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We applied the Bubbles technique to reveal directly the spatio-temporal features of uppercase Arial
letter identification. We asked four normal readers to each identify 26,000 letters that were randomly
sampled in space and time; afterwards, we performed multiple linear regressions on the participant’s
response accuracy and the space–time samples. We contend that each cluster of connected significant
regression coefficients is a letter feature. To bridge the gap between the letter identification literature
and this experiment, we also determined the relative importance of the features proposed in the letter
identification literature. Results show clear modulations of the relative importance of the letter
features of some letters across time, demonstrating that letter features are not always extracted
simultaneously at constant speeds. Furthermore, of all the feature classes proposed in the literature,
line terminations and horizontals appear to be the two most important for letter identification.

Keywords: Letter recognition; Letter features; Temporal processing; Classification images; Bubbles.

Most textbooks in cognitive psychology use
alphabetic characters identification as a starting
point in understanding the visual and cognitive
mechanisms involved in visual object recognition

(e.g., Lindsay & Norman, 1977; Matlin, 2005;
Medin, Ross, & Markman, 2005; Neisser, 1967).
As a microcosm, letters have many advantages
over other more ecologically oriented categories

Correspondence should be addressed to Martin Arguin or Frédéric Gosselin, Département de psychologie, Université de
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of visual objects (e.g., animals, houses, faces, etc.).
They were designed as a limited set of objects
composed of a limited assortment of traits, with
the means to meet specific communication needs
(i.e., reading and writing). These traits have rela-
tively simple shapes and are typically displayed
using two tones. For example, the uppercase
letter “A” in the Arial font is composed of two
slanted lines inclined at about 60 degrees that are
joined at their superior extremity and that are con-
nected by a horizontal line that touches both slants
approximately in their centres. Of course, the trait
description of the uppercase “A” may vary slightly
across fonts but it remains sufficiently robust that
the letter remains recognizable despite these
small variations. Furthermore, letter identification
as the starting point of word recognition and
reading (Pelli, Farell, & Moore, 2003) has strong
real-life relevance since a large proportion of our
modern life activities involve this function. As
the above illustration suggests, it is relatively easy
to enumerate the letter traits necessary to describe
each of the 26 uppercase letters of the alphabet in
predefined fonts (e.g., Arial). Whether such
traits are used by humans for letter identification,
however, remains uncertain.

Seeking to identify a psychologically valid set
of letter features (e.g., E. J. Gibson, 1969;
Rumelhart & Siple, 1974), researchers in cognitive
sciences have privileged the use of data from con-
fusion matrices (Boles & Clifford, 1989; Bouma,
1971; Briggs & Hocevar, 1975; Gervais, Harvey,
& Roberts, 1984; Geyer, 1977; Gilmore, Hersh,
Caramazza, & Griffin, 1979; Loomis, 1982;
Townsend, 1971; Van Der Heijden, Malhas, &
Van Den Roovaart, 1984). A confusion matrix is
constructed by measuring the human participant’s
ability to distinguish single letters in very demand-
ing or special conditions so that errors frequently
occur—typically as often as on 50% of trials. For
example, some researchers examined the perform-
ance of children who had not yet integrated the
exact visual form of letters (E. J. Gibson,
Gibson, Pick, & Osser, 1962); others studied the
performance of skilled readers when identifying
letters presented for a brief duration (Townsend,
1971) or with extremely low contrast (Geyer,

1977). In these confusion matrices, errors in
letter discrimination are thought to be helpful in
defining the traits necessary for distinguishing
letters from one another. Hence, it is commonly
assumed that the frequent confusion between the
uppercase “E” and “F” in these specific conditions
validates the inferior horizontal line of the upper-
case “E” as a diagnostic trait for the recognition of
these letters. Even if this proposition makes sense,
it does not tell us which part(s) of the bar help to
discriminate between these two letters. For
instance, it could be the intersection between the
vertical and the horizontal bar, the termination of
the horizontal bar, or the horizontal bar itself.

