin 
et al., 2007; Dakin, Hess, Ledgeway, & Achtman, 2002; 
Hershler & Hochstein, 2006; Rousselet, Pernet, Bennett, 
& Sekuler, 2008; Thierry, Martin, Downing, & Pegna, 
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and left hemispheres (e.g., Ivry & Robertson, 1998). Vari-
ations in the spatial frequency domain could, for example, 
lead to differences in stimulus detectability (Campbell & 
Robson, 1968; Gold, Bennett, & Sekuler, 1999; Honey, 
Kirchner, & VanRullen, 2008). Carefully controlling lu-
minance information and the energy at different spatial 
frequencies (i.e., Fourier amplitude spectra) should thus 
be of interest to a variety of studies designed to investigate 
high-level visual processes. However, numerous examples 
can be found in the literature where low-level properties 
remained uncontrolled, and to our knowledge, there is 
no standard program for systematically matching image 
properties across experimental stimuli.

Many researchers use MATLAB (The MathWorks, 
Natick, MA) for image preprocessing, running experi-
ments, and data analysis. In recent years, the number of 
applications for MATLAB has grown enormously, and 
labs have shared their tools for experimentation to save 
time and reach a higher degree of standardization in the 
field. Besides several commercially available MATLAB 
toolboxes, such as the Image Processing Toolbox and the 
Signal Processing Toolbox, there are a number of freely 
available ones, such as the Psychophysics Toolbox (Brain-
ard, 1997; Pelli, 1997), the Eyelink Toolbox (Cornelissen, 
Peters, & Palmer, 2002), EEGLAB (Delorme & Makeig, 
2004), and the Biopsychology Toolbox (Rose, Otto, & 
Dittrich, 2008).

Here, we make accessible another MATLAB toolbox 
that we have found useful for controlling a number of 
low-level image properties in studies on visual percep-
tion. Specifically, our SHINE (spectrum, histogram, and 
intensity normalization and equalization) toolbox, which 
was written using functions from the Image Processing 
Toolbox of MATLAB, includes different equalization 
approaches that can be applied together or separately, de-
pending on the requirements of the experiment. SHINE 
features functions for specifying the Fourier amplitude 
spectra of images or scaling the rotational average of the 
spectra only (i.e., the energy at each spatial frequency 
averaged across orientations). It also includes functions 
for exactly specifying the luminance histograms or for 
normalizing and scaling the means and standard devia-
tions of the luminance distributions without affecting 
their shape. The program offers ways to equate the lumi-
nance properties across stimuli separately for the fore-
grounds and the backgrounds and to preserve perceptual 
image quality as much as possible. Although histogram 
specification and Fourier amplitude specification affect 
each other, we discovered that by using an iterative ap-
proach, a high degree of joint matching of the low-level 
properties of interest could be reached in many cases. 
SHINE also features tools for plotting the Fourier am-
plitude spectra or the average energy at each spatial fre-
quency to verify the output or to monitor the ecological 
low-level variations.

In the following sections, we provide an overview of the 
individual SHINE functions and give examples regarding 
how to work with the toolbox, which can be downloaded 
at www.mapageweb.umontreal.ca/gosselif /shine. The 

2007a, 2007b; VanRullen, 2006), and the importance of 
avoiding low-level confounds is an important and recur-
rent issue for a variety of research fields and measur-
ing methods, such as eye tracking, functional magnetic 
resonance imaging (fMRI), magnetoencephalography 
(MEG), and electroencephalography (EEG). Inconsistent 
findings were obtained, for instance, about the earliest 
real event-related potential (ERP) differences between 
face and object perception. Some studies have been fo-
cused on the N170 component—a negative deflection 
occurring about 170 msec after stimulus onset—as the 
first marker of face processing (e.g., Carmel & Bentin, 
2002; Rossion et al., 2000; Rousselet, Husk, Bennett, & 
Sekuler, 2008), whereas other studies revealed earlier dif-
ferences between face and object processing, possibly as 
early as 50–80 msec after stimulus onset (e.g., George, 
Jemel, Fiori, & Renault, 1997; Seeck et al., 1997). Be-
cause the studies differ in the degree to which image prop-
erties across face and nonface categories were controlled, 
the different findings might, at least in part, be explained 
by differences in low-level influences (Rousselet, Husk, 
et al., 2008). Luck (2005) gave the general advice that 
one should “never assume that a small physical stimulus 
difference cannot explain an ERP effect” (p. 74).

