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We applied the Bubbles technique to reveal directly the spatio-temporal features of uppercase Arial
letter identification. We asked four normal readers to each identify 26,000 letters that were randomly
sampled in space and time; afterwards, we performed multiple linear regressions on the participant’s
response accuracy and the space–time samples. We contend that each cluster of connected significant
regression coefficients is a letter feature. To bridge the gap between the letter identification literature
and this experiment, we also determined the relative importance of the features proposed in the letter
identification literature. Results show clear modulations of the relative importance of the letter
features of some letters across time, demonstrating that letter features are not always extracted
simultaneously at constant speeds. Furthermore, of all the feature classes proposed in the literature,
line terminations and horizontals appear to be the two most important for letter identification.
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Most
Q3

textbooks in cognitive psychology use
alphabetic characters identification as a starting
point in understanding the visual and cognitive
mechanisms involved in visual object recognition
(e.g., Lindsay & Norman, 1977; Matlin, 2005;
Medin, Ross, & Markman, 2005; Neisser, 1967).
As a microcosm, letters have many advantages
over other more ecologically oriented categories

of visual objects (e.g., animals, houses, etc.).
They were designed as a limited set of objects
composed of a limited assortment of traits, with
the means to meet specific communication needs
(i.e., reading and writing). These traits have rela-
tively simple shapes and are typically displayed
using two tones. For example, the uppercase
letter “A” in the Arial font is composed of two
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slanted lines inclined at about 60 degrees that are
joined at their superior extremity and that are con-
nected by a horizontal line that touches both slants
approximately in their centres. Of course, the trait
description of the uppercase “A” may vary slightly
across fonts but it remains sufficiently robust that
the letter remains recognizable despite these
small variations. Furthermore, letter identification
as the starting point of word recognition and
reading (Pelli, Farell, & Moore, 2003) has strong
real-life relevance since a large proportion of our
modern life activities involve this function. As
the above illustration suggests, it is relatively easy
to enumerate the letter traits necessary to describe
each of the 26 uppercase letters of the alphabet in
predefined fonts (e.g., Arial). Whether such traits
have any relevance for the way human letter
identification is achieved, however, remains
uncertain.

Seeking to identify a psychologically valid set
of letter features (e.g., E. J. Gibson, 1969;
Rumelhart & Siple, 1974), researchers in cognitive
sciences have privileged the use of data from con-
fusion matrices (Boles & Clifford, 1989; Bouma,
1971; Briggs & Hocevar, 1975; Gervais, Harvey,
& Roberts, 1984; Geyer, 1977; Gilmore, Hersh,
Caramazza, & Griffin, 1979; Loomis, 1982;
Townsend, 1971; Van Der Heijden, Malhas, &
Van Den Roovaart, 1984). A confusion matrix is
constructed by measuring the human participant’s
ability to distinguish single letters in very demand-
ing or special conditions so that errors frequently
occur—typically as often as on 50% of trials. For
example, some researchers examined the perform-
ance of children who had not yet integrated the
exact visual form of letters (E. J. Gibson,
Gibson, Pick, & Osser, 1962); others studied the
performance of skilled readers when identifying
letters presented for a brief duration (Townsend,
1971) or with extremely low contrast (Geyer,
1977). In these confusion matrices, errors in
letter discrimination are thought to be helpful in
defining the traits necessary for distinguishing
letters from one another. Hence, it is commonly
assumed that the frequent confusion between the
uppercase “E” and “F” in these specific conditions
validates the inferior horizontal line of the

uppercase “E” as a diagnostic trait for the
recognition of these letters. Even if this proposition
makes sense, it does not tell us which part(s) of the
bar help to discriminate between these two letters.
For instance, it could be the intersection between
the vertical and the horizontal bar, the termination
of the horizontal bar, or the horizontal bar itself.

Much difficulty has been encountered when it
comes to pinpointing the exact diagnostic areas
for letter discrimination. We believe this
originates from the vast gap between the letter
confusion data that has been compiled and the
letter features that have been proposed. In fact,
we question whether letter-confusion matrices
constitute the appropriate tool to provide a deci-
sive set of data for determining the diagnostic
features for letter identification. In particular, it
is important to bear in mind that all the exper-
imental manipulations required for the creation
of letter-confusion matrices (low contrast or
rapid presentation) exacerbate the relative import-
ance of low spatial frequencies (e.g., Mazer, Vinje,
McDermott, Schiller, & Gallant, 2002). Since this
visual information is not optimal for human vision
and leads to very high error rates, it may be
inadequate for the discovery of the letter features
underlying reading in daily life.

