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In 1959, Oliver Selfridge proposed a model of letter
perception, the Pandemonium model, in which the cen-
tral hypothesis was that letters are identified via their
component features. Although a consensus developed
around this general approach over the years, key evidence
in its favor remained lacking. Recent research has started
to provide important evidence in favor of feature-based
letter perception, describing the nature of the features,
and the time-course of processes involved in mapping
features onto abstract letter identities. There is now hope
that future ‘pandemonium-like’ models will be able to
account for the rich empirical database on letter identifi-
cation that has accumulated over the past 50 years, hence
solving one key component of the reading process.

What is the letter ‘a’?
The cognitive scientist and philosopherDouglasHofstadter
once noted [1] that ‘The central problem of Artificial Intelli-
gence is the question: what is the letter a?’ WhatHofstadter
was suggesting in his provocative statement is that un-
derstanding the mechanisms underlying invariant recog-
nition of the arbitrary signs that compose the Roman
alphabet (a = A 6¼ b) will be a major step towards under-
standing the essence of human intelligence. Letters
represent a perfect example of the kind of symbol that
humans thrive on, and letters are sufficiently limited in
complexityandnumber toprovideahighly tractabledomain
of investigation. Letters are also the gateway to reading [2–

4], perhaps the most complex skill that humans have to
master without specific genetic predisposition. Further-
more, a letter-based strategy for reading in alphabetical
orthographies has probably developed because it is farmore
economical to solve shape invariance for 26 letters compared
with tens of thousands of words [3], and understanding
shape-invariant recognition is a major endeavor of current
research on visual object perception [5]. In this article we
review exciting new developments in this central topic of
cognitive science. Recent research provides converging evi-
dence in support of the classic account of letter perception
formulated by Oliver Selfridge 50 years ago (the Pandemo-
nium model), and the hope that a complete account of the
processes involved in recognizing a letter of the alphabet is
within reach.

Pandemonium in the air
The starting point of contemporary research in this field is
Selfridge’s [6,7] seminal work, laying the foundations for a
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cognitive theory of letter perception. In Pandemonium,
letter identification is achieved by hierarchically organized
layers of feature and letter detectors. Support for such a
hierarchical organization was provided at that time by
neurophysiological studies of the cat visual cortex [8]. In
spite of this evidence, an alternative theoretical approach,
template-matching, has also been favored by cognitive
scientists. Template-matchingmodels assume that several
shape-exemplars of a given letter are stored in memory,
and that recognition consists in finding the best match
between a target item and one of these memory traces. In
this approach, a new template is learned and stored each
time a new target stimulus differs notably from existing
templates. Simple versions of template-matching compare
descriptions of the stimulus as a set of pixel intensities
with corresponding representations in long-term memory,
but the distinction between feature-based and template-
matching approaches can be blurred by incorporating tem-
plate matchers as feature detectors in Pandemonium [9].
Nevertheless, the major drawback with template-match-
ing models, as already noted by Neisser [10], is that the
matching procedure requires prior normalization of the
stimulus (adjusting the stimulus to a prototypical position,
size and orientation), and proposals for such a process in
most cases lack psychological and neurophysiological
plausibility. Furthermore, a general consensus has devel-
oped over the years in favor of feature-based approaches.
What is the key evidence for this, and what are the
features?
Show me the features
The confusion matrix is the traditional method used to
hunt for features. In a typical experiment used to generate
a confusion matrix, isolated letters are presented in data-
limited conditions (brief exposures and/or low luminance
and/or masking) and erroneous letter reports are noted.
Error rate (e.g. reporting F when E was presented) is
hypothesized to reflect visual similarity driven by shared
features. An analysis of the pattern of letter confusions was
therefore expected to reveal the set of features used to
identify letters. There are >70 published studies on letter
confusability, and some have formed the basis of concrete
proposals of lists of features for letters of the Roman
alphabet, mainly consisting of lines of different orientation
and curvature [11–13].