In studies in which it is impossible to use identical stimuli 
across conditions, it can thus be important to match certain 
image properties across the stimulus set. Luminance is one 
property of interest, because early visual processes have 
been found to be sensitive to luminance variations, indi-
cated by the modulation of early ERP components, such as 
the P1 (e.g., Johannes, Münte, Heinze, & Mangun, 1995). 
In some studies, this has been accounted for by equating 
stimuli in terms of mean luminance and contrast (for re-
cent examples, see Finkbeiner & Palermo, 2009; Hardee, 
Thompson, & Puce, 2008; Liang, Zebrowitz, & Aharon, 
2009; Zion-Golumbic, Golan, Anaki, & Bentin, 2008). It 
is possible to go a step further and precisely match the lu-
minance histograms—which give the number of pixels at 
each luminance level—across images, thereby equating 
not only the means and standard deviations of the lumi-
nance distributions but also their shape. Exact histogram 
matching addresses the finding that certain neural mecha-
nisms are sensitive to luminance histogram skewness 
(Olman, Boyaci, Fang, & Doerschner, 2008)—in particu-
lar, mechanisms involved in estimating surface properties 
(Motoyoshi, Nishida, Sharan, & Adelson, 2007) or texture 
discrimination (Chubb, Landy, & Econopouly, 2004).

Besides luminance, one might want to equate the im-
ages’ spatial frequency content. Broadly speaking, low 
spatial frequencies represent the coarse information in 
an image, such as luminance blobs and blurred shapes, 
whereas high spatial frequencies carry the fine-grained 
information, such as the precise shape of an object. There 
is evidence that during early visual processing, the input 
is analyzed at multiple spatial frequencies by a number of 
channels, each tuned to a specific range (see De Valois & 
De Valois, 1990, for a review). Findings indicate that there 
are differences in sensitivity to specific spatial frequencies 
both between different visual areas and between the right 
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histogram matching. The SHINE function lumMatch can 
be used for a simple normalization:

 
Z X m

s= − ,
 

where X is the input image matrix containing the original 
grayscale values—that is, X 5 255 (L 2 Lmin) /(Lmax 2 
Lmin, where L is the luminance matrix as measured on the 
computer monitor, and Lmin is the minimum and Lmax the 
maximum luminance that can be displayed on the moni-
tor; see the SHINE and Monitor Calibration section, m 
is the mean of the original values, and s is the standard 
deviation. For simplicity, we will refer to the grayscale 
values contained in X as luminance values throughout the 
article. The desired mean (M) and desired standard devia-
tion (S) can then be applied to obtain the output image 
matrix E containing the scaled luminance values:

 E 5 ZS 1 M. 

The default values for M and S are obtained by averaging 
the means of all input stimuli and the standard deviations 
of all input stimuli, respectively.

As with exact histogram matching (see the Luminance 
Histogram Matching section), there are cases in which 
normalization on the whole image will give the best re-
sults and cases in which it might be advantageous to con-
sider the foreground and the background separately. Using 
the function separate, SHINE transforms the input image 
into a binary template from which it extracts which pixels 
belong to the foreground and which belong to the back-
ground. A simple example illustrates why separate equal-
ization might be important: Assume one wanted to equate 
a stimulus consisting of a relatively bright object on a 
midgray uniform background with a stimulus depicting a 
relatively dark object on the same midgray background. If 
the luminance adjustment was applied to the whole image, 
the first stimulus would end up with a darker background 

toolbox has successfully been used by us, as well as by 
others (e.g., Fiset, Blais, Gosselin, Bub, & Tanaka, 2008; 
Williams, Willenbockel, & Gauthier, 2009), in studies on 
visual perception to equate (or parametrically vary) low-
level image properties across experimental stimuli. More-
over, prior to establishing the standard version of SHINE 
presented here, in a number of other behavioral and neu-
roscientific studies earlier or partial forms of these pre-
processing steps were successfully used to achieve strict 
stimulus control (e.g., Adolphs et al., 2005; Liu, Harris, & 
Kanwisher, 2002; Loschky et al., 2007; Mack, Gauthier, 
Sadr, & Palmeri, 2008; Sadr & Sinha, 2001, 2004; Xu, 
Liu, & Kanwisher, 2005).