In this study, we used a classification image tech-
nique (e.g., Eckstein&Ahumada, 2002;Gosselin&
Schyns, 2004) called Bubbles (Gosselin & Schyns,
2001) that uncovers more directly the letter com-
ponents driving accurate recognition (Gosselin &
Schyns, 2001). The underlying logic of Bubbles is
that if some piece of visual information is necessary
to perform the task at hand, masking this infor-
mation will impair performance, and revealing it
will lead to a better performance. The plane of
regression coefficients that is obtained through
multiple linear regressions of performance as a
function of the Bubbles masks used to sample
information on every trial, is called a classification
image, and it reveals the effective information
upon which the observed performances are based.
We recently employed a version of Bubbles in
order to reveal the potent visual features mediating
uppercase and lowercase Arial letter identification
across different spatial frequency bands (Fiset
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et al., 2008Q4 ). The analyses conducted separately
on each of the 26 uppercase and 26 lowercase
letters confirmed that the spatial frequency infor-
mation between 2 and 4 cycles per letter conveys
the most potent visual information (Chung,
Legge, & Tjan, 2002; Ginsburg, 1980; Legge,
Pelli, Rubin, & Scleske, 1985Q5 ; Majaj, Pelli,
Kurshan, & Palomares, 2002; Parish & Sperling,
1991; Solomon & Pelli, 1994Q6 ). To synthesize the
large amount of data obtained from this exper-
iment and to link it to the letter identification
literature published during the years 1960–1980,
we also determined the relative importance of
the sets of features proposed in that literature as
well as the relative importance of line termin-
ations. We found that terminations, relatively
small features found at the extremities of lines,
and horizontals, were the most effective in
driving performance. To the best of our knowl-
edge, this was the first empirical demonstration
that line terminations are of the crucial importance
for letter identification.

Here, we examine the space–time features for
Arial uppercase letter identification by using a
dynamic version of the Bubbles method (Blais,
Fiset, Arguin, Jolicoeur, & Gosselin, 2008Q7 ;
Vinette, Gosselin, & Schyns, 2004). Extending
the logic of the spatial Bubbles technique briefly
discussed above to the time dimension amounts
to saying that the probability of a correct answer
should decrease if the information that is efficient
for letter identification at a particular spatial
location and moment is not revealed at that
spatial location and moment and that it should
increase if this information is revealed at that
spatial location and moment. Therefore, in order
to determine the efficient use of spatio-temporal
information, we perform multiple linear regression
between the participant’s response accuracy and
the space–time bubbles.

Method

Participants
A total of 4 students from the University of
Montréal took part in this experiment. All had
normal or corrected-to-normal visual acuity.

Materials and stimuli
Stimuli were displayed on a high-resolution Sony
monitor at a refresh rate of 120 Hz. The exper-
iment ran on a Macintosh G4 computer. The
experimental program was written in Matlab
using functions from the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997). The viewing dis-
tance was maintained at 57 cm by using a chinrest.
Stimuli were uppercase letters printed in Arial font
subtending on average 0.78 degrees of visual angle
horizontally and 0.97 degrees of visual angle verti-
cally. They appeared in dark grey (2.1 cd/m2) over
a light grey background (64.8 cd/m2) and were
sampled in space and time. More specifically, the
“bubblized” movies consisted of a sequence of 12
successive frames, each presented on screen for a
duration of 8.33 ms (for a total stimulus duration
of 100 ms), displaying one letter of the alphabet
sampled with Gaussian apertures (i.e., bubbles)
randomly located in space–time (see Figure 1). Q8
Therefore, the spatial information (e.g., different
groups of pixels in a letter) available to participants
varied as a function of time within a trial, and the
sequence of space–time bubbles also varied ran-
domly across trials. Each bubble had a standard
deviation of 0.1 degrees of visual angle (3 pixels)
in the spatial domain and a standard deviation of
17.3 ms (2.08 frames) in the temporal domain.
The temporal full width at half maximum of a
bubble—40.7 ms—is less than the time required
to plan and execute an attentional saccade, which
ensures that participants are unable to shift their
attention towards a particular bubble (i.e., esti-
mates of the time needed to plan and execute an
attentional saccade typically range between 50
and 85 ms; e.g., Wolfe, 1998; Wolfe, Alvarez, &
Horowitz, 2000).