Much difficulty has been encountered when it
comes to pinpointing the exact diagnostic areas
for letter discrimination. We believe this
originates from the vast gap between the letter
confusion data that has been compiled and the
letter features that have been proposed. In fact,
we question whether letter-confusion matrices
constitute the appropriate tool to provide a deci-
sive set of data for determining the diagnostic
features for letter identification. In particular, it
is important to bear in mind that all the exper-
imental manipulations required for the creation
of letter-confusion matrices (low contrast or
rapid presentation) exacerbate the relative import-
ance of low spatial frequencies (e.g., Mazer, Vinje,
McDermott, Schiller, & Gallant, 2002). Since this
visual information is not optimal for human vision
and leads to very high error rates, it may be
inadequate for the discovery of the letter features
underlying reading in daily life.

In this study, we used a classification image tech-
nique (e.g., Eckstein&Ahumada, 2002;Gosselin&
Schyns, 2004) called Bubbles (Gosselin & Schyns,
2001) that uncovers more directly the letter com-
ponents driving accurate recognition. The under-
lying logic of Bubbles is that if some piece of visual
information is necessary to perform the task at
hand, masking this information will impair
performance, and revealing it will lead to a better
performance. The plane of regression coefficients
that is obtained through multiple linear regressions
of performance as a function of the masks used to
sample information on every trial, is called a
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classification image, and it reveals the effective
information upon which the observed performances
are based.We recently employed a version ofBubbles
in order to reveal the potent visual features mediat-
ing uppercase and lowercase Arial letter identifi-
cation across different spatial frequency bands
(Fiset et al., 2008). The analyses conducted
separately on each of the 26 uppercase and 26
lowercase letters confirmed that the spatial fre-
quency information between 2 and 4 cycles per
letter conveys the most potent visual information
(Chung, Legge, & Tjan, 2002; Ginsburg, 1980;
Legge, Pelli, Rubin, & Schleske, 1985; Majaj,
Pelli, Kurshan, & Palomares, 2002; Parish &
Sperling, 1991; Solomon & Pelli, 1994). To syn-
thesize the large amount of data obtained from
this experiment and to link it to the letter identifi-
cation literature published during the years 1960–
1980, we also determined the relative importance
of the sets of features proposed in that literature as
well as the relative importance of line terminations,
a set of features that had not been considered in that
literature. We found that terminations, relatively
small features found at the extremities of lines, and
horizontals, were the most effective in driving per-
formance. To the best of our knowledge, this was
the first empirical demonstration that line termin-
ations are of the crucial importance for letter
identification.

Here, we examine the space–time features for
Arial uppercase letter identification by using a
dynamic version of the Bubbles method (Blais,
Fiset, Arguin, Jolicoeur, & Gosselin, 2004;
Vinette, Gosselin, & Schyns, 2004). Extending
the logic of the spatial Bubbles technique briefly
discussed above to the time dimension amounts
to saying that the probability of a correct answer
should decrease if the information that is efficient
for letter identification at a particular spatial
location and moment is not revealed at that
spatial location and moment and that it should
increase if this information is revealed at that
spatial location and moment. Therefore, in order
to determine the efficient use of spatio-temporal
information, we perform multiple linear regression
between the participant’s response accuracy and
the space–time bubbles.

Method

Participants
A total of 4 students from the University of
Montréal took part in this experiment. All had
normal or corrected-to-normal visual acuity.

Materials and stimuli
Stimuli were displayed on a high-resolution Sony
monitor at a refresh rate of 120 Hz. The experiment
ran on aMacintoshG4 computer. The experimental
programwaswritten inMatlab using functions from
the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997). The viewing distance was maintained at
57 cm by using a chinrest. Stimuli were uppercase
letters printed in Arial font subtending on average
0.78 degrees of visual angle horizontally and 0.97
degrees of visual angle vertically. They appeared in
dark grey (2.1 cd/m2) over a light grey background
(64.8 cd/m2) and were sampled in space and time.
More specifically, the “bubblized” movies consisted
of a sequence of 12 successive frames, each presented
on screen for a duration of 8.33 ms (for a total stimu-
lus duration of 100 ms), displaying one letter of the
alphabet sampled with Gaussian apertures (i.e.,
bubbles) randomly located in space–time (see
Figure 1). Therefore, the spatial information (e.g.,
different groups of pixels in a letter) available to par-
ticipants varied as a function of time within a trial,
and the sequence of space–time bubbles also
varied randomly across trials. Each bubble had a
standard deviation of 0.1 degrees of visual angle (3
pixels) in the spatial domain and a standard devi-
ation of 17.3 ms (2.08 frames) in the temporal
domain. The temporal full width at half maximum
of a bubble—40.7 ms—is less than the time required
to plan and execute an attentional saccade, which
ensures that participants are unable to shift their
attention towards a particular bubble (i.e., estimates
of the time needed to plan and execute an attentional
saccade typically range between 50 and 85 ms; e.g.,
Wolfe, 1998; Wolfe, Alvarez, & Horowitz, 2000).