METHod

The main m-file is SHINE, which calls the functions for 
the individual adjustment steps, such as histogram match-
ing or Fourier amplitude matching. In SHINE, one can 
specify the parameters—for instance, the type of match-
ing desired, the number of iterations, and whether to per-
form the luminance adjustment on the whole image or 
separately for selective regions, such as foreground and 
background. The individual functions called by SHINE 
are described in the following sections, and Figure 1 pro-
vides an overview of the structure of the toolbox.

Normalizing and Scaling Mean  
Luminance and Contrast

In some cases, it might be desirable to equate the im-
ages in terms of mean luminance and contrast (i.e., the 
standard deviation of the luminance distribution) only, in-
stead of specifying the exact histogram shape and thereby 
equating the means and standard deviations automatically. 
The former typically results in higher image quality be-
cause no noise is introduced, as it is in most cases of exact 

SHINE Toolbox

sfPlot spectrumPlot
imstats

SHINE
readImages getRMSE

separate ssim_index
(Wang, 2003)

lumMatch histMatch specMatch sfMatch

avgHist
tarhist hist2list match

ssim_sens
(Avanaki, 2009) rescale

Figure 1. overview of SHINE toolbox functions and their calling 
structure. For example, the SHINE function calls the specMatch func-
tion, which calls the rescale function.
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with another target—for example, by using the function 
tarhist, which sorts the luminance values of the input 
images in ascending order and then averages the values 
across images (e.g., the darkest values across all images, 
the second darkest, etc.) to obtain the target (Figures 3A 
and 3B).

In general, two strategies can be applied for histogram 
matching: One can exactly match the histograms, or one 
can approximately match them by using the best sub-
optimal pointwise transformation of the luminance values. 
The former is what SHINE does (the built-in MATLAB 
function histeq does the latter). Even though exact histo-
gram matching comes at the expense of increased noise in 
the image, we observed that in many cases image quality 
is still very high after applying SHINE (see Figures 3A–3C 
for examples and the Joint Matching of Certain Low-Level 
Properties section for image quality measures). Several 

than the second image, so that the background itself would 
contain diagnostic information. In some cases, applying 
the matching step separately to selective regions might 
therefore be preferable.

Luminance Histogram Matching
The SHINE toolbox includes the function histMatch, 

which exactly matches the luminance histograms of a 
number of source images with a specified target histo-
gram. Specifically, it calls the function match, which trans-
forms one luminance distribution into another by remap-
ping the pixel values to control how frequently they occur 
relative to others. The average luminance distribution of 
the input set, which is computed using avgHist and then 
transformed into a sorted list of luminance values using 
hist2list, serves as the default target (Figures  2A–2D). 
Alternatively, it is possible to provide the match function 
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Figure 2. Illustration of the basic luminance histogram- matching approach using simple patterns. The histograms show luminance 
(in arbitrary linear units [ALU]) on the x-axis and the number of pixels on the y-axis. The target histogram was computed by averag-
ing the histograms of the two input images. (A) Histogram matching was performed on two uniform surfaces (100 and 200 ALU) of 
slightly different sizes centered on a uniform gray background (127 ALU). The output surfaces contain 50% 100-ALU pixels and 50% 
200-ALU pixels in randomized order. The background remained unaltered. (B) Two surfaces of the same size as in panel A with 50% 
100-ALU and 50% 200-ALU pixels served as input. The output is identical to the input.



SHine toolbox    675

image and the pixels of the target distribution are sorted 
separately by their luminance value from darkest to 
lightest. The source pixel with the smallest value is then 
assigned the smallest value of the target, the source pixel 
with the second smallest value is assigned the second 
smallest value of the target, and so forth. Ambiguity 
arises when a number of source pixels with the same lu-
minance value have to be broken down into two or more 

ways of exact histogram matching have been proposed and 
evaluated in terms of visual quality of the result and com-
putational complexity (e.g., Avanaki, 2009; Bevilacqua & 
Azzari, 2007; Coltuc, Bolon, & Chassery, 2006; Morovic, 
Shaw, & Sun, 2002; Rolland, Vo, Bloss, & Abbey, 2000).