Procedure
Each participant performed 26,000 trials, each
letter of the alphabet being presented an average
of 1,000 times. The experiment was divided in
100 blocks of 260 trials each. The letter identifi-
cation accuracy was maintained at 51% by adjust-
ing the number of bubbles on a trial-by-trial
basis using QUEST (Watson & Pelli, 1983).
Since visual processing difficulty may vary across
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the alphabet, the number of space–time bubbles
was adjusted independently for each letter. The
initial number of bubbles for each letter was deter-
mined individually for each participant by admin-
istering two practice blocks, each composed of 50
trials, before the experimental blocks began.

On each trial, a homogenous grey screen was
first displayed for 250 ms, accompanied by a
122-ms 1300-Hz pure tone to signal the begin-
ning of the trial. The grey screen was immediately
replaced by a bubblized letter movie that lasted
100 ms. This was immediately followed by a hom-
ogenous grey screen that remained visible until the
participant responded. The task was to identify the
target letter, and participants registered their
responses by pressing the appropriate key on the
keyboard. The next trial was triggered automati-
cally after a 2-s intertrial interval. Participants
received no feedback on their performance.

Results and discussion

The number of bubbles necessary to maintain per-
formance at a 51% correct for each letter of the
alphabet is reported in Table 1. The efficient use
of the spatio-temporal information in the stimulus

was determined by performing a multiple linear
regression on the bubbles’ volumes (explanatory
variables) and the participants’ response accuracy
(predictor variable). That is, we constructed, for
each participant, one regression coefficient
volume (the two spatial dimensions and the tem-
poral dimension) for each letter of the alphabet
by subtracting, for a given letter, the sum of the
bubbles’ volumes that led to an incorrect response
from the sum of the bubbles’ volumes that led to a
correct response. These volumes of regression
coefficients are referred to as classification movies,
which is a straightforward extension of classifi-
cation images. The elements of these movies
are referred to as voxels (by analogy to pixels in
classification images).

If all 64 ! 64 ! 12 voxels were of equal
importance for successful letter identification,
they would have uniform regression values. Any
local divergence from uniformity indicates that
this particular part of the stimulus (in space–
time) was particularly important for the task at
hand. The statistical analysis was restricted to
the spatial central horizontal strip in the classifi-
cation movies (40 ! 64 ! 12 voxels) where the
letters were located. The strips above and below

Figure 1. Illustration of the spatio-temporal stimulus sampling. A total of 12 frames were presented successively at a rate of 120 Hz (i.e.,
8.33 ms per image). In these frames, visual information was randomly sampled in space and time using Gaussian apertures (bubbles)
with a spatial and a temporal extent. The standard deviation of the bubbles on the time dimension was chosen such that the duration of
one bubble was shorter than the time required to plan and execute an attentional saccade.
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were used to estimate the mean and the standard
deviation of the null distribution and to transform
the classification movies into Z-scores. A total of
26,000 trials might seem like a lot but in this
case it is not enough to obtain one classification
movie per letter for each participant. We thus
summed the classification movies transformed
into Z-scores across the 4 participants and, to
transform the resulting group classification
movies into Z-scores, divided them by

p
4.

Finally, to determine the letter space–time infor-
mation significantly correlated with accuracy, we
conducted a one-tailed Pixel test (Chauvin,
Worsley, Schyns, Arguin, & Gosselin, 2005) on
the group classification movies transformed into
Z-scores (Sr ¼ 30,720 voxels; full-width half
maximum ¼ 2.66; i.e., the geometric mean of
the spatial and the time full-width half

maximums; Zcrit ¼ 4.46; p, .001). The statistical
threshold provided by this test corrects for mul-
tiple comparisons while taking the spatial and
temporal correlation inherent to our technique
into account.