Procedure
Each participant performed 26,000 trials, each
letter of the alphabet being presented an average
of 1,000 times. The experiment was divided in
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100 blocks of 260 trials each. The letter
identification accuracy was maintained at 51% by
adjusting the number of bubbles on a trial-by-
trial basis using QUEST (Watson & Pelli,
1983). Since visual processing difficulty may vary
across the alphabet, the number of space–time
bubbles was adjusted independently for each
letter. The initial number of bubbles for each
letter was determined individually for each partici-
pant by administering two practice blocks, each
composed of 50 trials, before the experimental
blocks began.

On each trial, a homogenous grey screen was
first displayed for 250 ms, accompanied by a
122-ms 1300-Hz pure tone to signal the begin-
ning of the trial. The grey screen was immediately
replaced by a bubblized letter movie that lasted
100 ms. This was immediately followed by a hom-
ogenous grey screen that remained visible until the
participant responded. The task was to identify
the target letter, and participants registered their
responses by pressing the appropriate key on the
keyboard. The next trial was triggered automati-
cally after a 2-s intertrial interval. Participants
received no feedback on their performance.

Results and discussion

The number of bubbles necessary to maintain per-
formance at a 51% correct for each letter of the
alphabet is reported in Table 1. The efficient use
of the spatio-temporal information in the stimulus
was determined by performing a multiple linear
regression on the bubbles’ volumes presented on
every trial (explanatory variables) and the partici-
pants’ response accuracy (predictor variable).
That is, we constructed, for each participant, one
regression coefficient volume (the two spatial
dimensions and the temporal dimension) for
each letter of the alphabet by subtracting, for a
given letter, the sum of the bubbles’ volumes that
led to an incorrect response from the sum of the
bubbles’ volumes that led to a correct response.
These volumes of regression coefficients are
referred to as classification movies, which is a
straightforward extension of classification images.
The elements of these movies are referred to as
voxels (by analogy to pixels in classification
images).

If all 64 ! 64 ! 12 voxels were of equal
importance for successful letter identification,

Figure 1. Illustration of the spatio-temporal stimulus sampling. A total of 12 frames were presented successively at a rate of 120 Hz (i.e.,
8.33 ms per image). In these frames, visual information was randomly sampled in space and time using Gaussian apertures (bubbles)
with a spatial and a temporal extent. The standard deviation of the bubbles on the time dimension was chosen such that the duration of
one bubble was shorter than the time required to plan and execute an attentional saccade.
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they would have uniform regression values. Any
local divergence from uniformity indicates that
this particular part of the stimulus (in space–
time) was particularly important for the task at
hand. The statistical analysis was restricted to
the spatial central horizontal strip in the classifi-
cation movies (40 ! 64 ! 12 voxels) where the
letters were located. The strips above and below
were used to estimate the mean and the standard
deviation of the null distribution and to transform
the classification movies into Z-scores. A total of
26,000 trials might seem like a lot but in this
case it is not enough to obtain one classification
movie per letter for each participant. We thus
summed the classification movies transformed
into Z-scores across the 4 participants and, to
transform the resulting group classification
movies into Z-scores, divided them by

p
4.

Finally, to determine the letter space–time
information significantly correlated with accuracy,
we conducted a one-tailed Pixel test (Chauvin,
Worsley, Schyns, Arguin, & Gosselin, 2005) on
the group classification movies transformed into
Z-scores (Sr ¼ 30,720 voxels; full-width half
maximum ¼ 2.66; i.e., the geometric mean of
the spatial and the time full-width half maxi-
mums; Zcrit ¼ 4.46; p , .001). The statistical
threshold provided by this test corrects for mul-
tiple comparisons while taking the spatial and
temporal correlation inherent to our technique
into account.