Onemajor drawback of standard letter confusion data is
that the method used to degrade stimuli (to generate
confusion errors) influences the nature of the confusions
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Figure 1. Illustration of inter-letter similarities (Euclidian distances) revealed by a same–different matching experiment [16]. (a) A dendogram plot in which the height of

connecting bars reflects Euclidian distance (smaller = closer). Inter-letter similarities form clusters shown in different colors. (b) A projection of the same Euclidian distances

on a plane [44]. The original distances in high-dimensional Euclidian space are coded by the color of connecting lines. In both panels it can be seen that letters with specific

combinations of simple features group together, such as ‘vertical line’ plus ‘circle’ (b, d, g, p, q). This corresponds to the main similarity class obtained by principal

component analysis. The second similarity class, corresponding to small curvilinear shapes (a, c, e, o, s), is also visible, in addition to combinations of similarity classes

such as ‘vertical line’ plus one small feature (f, t, i, j, l).
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and furthermore confounds perceptual confusions with
post-perceptual guessing. In one of the first studies to
overcome this drawback, Podgorny and Garner [14] used
a same–different matching task and showed that the
resulting discrimination-time matrix for letters correlated
well with judgments of perceptual similarity (see also Ref.
[15] for confusion matrices expressed as saccade latencies).
Furthermore, having response time (RT) as the dependent
measure avoids the problem of empty cells and provides a
ratio scale that enables the application of more powerful
metric analyses. More recently, Courrieu, Farioli and
Grainger [16] used a Go–NoGo variant of the same–differ-
entmatching task, with participants responding only when
the two letters were different. The discrimination times
were transformed into Euclidean distances by using a
‘monotonic embedding’ technique [17]. A principal com-
ponent analysis revealed 25 dimensions, many of which
Box 1. The psychophysics of letter perception

The visual world can be described in terms of variations in spatial

frequency, that is, changes in luminance across space [45]. Letters

have a broad spatial frequency spectrum, so what part of the

spectrum is used to identify letters? Two main techniques have been

used to answer this question – measuring identification thresholds for

bandpass filtered letters, and measuring variations in identification

thresholds as a function of the bandpass characteristics of a masking

stimulus (critical-band masking, Figure 2 in main text). The key to

both approaches involves comparison of human performance with

that of an ideal observer. Letters are better identified with high-pass

filters than with low-pass filters, but this is because more information

is available in the high-pass stimuli. Ideal observer analysis enables

information availability to be equated, hence enabling biases in

information utilization to emerge [46]. The measure of human

performance relative to the ideal observer is called efficiency.

On the one hand, several studies have reported that observers

identify octave-band wide filtered letters with almost as much

efficiency as unfiltered letters for all but extreme (very high and very

low frequency) bandpass filters [46–48]. On the other hand, critical-

band masking experiments indicate that only a single channel is used

to identify broadband (i.e. unfiltered) letters, with the centre
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were clearly interpretable as elementary visual features
(Figure 1).

A new look at features

Two recent articles open up an exciting new perspective for
research investigating feature-based letter perception. Pelli
et al. [18] measured contrast thresholds to Roman letters
presented in different fonts, in addition to letters and char-
acters fromother languages. The authors expected letters to
be identified optimally, like a single feature (i.e. a spatial
frequency channel or filter in a grating experiment). This is
what would be expected from a template-matching
approach. To test this, Pelli et al. [18] measured efficiency
of letter identification (Box 1) under varying viewing con-
ditions and found that efficiency was independent of
stimulus duration, eccentricity and size, but did vary across
different alphabets and fonts. The sub-optimal performance
frequency of the channel varying as a function of letter size, font

and alphabet [21,49]. This could be because the presence of noise in

the critical-band masking procedure makes it harder to learn to use

different spatial frequency channels in the course of an experiment

[50] or because filtered stimuli force participants to use information

that they would otherwise ignore.

This line of research was extended further in the recent work of Fiset

et al. [20] applying the ‘bubbles’ technique of Gosselin and Schyns to

letter identification. The bubbles technique aims to uncover the parts of

the image that are diagnostic of the observer’s performance (i.e. correct

letter identification). The technique, therefore, not only manipulates

spatial frequency filtering, but also explores the significance of different

parts of the image. As illustrated in Figure 2 (In the main text), the image

is first band pass filtered at different channel frequencies and a random

set of ‘bubbles’ is extracted from the filtered letters. The sampled

images are summed across frequency channels to generate a

‘bubbelized’ image presented to observers. Variation in performance

is then traced back to information available in the image (coordinate of

bubble center) at each frequency band using image classification

procedures (least-squared multiple linear regression on spatial co-

ordinates and performance).