Movies directly representing the space–time
use of letter information are available on http://
www.mapageweb.umontreal.ca/gosselif/dynamic_
letters Q9. Figure 2 depicts the same results in two
dimensions while losing as little information as
possible. In a statistically thresholded classification
movie, some significant voxels are connected
together, and some are not. For example, on the
bottom termination of the letter “I” (see Figure 2),
it is likely that more than one voxel will be useful,
and that most of the useful voxels on that letter
feature will be connected in space or in time. In con-
trast, the voxels located on the top termination of
the letter “I” may not be connected with those of
the bottom termination since both groups are far
away from each other. We contend that each
cluster of connected significant voxels is a letter
feature. The temporal dimension of classification
movies also informs us about the order in which
these letter features are acquired. Therefore, we
divided the significant voxels into space–time clus-
ters of connected significant voxels. More precisely,
we searched for so-called “26-connected” voxels
(i.e., adjacent either in one of the six cardinal direc-
tions or in one of the 20 oblique directions).
However, a cluster of significant voxels could
contain as little as one voxel. We then collapsed
the time dimension of the classification movies to
represent the three dimensions of our results on a
two-dimensional figure; each cluster was reduced
to its spatial silhouette. We depicted the different
cluster silhouettes in different colours to facilitate
interpretation. The times of onset and offset of
every cluster is indicated in white next to the cluster.

As mentioned in the Introduction, the litera-
ture on letter identification has already proposed
various sets of letter features that are assumed to
underlie identification. The issue of the relative
impact of these different features on letter
identification has generated significant interest.
Because the Bubbles method is pixel or voxel
based, it does not require an a priori definition of

Table 1. Average number of bubbles
required to maintain performance at
51% correct at the end of the experiment

Number of bubbles

A 50.0
B 84.6
C 78.2
D 58.2
E 68.2
F 82.1
G 58.8
H 38.2
I 132.0
J 94.7
K 38.9
L 92.4
M 47.8
N 43.7
O 108.2
P 88.7
Q 91.4
R 72.9
S 59.1
T 47.9
U 62.2
V 59.4
W 39.1
X 40.6
Y 46.4
Z 45.4
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what the features for letter identification are. As
we have described above, the classification
movies as well as Figure 2 reveal, by themselves,
the shape and the position of the efficient fea-
tures—clusters of significant voxels. However, it
is possible to decompose the classification movies
into any set of features so as to assess the degree
to which it accounts for recognition performance
(e.g., B. Gibson, Lazareva, Gosselin, Schyns, &
Wasserman, 2007). To bridge the gap between

the letter identification literature and the exper-
iment reported in this article, we determined the
relative importance of the features proposed in
the letter identification literature. More specifi-
cally, we conducted a priori feature analyses for
all the letters of the alphabet grouped together
(similarly to Fiset et al., 2008 Q4) as well as for each
letter separately (Figure 3) Q10. We first created 111
templates by decomposing each letter into the
full complement of local features that have been

Figure 3. Templates of letter features used for the feature analysis. One template was created for each feature (i.e., intersections, horizontals,
verticals, slants tilted right, slants tilted left, curves opened at the top, curves opened at the bottom, curves opened on the left, curves opened on
the right, and terminations) present in each letter of the alphabet. The pixels comprised in each template are depicted in grey.

Figure 2. Colours show space–time clusters (collapsed on the time dimension) significantly correlated with correct letter identification
(p " .001) superimposed upon the appropriate letter. Four colours were used to help cluster segregation. The numbers in white near each
cluster indicate the beginning and end of this cluster relative to stimulus onset. To view a colour version of this figure, please see the
online issue of the Journal.
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proposed in the literature except for global features
such as symmetry, cyclic change, and parallelism,
which were not considered—vertical, horizontal,
slant tilted left or right, curves opened up, down,
left or right, and intersections. We also included
terminations, a feature that has only been con-
sidered by Fiset et al. (2008)Q4 . The terminations
and intersections were defined as letter ink
within a radius of 13 pixels of the centre of the
feature, as identified by the authors. To make
sure that the masks for these features were
independent from those of other features, we sub-
tracted the area corresponding to the terminations
and intersections from the other feature masks.
We then calculated, for each letter and frame,
the proportion of significant voxels falling on
each feature. Only the voxels falling directly on
letter print were included in the analysis. The
vectors of 10 proportions were each normalized
to 1 in order to reveal the relative importance of

all features for each letter. The results of this
analysis for each individual letter are presented
on Figure 4. Error bars were computed via boot-
strap; 1,000 group classification movies were com-
puted by summing four classification images made
of pixels sampled randomly, with replacement,
from the four classification movies of the partici-
pants. In fact, the video clips available on http://
mapageweb.umontreal.ca/gosselif/dynamic_letters Q9
depict the sum of these bootstrap classification
movies. Bright red means that the pixels are
present on 100% of classification movies, black
means that they are present on 0.1%, and gray
letter and white background means that they are
present in none of the classification movies.
These video clips thus indicate the between-
subject variability. To compute the error bars in
Figure 4, the group classification images obtained
via bootstrap were analysed in exactly the same way
as the empirical group classification image: They