SHINE follows the exact global histogram-matching 
approach described in Table 1 (see also Avanaki, 2009; 
Rolland et al., 2000). Basically, the pixels of the source 

Table 1 
Algorithm for Exact Global Histogram Specification

Step 0 Let the target histogram be H = {h0, h1, . . . , hD21}, where D is the number of possible luminance values 
(e.g., 256 in an 8-bit image). It is assumed that 

  i=0
D−1∑  hi = N, where N equals the number of pixels in the 

image. If this assumption is not met, scale H (and perhaps round some hi) to satisfy this assumption.

Step 1 Sort the pixels of the source image by their luminance value in ascending order (and in the cases in which 
the values are the same, randomize the pixels).

Step 2  Starting from the first pixel on the sorted list, assign the first h0 pixels a new value of 0. Continue by assign-
ing the next h1 pixels a new value of 1, and so on until all pixels are allotted their new values.
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Figure 2, continued. Illustration of the basic luminance histogram- matching approach using simple patterns. The histograms show 
luminance (in arbitrary linear units [ALU]) on the x-axis and the number of pixels on the y-axis. The target histogram was computed 
by averaging the histograms of the two input images. (C) Illustration with surfaces similar to panel B but with different amounts of 
dark and light pixels. (d) Illustration with input surfaces of three different luminance levels (100, 200, and 230 ALU) with different 
numbers of pixels of each.
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for stimuli displaying a single object on a uniform or noisy 
background; also see the Specifying Fourier Amplitude 
Spectra section).

Specifying Fourier Amplitude Spectra
Using Fourier analysis, any complex two-dimensional 

image can be broken down into the sum of a set of sinusoi-
dal gratings defined by four parameters: spatial frequency, 
orientation, amplitude, and phase. The spatial frequency 
refers to the width of the gratings’ bars and can be speci-
fied as the number of light:dark cycles per image. Orienta-
tion refers to the angle of the light and dark bars, specified 
in degrees counterclockwise from vertical; amplitude is 
given by the difference in luminance between the lightest 
and the darkest parts of the grating; and phase refers to the 
position of the sinusoid relative to some reference point.

After performing a Fourier transform on an image (e.g., 
with the built-in MATLAB function fft2), one can obtain 
two components: the amplitude spectrum and the phase 
spectrum.2 The amplitude spectrum specifies the ampli-
tude of each constituent grating at a particular spatial 
frequency and orientation. The phase spectrum specifies 
the phase of each grating at a particular spatial frequency 
and orientation. If all of the gratings at the corresponding 
phases and amplitudes were summed, they would exactly 
result in the original image.

SHINE includes the function specMatch, which matches 
the amplitude spectrum of the source image with a speci-
fied target spectrum. Each source image is submitted to a 
fast Fourier transform (FFT), and the spectrum is shifted 
so that the low spatial frequencies occupy the central re-
gion. If not specified otherwise, the average spectrum is 
obtained across all input images and serves as the default 
target. The phase of the original image is then combined 
with the target amplitude spectrum and back-transformed 
from the frequency into the spatial domain using an in-
verse fast Fourier transform (IFFT).

This approach matches the source spectrum exactly 
with the target spectrum at each spatial frequency and ori-
entation (Figure 4C). The output images typically look a 
bit cloudy, and their visual quality depends on the similar-
ity of the input images; for example, equating the spectra 
of a number of faces will likely yield better results than 
equating the spectra across different categories, such as 

groups to match the target: It has to be decided which 
pixels get new values. For example, this would be the 
case if the two darkest pixels of the source image had the 
same luminance value (e.g., 0), but the target histogram 
contained only one pixel with a value of 0. So which of 
the two source pixels should be assigned a new value? 
The match function of SHINE uses random assignment 
(as was applied in Williams et al., 2009), but different ap-
proaches have been suggested (Coltuc et al., 2006; Wan 
& Shi, 2007). In all cases, the histogram-matching step 
produces a set of images that are made up of the same 
pixels, only with a different arrangement (Figures 3A 
and 3B). In this way, mean luminance, contrast, and all 
other characteristics of the histogram (e.g., skew) are 
equated across stimuli.