Movies directly representing the space–time
use of letter information are available on http://
www.mapageweb.umontreal.ca/gosselif/dynamic_
letters. Figure 2 depicts the same results in two
dimensions while losing as little information as
possible. In a statistically thresholded classification
movie, some significant voxels are connected
together, and some are not. For example, on the
bottom termination of the letter “I” (see Figure 2),
it is likely that more than one voxel will be useful,
and that most of the useful voxels on that letter
feature will be connected in space or in time. In con-
trast, the voxels located on the top termination of
the letter “I” may not be connected with those of
the bottom termination since both groups are far
away from each other. We contend that each
cluster of connected significant voxels is a letter
feature. The temporal dimension of classification
movies also informs us about the order in which
these letter features are acquired. Therefore, we
divided the significant voxels into space–time clus-
ters of connected significant voxels. More precisely,
we searched for so-called “26-connected” voxels
(i.e., adjacent either in one of the six cardinal direc-
tions or in one of the 20 oblique directions).
However, a cluster of significant voxels could
contain as little as one voxel. We then collapsed
the time dimension of the classification movies to
represent the three dimensions of our results on a
two-dimensional figure; each cluster was reduced
to its spatial silhouette. We depicted the different
cluster silhouettes in different colours to facilitate
interpretation. The times of onset and offset of
every cluster is indicated in white next to the cluster.

Table 1. Average number of bubbles
required to maintain performance at
51% correct at the end of the experiment

Number of bubbles

A 50.0
B 84.6
C 78.2
D 58.2
E 68.2
F 82.1
G 58.8
H 38.2
I 132.0
J 94.7
K 38.9
L 92.4
M 47.8
N 43.7
O 108.2
P 88.7
Q 91.4
R 72.9
S 59.1
T 47.9
U 62.2
V 59.4
W 39.1
X 40.6
Y 46.4
Z 45.4
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As mentioned in the Introduction, the litera-
ture on letter identification has already proposed
various sets of letter features that are assumed to
underlie identification. The issue of the relative
impact of these different features on letter
identification has generated significant interest.
Because the Bubbles method is pixel or voxel
based, it does not require an a priori definition of
what the features for letter identification are. As
we have described above, the classification

movies as well as Figure 2 reveal, by themselves,
the shape and the position of the efficient
features—clusters of significant voxels. However,
it is possible to decompose the classification
movies into any set of features so as to assess
the degree to which it accounts for recognition
performance (e.g., B. Gibson, Lazareva,
Gosselin, Schyns, & Wasserman, 2007). To
bridge the gap between the letter identification
literature and the experiment reported in this

Figure 3. Templates of letter features used for the a priori feature analysis. One template was created for each feature (i.e., intersections,
horizontals, verticals, slants tilted right, slants tilted left, curves opened at the top, curves opened at the bottom, curves opened on the left,
curves opened on the right, and terminations) present in each letter of the alphabet. The pixels comprised in each template are depicted in red.

Figure 2. Colours show space–time clusters (collapsed on the time dimension) significantly correlated with correct letter identification
(p " .001) superimposed upon the appropriate letter. Four colours were used to help cluster segregation. The numbers in white near each
cluster indicate the beginning and end of this cluster relative to stimulus onset.
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article, we determined the relative importance of
the features proposed in the letter identification
literature. More specifically, we conducted a
priori feature analyses for all the letters of the
alphabet grouped together (similarly to Fiset
et al., 2008) as well as for each letter separately.
We first created 111 templates by decomposing
each letter into the full complement of local fea-
tures that have been proposed in the literature
except for global features such as symmetry,
cyclic change, and parallelism, which were not
considered—vertical, horizontal, slant tilted left
or right, curves opened up, down, left or right,
and intersections (Figure 3). We also included
terminations, a feature that has only been con-
sidered by Fiset et al. (2008). The terminations
and intersections were defined as letter ink
within a radius of 13 pixels of the centre of the
feature, as identified by the authors. To make
sure that the masks for these features were
independent from those of other features, we sub-
tracted the area corresponding to the termin-
ations and intersections from the other feature
masks. We then calculated, for each letter and
frame, the proportion of significant voxels
falling on each feature. Only the voxels falling
directly on letter print were included in the analy-
sis. The vectors of 10 proportions were each nor-
malized to 1 in order to reveal the relative
importance of all features for each letter. The
results of this analysis for each individual letter
are presented on Figure 4. Error bars were com-
puted via bootstrap: 1,000 group classification
movies were computed by summing four classifi-
cation movies made of pixels sampled randomly,
with replacement, from the four classification
movies of the participants. In fact, the video
clips available on http://mapageweb.umon-
treal.ca/gosselif/dynamic_letters depict the sum
of these bootstrap classification movies. Bright
red means that the pixels are present on 100%
of classification movies, black means that they
are present on 0.1%, and gray letter and white
background means that they are present in none
of the classification movies. These video clips
thus indicate the between-subject variability.
To compute the error bars in Figure 4, the