Figure 4. Results of the feature analysis performed on each letter and each frame. Each graph shows the relative importance of the features
comprised in each letter of the alphabet. Note that if no significant pixel fell on one of the feature comprised in a letter (e.g., no significant pixel
fell on the vertical bar in letter “B”), there is no curve corresponding to this feature in the graph. Error bars indicate 95% confidence intervals.
To view a colour version of this figure, please see the online issue of the Journal.
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were smoothed, were transformed into Z-scores,
were submitted to Pixel tests, and underwent
feature analyses. The error bars correspond to
1.96 the standard deviation observedQ11 in the simu-
lated feature analyses—95% confidence intervals.
Most of the between-subject variability occurs at
the beginning and at the end of stimulus
duration, which could be due to differences in
the phase or the rapidity with which they start
to process information. The low intersubject
variability at the middle of stimulus presentation
suggests that the phase difference in the infor-
mation extraction process of our participants
was relatively small.

Different spatio-temporal patterns may be
observed. For some letters, one feature remains
useful from the beginning to the end of the stimulus
presentation. This is the case, for example, with the
terminations in letter “I” and with the horizontal in
letter “G”. A second spatio-temporal pattern that
may be observed in the results is the simultaneous
presence of two or more letter features. For
example, in letter “G”, the relative usefulness of
the terminations, the horizontal bar, and the inter-
section is approximately constant across time.
Finally, for other letters, one feature appears early
in the classification image, then disappears, and,
sometimes, another feature appears. For example,
in letter “U”, the curve opened at the top are essen-
tially the only useful features from 17 to 42 ms; in
letter “W”, terminations are the most useful
feature from 25 to 42 ms after stimulus onset, and
then slants tilted right become the most useful
feature from 50 to 100 ms after stimulus onset.

To compare our results with those of Fiset et al.
(2008Q4 ), we combined the results across the 26
letters of the alphabet and across time, for each
feature class, and divided that grand total by the
number of letters containing a given feature.
This resulted in a vector of 10 numbers that was
normalized to 1 in order to reveal the relative
importance of all features across all the letters of
the alphabet (see Figure 5; error bars in Figure 5Q12
were computed via bootstrap like the error bars
in Figure 4). Terminations and horizontals are
the most important features for uppercase Arial
letter identification.

GENERAL DISCUSSION

We used Bubbles, a classification image technique,
to reveal the letter areas responsible for the accu-
rate identification of uppercase Arial letters in
space–time. The space–time clusters that are sig-
nificantly correlated with letter identification are
shown for every letter in Figure 2 (movies are
available from http://mapageweb.umontreal.ca/
gosselif/dynamic_letters Q9). These, we claimed, are
the space–time features for letter identification.
Nonetheless, to create a link with the literature,
we examined the relative importance of 10
feature classes that have been proposed to be
important for the letter identification (i.e., inter-
sections, horizontals, verticals, slants tilted right,
slants tilted left, curves opened at the top, curves
opened at the bottom, curves opened on the left,
curves opened on the right, and terminations). In
the “General discussion”, we focus on these a
priori feature analyses because they suffice for the
arguments put forth and because they should
make the arguments more concise.