In order to generate output images that not only are ex-
actly equated in histograms, but also retain the structure 
of the original image as much as possible, the histMatch 
function includes the method developed by Avanaki 
(2009): It allows for iteratively optimizing the structural 
similarity (SSIM) index (Wang, Bovik, Sheikh, & Simon-
celli, 2004; see the Joint Matching of Certain Low-Level 
Properties section for more details on the SSIM index) be-
tween the original and histogram-matched images. In each 
iteration, the match function is applied to obtain an image 
with the specified target histogram. The visual quality of 
the histogram-matched image is measured using the SSIM 
index, and an SSIM gradient with respect to that image 
is computed using the ssim_sens function.1 The gradient 
is then employed to adaptively increase the SSIM of the 
output (see Avanaki, 2009, for details). The algorithm is 
summarized in Table 2. Using SSIM gradient ascent, the 
perceptual image quality can be improved considerably 
relative to basic histogram matching alone, whereas the 
histogram remains exactly as specified. This benefit, how-
ever, comes at the cost of increased runtime, which might 
make the SSIM optimization option unsuitable for the 
matching of very large image sets.

SHINE also includes the option for applying the histo-
gram matching selectively to subsets of pixels—for ex-
ample, separately to the foreground and the background. 
This can improve output quality in some cases, because it 
prevents object pixels from ending up in the background 
and vice versa (e.g., one might want to choose this option 

Table 2 
SSIM optimization Algorithm of Avanaki (2009)

Step 0 Let X show the original input image. Set Xnew 5 X.
Step 1 Apply the match function to Xnew to obtain image Y with given histogram H.
Step 2 Compute ∇y SSIM(X,Y ) and SSIM(X,Y ) using the ssim_sens function.
Step 3 If convergence is reached, then break.
Step 4 Set Xnew 5 Y 1 μN ∇y SSIM(X,Y ) and go to Step 1.
Step 5 Output Y.

Note—μ is a positive constant denoting the step size, ∇y represents gradient with respect 
to image Y, and N is the number of pixels in X. SSIM(X,Y ) is a measure of perceptual 
similarity of X and Y. The convergence criterion in Step 3 may be given by desired 
output quality [i.e., SSIM(X,Y ) . threshold] or by a certain number of iterations (or a 
combination thereof). The updated Xnew in Step 4 is more similar to X, because each 
pixel of Y was altered so that the SSIM was increased. The histogram of the output image 
remains exactly as specified.
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Figure 3. Illustration of the match function of SHINE. (A) Two base face images with their luminance histograms (left) and the 
corresponding SHINE output images with their matched histograms (right). The target histogram was obtained using the function 
tarhist. (B) Histogram matching was performed on two natural scenes. As in panel A, the function tarhist was used to obtain the target 
histogram. (C) Histogram specification is illustrated for a face and a greeble. Here, the target was computed independently of the two 
input images by averaging the histograms of several faces (not shown) using avgHist. As a result, the greeble was altered more than the 
face when applying the target.
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Figure 4. Illustration of the sfMatch and specMatch functions of SHINE. (A) Three source images (a car, a chair, and a face) are 
shown with their Fourier spectra displayed as polar plots, where energy is plotted as a function of spatial frequency (distance from 
the origin) and orientation (angle). The log–log plot on the right depicts the rotational average of the spectra (i.e., the energy at each 
spatial frequency, in cycles per image, cpi, averaged across orientations). (B) Using  sfMatch, the rotational average of the Fourier 
spectra was equated while the energy distribution across orientations was preserved (see the text for details). (C) Using specMatch, the 
Fourier spectra were equated on spatial frequencies and orientations. The output in panels B and C is shown after the rescaling of the 
luminance values so that absolutely all pixels of the three images are in the range of 0–255.
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255, but some clipping is still allowed to occur in the final 
product. The second alternative gives a slightly imperfect 
result, which is why the default SHINE is set to the first 
alternative. However, the second approach squashes the 
images’ luminance less than the first one and so might 
give nicer-looking images with a little more contrast.

Joint Matching of Certain Low-Level Properties
Theoretically, one could perfectly match all low-level 

properties across an image set; however, then the images 
would be identical. One challenge is to equate certain 
properties while preserving others. SHINE attempts to pre-
serve the phase information in the image while matching 
the luminance histograms and Fourier amplitudes. This is 
associated with at least two problems: First, phase can also 
be affected by histogram matching (through the introduc-
tion of noise), and the visual quality of the image is thus 
decreased; second, histogram matching and Fourier ampli-
tude matching affect each other. That is, Fourier amplitude 
matching performed after histogram matching will distort 
the histograms again to some extent and vice versa.