Figure 2. (a) Illustration of critical-band masking. Broadband letters (top row) are combined with bandpassed noise (middle row) to form a masked letter stimulus presented

for identification. Three cycles per letter noise (middle) acts as a better mask than masks formed by either lower (left) or higher (right) spatial frequencies. (b) Illustration of

the ‘bubbles’ technique applied to letters. Letters are first bandpass filtered with a series of five octave-wide spatial frequency channels (top row). Each filtered image is then

randomly sampled (randomly selected x and y coordinates), and each sample smoothed by a Gaussian kernel with standard deviation proportional to the channel

frequency. This generates a set of ‘bubbles’ representing parts of the image (middle row), the number and size of which is determined by the channel frequency of the

filtered letter in the top row. The bubbles are then used as a spatial window that determines what is extracted from the filtered images (top row) to form the parts of the

image shown in the bottom row. The sum of these image parts forms the final bubbelized image of the letter A (right image). Adapted, with permission, from Ref. [20].
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of human observers was therefore taken to reflect feature-
based letter identification, in which identification of the
whole is affected by the identification of each component
feature. What is it that changes across alphabets and fonts
thatmight be driving these changes in efficiency? Pelli et al.
[18] found one particular measure that correlated highly
with letter identification efficiency. That was perimetric
complexity – the square of the length of inside and outside
perimeter, divided by ink area (for size invariance). In the
absence of independent evidence concerning the nature of
the features subtending letter identification, perimetric
complexity provided ameasure of visual complexity thought
to be proportional to the number of features.

The second breakthrough has come from recent
research applying Gosselin and Schyns’ [19] ‘bubbles’ tech-
nique (Box 1 and Figure 2) to explore the nature of the
critical features for letter perception. The classification
images obtained by Fiset et al. [20] for 26 lowercase and
26 uppercase Roman letters in Arial font revealed several
important pieces of evidence. First, on average only 32% of
the printed area of uppe and 24% of lowercase letters was
used by observers to identify letters, and the greatest
proportion of useful information was apparent in the 2–4
cycles per letter frequency band, in line with estimates
from critical-band masking studies [21]. Second, the
analysis revealed that terminations were by far the most
diagnostic piece of information for letter identification,
with intersections and horizontal lines providing further
significant sources of information for uppercase letters. For
example, the letterWwasmainly distinguished from other
letters by the presence of two terminations, one in the
upper left corner and the other in the upper right corner.

The time-course of letter perception
Standard behavioralmeasures of letter identification, such
as percentage of correct responses in data-limited con-
ditions and RTs to non-degraded stimuli, all represent
the final result of an accumulation of component processes.
However, a complete understanding of letter perception
must incorporate knowledge about how the component
processes develop through time. The masked priming
paradigm [22] has proven its utility as a tool for examining
the earliest phases of visual word recognition (see Ref. [3]
for review), and has been usefully applied with letter
stimuli to separate out the role of visual factors from
phonological and articulatory factors in letter identifi-
cation and letter naming (Box 2). Masked priming can also
be combined with measures of brain activity that provide a
moment-to-moment reflection of on-going target proces-
sing. In a recent study this combination was used to
investigate the time-course of component processes in
letter identification [23]. This work revealed a cascade of
383