In the first feature analysis, we computed the
importance of each feature class for every letter
and frame (see Figure 4). If human observers pro-
cessed the features of letters simultaneously at

Figure 5. Results of the overall feature analysis, all letters and all
frames confounded. Error bars indicate 95% confidence intervals.
To view a colour version of this figure, please see the online issue
of the Journal.
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different but constant speeds—henceforth we
speak about simple parallel observers—the relative
importance of the features would be invariant
across frames in their classification movies
(McCabe, Blais, & Gosselin, 2005). To illustrate,
consider the following toy problem: A simple par-
allel observer is exposed for the duration of two
frames ( f1 and f1) to a pseudoletter composed of
two parts (p1 and p2) each sufficient to identify
the pseudoletter. Bubble masks can be represented
as 2 ! 2 matrices:

p1f2 p2f2
p1f1 p2f1

! "
,

where a cell is equal to 1 when there is a bubble
and to 0 otherwise. Suppose that the observer
requires only one frame to process p1 and two
frames to process p2. A total of 13 bubble masks
(out of a possible 15) respond to those criteria:

0 0

1 0

! "
,

1 0

0 0

! "
,

0 1

1 0

! "
,

0 0

1 1

! "
,

1 0

0 1

! "
,

1 1

0 0

! "
,

1 0

1 0

! "
,

0 1

0 1

! "
,

0 1

1 1

! "
,

1 1

0 1

! "
,

1 0

1 1

! "
,

1 1

1 0

! "
, and

1 1

1 1

! "
;

and the remaining two do not:

0 0
0 1

! "
and

0 1
0 0

! "
:

The classification movie computations described
in the “Results and discussion” section—in the
ongoing example, it rather is a classification
image—would consist in summing up all bubble
masks weighted by plus or minus 1/(number of
bubbles), respectively, if the mask led to a correct

or an incorrect letter identification:

0 0

1 0

! "
þ

1 0

0 0

! "
þ 1

2

0 1

1 0

! "
þ 1

2

0 0

1 1

! "

þ 1

2

1 0

0 1

! "
þ 1

2

1 1

0 0

! "
þ 1

2

1 0

1 0

! "
þ 1

2

0 1

0 1

! "

þ 1

3

0 1

1 1

! "
þ 1

3

1 1

0 1

! "
þ 1

3

1 0

1 1

! "
þ 1

3

1 1

1 0

! "

þ 1

4

1 1

1 1

! "
$

0 0

0 1

! "
$

0 1

0 0

! "

¼ 1

2

3:75 1:75

3:75 1:75

! "
:

The relative importance of the two parts is the
same across frames, and this is always true of
simple parallel observers.

Our results do not fully support the hypothesis
that humans are simple parallel observers. Indeed,
there are modulations of the relative importance of
the feature classes across time in some letters (see
Figure 4). This is particularly clear for letters
“C”, “F”, “M”, “U”, “W”, and “Z”. But the hypoth-
esis does fit with the results obtained for some
letters. In letter “G”, for example, the relative use-
fulness of the terminations, the horizontal bar, and
the intersection is approximately constant across
time. Interestingly, these three features are next
to each other spatially in letter “G” (see also
Figure 2). This may result from the fact that
these features fall within the “spotlight” of atten-
tion, which permits their simultaneous processing.
Note, however, that our analysis does not allow us
to infer whether two regions (or more) that are
simultaneously above statistical threshold in our
classification movies are actually processed simul-
taneously. Thus, it could be that on some trials,
participants used one region, and, on other trials,
they used the other region.

In the second a priori feature analysis, we
computed the importance of each feature class
with all letters and frames confounded
(see Figure 5). The most important outcome of
this analysis is the discovery of the prime import-
ance of terminations and horizontals. The case of
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terminations is especially surprising because no
research team has ever suggested that termin-
ations could be key features for letter identifi-
cation except Fiset et al. (2008Q4 ). Indeed, Fiset
et al. conducted a Bubbles experiment to uncover
the spatial features for uppercase and lowercase
Arial letter identification at different spatial
scales—they did not sample time. The results of
the a priori feature analyses in the two studies
are strikingly similar (r ¼ .96). Apart from inter-
sections, which came in fourth position in Fiset
et al. and are in sixth position here, the order of
importance of the nine remaining features is
exactly the same. This really is striking given
that the stimulation parameters used in Fiset
et al. differed greatly from those used in the
present experiment: Fiset et al. used spatial
bubbles with a standard deviation of 0.72, 0.36,
0.18, 0.09, and 0.045 letter width, respectively,
from the lowest to the highest spatial frequency
band along which stimuli were filtered (1–2,
2–4, 4–8, 8–16, and 16–32 cycles per letter),
instead of randomly located space–time bubbles
with a standard deviation of 0.13 letter width
across space and with a standard deviation of
40.8 ms across time; Fiset et al. displayed the
letters for 200 ms instead of 100 ms; and Fiset
et al. used letters with an average width of 1.35
degrees of visual angle instead of 0.78 degrees of
visual angle (reducing letter size is known to
induce a shift in the use of spatial information
toward lower spatial frequencies; e.g., Majaj
et al., 2002). This suggests that the results
obtained in the experiment reported in this
article are robust to parameter changes and that
they generalize to different experimental con-
ditions. However, it could also be that the
results are an artefact of the a priori feature analy-
sis and letter statistics. Fiset et al. also report an a
priori feature analysis applied on an ideal observer
classification images. An ideal observer optimally
uses all the information available to perform the
task at hand (e.g., Solomon & Pelli, 1994Q6 ). The
purpose of such a model is not so much to fit
human data but to understand how the human
data diverge from an optimal implementation
that uses all the available information, without