To measure the decrease in visual quality, we added 
two functions for image quality assessment to SHINE. 
The getRMSE function computes the root-mean square 
error (RMSE), which is a simple and widely used met-
ric for quantifying the visibility of differences between a 
distorted and a reference image. Because it is not always 
well matched to perceived visual quality, we also included 
the SSIM index (Wang et al., 2004) computed by Wang, 
Bovik, Sheikh, and Simoncelli’s (2003) ssim_index func-
tion. The SSIM index has been developed for quality as-
sessment based on the degradation of structural informa-
tion. If the input images are identical, the SSIM index is 1, 
and if they are uncorrelated, it is very small. Although it 
will be impossible to completely avoid alterations to the 
visual quality, these two quality assessment functions pro-
vide means for comparing the different matching options 
objectively and could be helpful for finding the appropri-
ate low-level equalization procedure (or parameters).

In order to address the problem of histogram and Fourier 
amplitude specification affecting each other, we developed 
and implemented an iterative approach: The histogram and 
Fourier amplitude-matching steps can be performed a num-
ber of times, whereby the respective target is recalculated 
at each iteration. Using this iterative strategy, we were able 
to reach a high degree of joint matching in previous studies 
using SHINE (e.g., Williams et al., 2009). Figures 5–6C 
illustrate the increasing degree of joint equalization over 
iterations for a few typical image sets. Specifically, Figure 5 
shows one car, one chair, and one face stimulus from the 
set used by Williams et al. with the corresponding histo-
grams after 0, 1, and 3 iterations. One iteration consisted 
of histMatch followed by sfMatch (with default rescaling 
of the luminance values). It can be seen that the histograms 
gradually became more similar to each other.

In Figures 6A–6C, we used the same face and car im-
ages as in Figure 5 (Set 1) and the scenes depicted in 
Figure 3B (Set 2). We ran 20 iterations separately on the 
two sets, whereby one iteration consisted of histMatch 
followed by specMatch (with default rescaling) or vice 

faces and cars. If image quality is a concern, we propose 
to use the sfMatch function described below.

Specifying the Rotational Average Amplitude  
at Each Spatial Frequency

The function sfMatch applies a more lenient approach 
for equating the Fourier amplitudes across stimuli. Unlike 
specMatch, it preserves the amplitude distribution across 
orientations while ensuring that the rotational average am-
plitudes for a given spatial frequency are equated between 
images. The initial steps are the same as those described 
above for specMatch: The source images are subjected to 
an FFT, and the output is shifted so that the low spatial fre-
quencies are in the center of the spectrum. If not specified 
otherwise, the target spectrum is obtained by averaging 
across input spectra. A coefficient is then computed for 
each spatial frequency: The amplitudes across orientations 
at the given spatial frequency are summed, separately for 
the source and the target spectrum. For each spatial fre-
quency, the resulting target sum is divided by the corre-
sponding source sum to obtain a coefficient. Afterward, 
the amplitude at each spatial frequency and orientation is 
multiplied with the respective coefficient. The phase of the 
original image is combined with the modified amplitude 
spectrum and back-transformed into the spatial domain 
using an IFFT. As a result, the rotational average of the 
amplitude spectrum is equated between images (besides 
slight rounding errors that may arise), whereas the dis-
tribution of amplitudes among orientations is preserved. 
Although this controls overall amplitude, it often results 
in higher similarity of the output image with the source 
image than would strictly equating the amplitudes at each 
spatial frequency and each orientation (Figures 4A–4C).

Rescaling of Luminance Values After the IFFT
It is possible that after the Fourier amplitudes are equated 