Box 2. Masked priming with single letters

In the masked priming paradigm [22], prime stimuli are presented

briefly enough to prevent the use of conscious predictive strategies

that often contaminate standard priming effects. This paradigm is

ideally suited for investigating early perceptual processing of

familiar visual objects such as letters, without having to degrade

target stimuli, and therefore complements the psychophysical

procedures described in Box 1. In the majority of masked priming

studies of letter identification performed up to now, primes were

complete letters that varied in terms of their visual similarity with

the target (e.g. c-C versus a-A) and whether or not they were

nominally identical to the target (e.g. a-A versus c-A). The two main

tasks used in these studies were found to be differentially sensitive

to these two priming manipulations. The alphabetic decision task

(speeded classification of letters versus non-letters) was found to

be more sensitive to visual overlap than nominal overlap [51–54],

whereas the letter naming task was much more sensitive to

nominal overlap than to visual overlap [51,54,55] (Figure I). One

methodological conclusion from this research is that the letter

naming task might be overly sensitive to phonological-articulatory

factors, which are interesting in their own right, but render the task

relatively insensitive to visual factors. However, phonological

priming effects in letter naming only occur with complete

phonological overlap across primes and targets. Similar sounding

letters (P-B) do not facilitate letter naming relative to different

sounding letters (F-B) [51,55], whereas homophones of letter

targets (e.g. sea-C) facilitate letter-naming responses to the same

extent as same letter primes (c-C) [51]). The absence of priming

from similar sounding letters might be because the overlap is

practically always on the second phoneme, with mismatching

information on the initial phoneme. Masked priming studies of

word and object naming have shown that initial phoneme overlap

is the key factor driving priming effects [56–58].

Figure I. Effects of nominal identity and visual similarity in three different tasks

combined with masked priming: letter naming (NAM), alphabetic decision (ADT)

and perceptual identification (PIT). Effects of nominal identity are calculated by

comparing visually dissimilar same letter primes (a-A) and different letter primes

(b-A). Effects of visual similarity are calculated by subtracting the priming effect

of a visually similar same letter prime (c-C versus b-C) from the effect of a

visually dissimilar prime (a-A versus b-A). Net priming effects are averaged over

relevant conditions in two studies testing these conditions [51,54], and

expressed as a percentage of the combined priming effect size for each task.
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effects in the event-related potential (ERP) signal as a
function of (i) prime-target visual overlap (peaking at
150 ms post-target onset); (ii) whether or not primes were
the same letter as targets in the same case (180 ms post-
target) and (iii) whether or not primes were the same letter
as targets independently of case (200 ms post-target). This
constitutes important evidence in favor of a generic hier-
archical model of letter identification in which visual fea-
tures aremapped onto abstract letter identities via a series
of increasingly invariant representations.

A comparison of ERPwaveforms generated by letter and
pseudo-letter stimuli can also provide useful information
about the time-course of letter identification. One study
found that the amplitude of the N170 component is larger
for letters than pseudo-letter (false font) stimuli [24].
Another study using pseudo-letters that were matched
to the letter stimuli in terms of component features, found
that ERP waveforms diverged as early as 145 ms post-
stimulus onset [25] (Figure 3). In this study, amplitude of
the P2 ERP component differed across the 14 letters that
were tested, but some information about individual letter
identities was already available in the waveform before the
peak of the P2. This was indicated by the fact that item-
level voltage values in this time window were found to
correlate significantly with predicted letter identification
latencies derived from different versions of a generic inter-
active-activation model of letter perception, comprising
feature and letter detector layers [4]. The best model
was one with excitatory feedforward and feedback connec-
tions between layers, and within-level inhibition across
letters, but no between-level (feature-letter) inhibition.
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The likely neural source of this early letter-specific
brain activity is left occipital-temporal cortex [26–32]. This
fits well with research locating orthographic processing
associated with printed words in a small strip of left fusi-
form gyrus called the visual word form area (VWFA, Ref.
[33]). Single letters dissociated from objects, faces, digits
and letter strings in an area situated anterior to the peak of
the VWFA [27,28,32] (Figure 3). Given their more anterior
location, neurons in this area possibly instantiate abstract
location-invariant letter detectors to be distinguished from
more location-specific letter detectors involved in proces-
sing letter strings [34,35]. Furthermore, the fact that the
letter-specific region and the VWFA fall within a more
general object processing region [29] is in line with the
neuronal recycling hypothesis of Dehaene et al. [34].

Putting the parts together
Recent evidence in favor of a generic feature-based hier-
archical approach to letter perception therefore provides
hope that a complete account of the processes involved in
identifying isolated letters is within our grasp. More soph-
isticated models, such as the one shown in Figure 4, will
probably include multiple layers of simple and complex
features converging on case-specific and possibly font-
specific letter detectors, which map in turn onto more
abstract shape-invariant letter representations [23,34,
36–38].