constraint. For the ideal observer, the termin-
ations ranked 5th and 6th out of the 10 feature
classes, and the horizontals ranked 7th and 4th
for lowercase and uppercase letters, respectively.
The correlation between the relative importance
of the features for human observers and ideal
observer is quite low (r ¼ .16). On this basis, we
are confident that the prime importance of the
terminations and horizontals, in particular, and
the relative importance of the other features for
human participants is due to constraints imposed
by the human visual system rather than by
constraints imposed by the stimuli or analyses.

But why exactly are terminations and horizontals
so important for human letter identification?
Regarding terminations, one possible hypothesis is
that, because they are located on the extremities of
letters, they are less likely to suffer from visual
crowding than other features. This hypothesis is
supported by the results of Fiset et al. (2008 Q4) with
lowercase letters. Indeed, although terminations
were the most important feature for both letter
cases, they were more important relative to the
other features for lowercase letters than to those
for uppercase letters. Since the distance between
the terminations and the rest of the letter is, on
average, larger in lower- than in uppercase letters
(i.e., because of their extensions), their sparing
from crowding should be more important. This
hypothesis also predicts that terminations should
become even more important in word recognition,
where crowding is further increased by adjacent
letters. Interestingly, Chung, Tjan, and Lin (2008) Q13
showed that the extremities of lowercase letters are
very useful for the correct identification of the
middle letter in random triplets of letters.
Regarding horizontals, it is possible that their
importance also comes froma reduction of crowding
when they are part of a letter. In fact, horizontals
create some space either around the letter (e.g., in
letterT) orwithin the letter (e.g., letterH), therefore
reducing the crowding between letters in a letter
string, or between features in an isolated letter.
Other explanations are possible, however, and
additional research will be necessary to understand
why terminations and horizontals are important
for letter identification.
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One other important question that remains is:
Why are the letter features extracted in the par-
ticular temporal order found here (see Figure 4)?
We have examined different hypotheses but none
has yet proven effective in correctly accounting
for the findings reported above. For instance, we
have examined whether the order of feature extrac-
tion follows a systematic spatial pattern. That is,
were the different spatial locations (e.g., upper
left quadrant, upper middle quadrant, upper
right quadrant, etc.) processed in a systematic
order? On each frame, we found a similar
number of significant pixels across the stimulus
areas, which led to a rejection of this hypothesis.
We have also implemented an optimal sequential
model—somewhat similar to “Mr. Chips”
(Legge, Klitz, & Tjan, 1997)—to reveal the
“optimal” order of feature extraction. In this
model, on each time frame, a Gaussian window
(we tried window sizes of standard deviations
ranging from 2 to 9 pixels but this made little
difference) was moved across the spatial extent of
the letter to find which group of pixels would
maximally decrease the uncertainty (i.e., minimize
the entropy) about the target identity given the
information that had already been accumulated
before. A feature analysis across all letters revealed
that this optimal sequential model did not primar-
ily use terminations. Moreover, when similar
features were used by the ideal and the human
observers for a given letter, the order in which
they were used usually differed. For letter “E”,
for example, our optimal model first used the
middle horizontal bar and then moved to the
lower one, whereas for the human observers, this
order was reversed. Overall, then, a straightfor-
ward account of the order in which the letter
features become useful for normal human readers
has yet to be uncovered. Future studies will be
needed to further our understanding of the
dynamics of letter identification.
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