and the IFFT is applied, the luminance values of the re-
sulting images are shifted out of the desired range or out 
of the range that can be displayed—for example, below 0 
or above 255 for 8-bit images. In this case, the negative 
values and the ones larger than 255 will be clipped to 0 
and 255, respectively. This results in a change of the ac-
tual final luminance and contrast but usually only a small 
change in the amplitude spectrum. One might want to re-
scale the luminance values after Fourier amplitude match-
ing in such a way that all or at least the majority of the val-
ues fall back into the range of 0–255 (Sadr & Sinha, 2001, 
2004). This is not done separately for each image, because 
individual rescaling would result in images that no longer 
match the properties that one set out to normalize in the 
first place. The rescale function of SHINE therefore first 
obtains the full range of luminance values coming out of 
the IFFT, for all of the images, and then computes one set 
of rescaling values to apply to each image. Specifically, 
after going through all of the images and calculating the 
lowest and highest luminance values, there are two op-
tions: It is possible to rescale all images with the same lin-
ear scaling parameters so that absolutely all pixel values 
for all images are in the range of 0–255 or, on average, 
the smallest and largest pixel values are rescaled to 0 and 
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for each set at the respective iteration. The results show 
that the individual matching steps worked precisely, be-
cause the property that was matched last (e.g., amplitude 
spectra for histMatch followed by specMatch) was nearly 
perfectly equated for all iterations. The property that was 
matched first was altered less as the number of iterations 
increased, thus converging toward 0. Clearly, the greatest 
improvements in joint equalization were reached within 
the first four iterations, independently of equalization 
order. The SSIM index, which initially equaled 1, re-
mained fairly high and constant through Iterations 1–20. 
For Set 1, it equaled .76 at Iteration 1 and .74 at Itera-
tion 20, when histMatch was performed first. When spec-
Match was applied first, it equaled .80 and .78 for Itera-

versa. The histogram matching was applied separately to 
the foreground and the background for the images in Set 1 
and to the whole image for those in Set 2. To trace the in-
creasing degree of joint equalization of amplitude spectra 
and luminance histograms, we computed the RMSE be-
tween the amplitude spectra of the two images in each set 
for each of the iterations, and similarly, we computed the 
RMSE between the normalized histograms of each image 
pair. As a comparison, for the original images, the RMSE 
between the amplitude spectra was 30.7394 for Set 1 and 
21.3955 for Set 2; the RMSE between the normalized 
histograms was 0.0069 for Set 1 and 0.0046 for Set 2. As 
an image quality measure, we computed the mean SSIM 
index between the original image and the SHINE output 
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Figure 5. Iterative histogram and Fourier amplitude matching. The histograms of three sample 
images (a car, a chair, and a face) are shown before applying SHINE (top), after one iteration (mid-
dle), and after three iterations (bottom). Each iteration consisted of equating the histograms using 
histMatch (with the average histogram serving as the target) and then equating the rotational aver-
age of the Fourier spectra using sfMatch. The latter step altered the histograms; however, after a 
number of iterations, the histograms typically converge toward the target.
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Figure 6. The iterative equalization approach illustrated for two typical image pairs (Sets 1 and 2). Left: 
(A) For each set, the root-mean square error (RMSE) between the two images’ Fourier spectra is plotted 
over Iterations 1–20. The dotted line shows the results for Fourier amplitude spectrum matching (spec-
Match) followed by histogram matching (histMatch) and the full line for histMatch followed by specMatch. 
(B) Analogous to (A), the RMSE between histograms is shown for each image pair over iterations. (C) The 
average structural similarity (SSIM) index between the original images and the corresponding SHINE 
output is plotted for each set over Iterations 1–20. Right: The output images of Set 1 (left column) and Set 2 
(right column) are shown after 1 and after 20 iterations of histMatch followed by specMatch or vice versa.
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the nonlinearity. Gamma correction is a common practice 
and can be done in various ways (e.g., Metha, Vingrys, 
& Badcock, 1993; Pelli & Zhang, 1991; Poynton, 1993; 
Stanislaw & Olzak, 1990).

SUMMARy 
The default SHINE

The default version of SHINE first exactly equates 
the Fourier amplitude spectra, whereby the average spec-
trum obtained across all input images serves as the tar-
get. Rescaling ensures that the luminance values stay in 
the desired range and are not clipped. Afterward, SHINE 
equates the luminance histograms across all input images, 
so that each output image has the same luminance distri-
bution as the average of the input sets. Fourier amplitude 
and histogram matching are performed iteratively a num-
ber of times specified by the researcher and depending 
on the requirements of the experiment to obtain a high 
degree of joint matching of Fourier amplitudes and lumi-
nance properties. Demos of the main program and indi-
vidual functions are available online at www.mapageweb 
.umontreal.ca/gosselif /shine.

dISCUSSIoN

The SHINE toolbox contains a number of MATLAB 
functions for controlling low-level image properties, 
such as luminance, contrast, and spatial frequency. Spe-
cifically, it can be used for specifying the (rotational 
average of the) Fourier amplitude spectra, for exact lu-
minance histogram specification, and for normalizing 
and scaling mean luminance and contrast. SHINE offers 
ways to apply the luminance adjustments selectively to 
a subset of pixels (e.g., separately to the foreground and 
the background), and it includes the option to perform 
the histogram and Fourier amplitude specification itera-
tively a number of times to reach a high degree of joint 
matching of luminance and spatial frequency properties 
between source and target.