There are several key questions that need to be
addressed in future developments of hierarchical fea-
ture-based models. One concerns how the spatial
relations between the different features are coded, if at



Figure 3. Examples of letter-specific brain activity. ERP results from Rey et al. [25] shown as (a) scalp maps of voltage differences obtained by subtracting ERP amplitudes

generated by letter and pseudo-letter stimuli in three different time windows, and (c) grand average waveforms for letters and pseudo-letters over electrodes shown in (b).

(d) Regions of brain activation measured by fMRI, with the single letter region [28,32] indicated by red circles (left anterior fusiform), and for comparison the visual word

form area (VWFA, Ref. [33]) indicated by blue triangles. The region in white is the conjoined activation of objects and letters found by Joseph et al. [29] (left hemisphere on

the right). Reproduced, with permission, from Ref. [29].
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all (because letters could be coded as an unstructured list
of features). One influential theory of object recognition
posits a key role for structural representations – that is a
description of the object in terms of its component parts
and their positional relations (such as ‘x is left of y, y is
above z’, Ref. [39]). A promising alternative is to code for
the position of object parts by using object-centered coor-
dinates, and there is recent neurophysiological evidence
in favor of such object-centered coordinate systems [40].
This approach can be easily transposed to the domain of
Figure 4. A hierarchical model of letter perception. Shape and location invariance ar

Adapted, with permission, from Ref. [38].
letter identification, using the features derived from
empirical investigations of letter perception, augmented
with position-in-letter information. Thus, for example,
the letter ‘W’ could be coded as: termination upper left,
termination upper right, intersection lower left, intersec-
tion upper centre, intersection lower right. It is this level
of sophistication that might enable feature-based models
to better account for patterns in the empirical data (such
as letter confusions). Finally, one might also consider
that such spatial relations are implicitly coded in hier-
e gradually achieved via a hierarchy of increasingly complex neural processors.
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archical multi-level networks such as the one depicted in
Figure 4.

Another key question is: how the kind of hierarchical
structure illustrated in Figure 4 could be learned by a
biological system? Could the arbitrary association between
lowercase ‘a’ and uppercase ‘A’ be learned without super-
vision (explicit tuition)? Polk and Farah [41] proposed a
solution to this problem based on the influence of common
contexts onHebbian learning.Thebasic idea is thatwe learn
to associate case-specific forms of the same letter by the fact
that they commonly occur in the context of case invariant
letters (such as in ‘map’ and ‘MAP’, in which case-specific ‘a’
is surroundedbycase-invariant ‘m’ and ‘p’).Alternatively, or
perhaps in conjunction with this unsupervised learning,
children could learn to link ‘a’ and ‘A’ on hearing the same
letter name associated with each form. Finally, Hinton
[42,43] has recently demonstrated that a multi-layered net-
work implementing increasingly complex features can be
trained to recognize handwritten digits with high levels of
accuracy.

Conclusions and future directions
What is the letter ‘a’? This review article has shown that a
rich empirical database has accumulated over the years,
and there is hope that this will provide the necessary
constraints for finding the answer to Hofstadter’s [1] ques-
tion. A major step towards achieving this goal has been
made in recent years. Research applying psychophysical
techniques has provided convincing evidence that letters
are indeed identified via their component features, and
there is important new evidence concerning the precise
nature of these features. At the same time, research using
electrophysiological recordings has started to provide valu-
able information about the time-course of component pro-
cesses in letter identification, and functional magnetic
resonance imaging (fMRI) studies have begun to isolate
the brain regions involved in letter perception (as opposed
to letter strings and other visual objects – Figure 3).

The challenge now is to develop a computational model
of letter identification that can successfully predict empiri-
cal data obtained from the wide spectrum of techniques
that have been used to investigate letter perception up to
now. Future developments of these models need to be
constrained by behavioral, electrophysiological and brain
imaging results, and should be articulated with concurrent
developments in visual object recognition and printed word
perception. It is the application of such multiple con-
straints that will guarantee success in putting the right
parts in the right place at the right time in future compu-
tational models of letter identification.
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