The main motivation behind SHINE was to provide 
tools that can easily be applied (even by novice  MATLAB 
users) for equating a number of low-level properties 
across a stimulus set in order to minimize low-level con-
founds in studies on higher level processing. It has been 
shown that early vision is sensitive to variations in lu-
minance and spatial frequency content (see De Valois & 
De Valois, 1990, for a review), and several researchers 
have recently emphasized the importance of disentangling 
low- and high-level factors when using different physical 
stimuli across psychological conditions (e.g., Luck, 2005; 
Rousselet, Husk et al., 2008; Sadr & Sinha, 2001, 2004). 
Controlled image normalization is an important issue in 
various research fields, including psychophysics and vi-
sual search, and for different brain-imaging techniques, 
such as fMRI, MEG, and EEG. SHINE, which allows for 
controlling both luminance and spatial frequency char-
acteristics of images with great precision, should thus be 
useful in a variety of experiments in order to minimize 
low-level confounds.

tions 1 and 20, respectively. Similarly, for Set 2, the SSIM 
index was .8 (Iterations 1–20) when the histograms were 
equated first and remained at .81 for all iterations when 
the spectra were matched first. Depending on the input 
set and the desired degree of matching, one might want 
to choose different numbers of iterations and might want 
to apply the steps in a different order.

Plotting Functions and Image Statistics
The Image Processing Toolbox of MATLAB features a 

function for plotting the luminance histogram of a given 
image (the imhist function). However, it does not provide 
functions for directly plotting the rotational average of the 
Fourier amplitude spectrum or the amplitude spectrum 
itself. SHINE includes these two plotting functions (sfPlot 
and spectrumPlot, respectively), which can be useful for 
checking the SHINE output, or for assessing low-level 
variations in the source images. Moreover, SHINE fea-
tures a function for computing a number of image statis-
tics across an image set (the imstats function).

Applying SHINE to Color Images
SHINE was originally designed for the preprocessing of 

grayscale luminance images, but there are ways to apply 
it to color images as well. In particular, the luminance-
matching functions can be directly applied to color images 
if the images are in a color space that allows for separating 
luminance as one dimension, as does the HSL color space. 
One would then equate the histograms—or just the mean 
and standard deviation of the luminance distribution—of 
the respective layer without altering the hues and satura-
tion of the image.

For equating the Fourier amplitudes, one could use the 
RGB color space and do a separate matching of amplitude 
spectra for each of the color layers. The basic matching 
step would thus be analogous to how it is described for 
one-layer grayscale images but would have to be applied 
three times for each RGB color image.

SHINE and Monitor Calibration
The matching functions of SHINE (except histMatch) 

assume that the relationship between the stored luminance 
values that make up the image matrix X and the luminance 
intensity produced at the face of the screen is linear. How-
ever, on a typical computer–monitor system, this is not the 
case. When using LCDs, one can correct for the nonlin-
earity by setting the gamma parameter to 1. When using a 
CRT monitor, however, this will not suffice. To meet the 
linearity assumption of SHINE, it is important in such a 
case to perform gamma correction after equating the low-
level properties of a set of images expressed as Xs (see the 
Normalizing and Scaling Mean Luminance and Contrast 
section). For example, the inverse power function convert-
ing the luminance intensity (L) into RGB values (V )—

 V L k≈ −( ) ,
1

gamma
 

where gamma is a positive constant usually close to 2.5 
and k is a constant that corresponds to the minimum lu-
minance of the monitor—can be applied to correct for 
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image sets (e.g., Adolphs et al., 2005; Liu et al., 2002; 
Losch ky et al., 2007; Mack et al., 2008; Sadr & Sinha, 
2001, 2004; Willenbockel et al., 2010; Xu et al., 2005).

The SHINE approach has thus been successfully used 
for both equating and parametrically varying low-level 
properties, whereas the structure contained in the images 
was largely preserved. We hope that other laboratories will 
find SHINE as useful as we have for minimizing potential 
low-level confounds in studies on higher level processes.
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