group classification movies obtained via bootstrap
were analysed in exactly the same way as the
empirical group classification movie: They were
smoothed, were transformed into Z-scores, were
submitted to Pixel tests, and underwent feature
analyses. The error bars correspond to 1.96
times the standard deviation observed in the
simulated feature analyses—95% confidence
intervals. Most of the between-subject variability
occurs at the beginning and at the end of
stimulus duration, which could be due to inter-
subject variability in stimuli onset and offset
estimations.

Different spatio-temporal patterns may be
observed. For some letters, one feature remains
useful from the beginning to the end of the stimu-
lus presentation. This is the case, for example, with
the terminations in letter “I” and with the horizon-
tal in letter “G”. A second spatio-temporal pattern
that may be observed in the results is the simul-
taneous presence of two or more letter features.
For example, in letter “G”, the relative usefulness
of the terminations, the horizontal bar, and the
intersection is approximately constant across
time. Finally, for other letters, one feature
appears early in the classification image, then dis-
appears, and, sometimes, another feature appears.
For example, in letter “U”, the curve opened at
the top are essentially the only useful features
from 17 to 42 ms; in letter “W”, terminations are
the most useful feature from 25 to 42 ms after
stimulus onset, and then slants tilted right
become the most useful feature from 50 to
100 ms after stimulus onset.

To compare our results with those of Fiset et al.
(2008), we combined the results across the 26
letters of the alphabet and across time, for each
feature class, and divided that grand total by the
number of letters containing a given feature.
This resulted in a vector of 10 numbers that was
normalized to 1 in order to reveal the relative
importance of all features across all the letters of
the alphabet (see Figure 5; error bars in Figure 5
were computed via bootstrap like the error bars
in Figure 4). Terminations and horizontals are
the most important features for uppercase Arial
letter identification.

COGNITIVE NEUROPSYCHOLOGY, 2009, 26 (1) 29
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Figure 4. Results of the a priori feature analysis performed on each letter and each frame. Each graph shows the relative importance of the features comprised in each letter of the alphabet.
Note that if no significant pixel fell on one of the feature comprised in a letter (e.g., no significant pixel fell on the vertical bar in letter “B”), there is no curve corresponding to this feature in
the graph. Error bars indicate 95% confidence intervals.
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GENERAL DISCUSSION

We used Bubbles, a classification image technique,
to reveal the letter areas responsible for the accu-
rate identification of uppercase Arial letters in
space–time. The space–time clusters that are sig-
nificantly correlated with letter identification are
shown for every letter in Figure 2 (movies are
available from http://mapageweb.umontreal.ca/
gosselif/dynamic_letters). These, we claimed, are
the space–time features for letter identification.
Nonetheless, to create a link with the literature,
we examined the relative importance of 10
feature classes that have been proposed to be
important for the letter identification (i.e., inter-
sections, horizontals, verticals, slants tilted right,
slants tilted left, curves opened at the top, curves
opened at the bottom, curves opened on the left,
curves opened on the right, and terminations). In
the “General discussion”, we focus on these a
priori feature analyses because they suffice for the
arguments put forth and because they should
make the arguments more concise.

In the first feature analysis, we computed the
importance of each feature class for every letter
and frame (see Figure 4). If human observers pro-
cessed the features of letters simultaneously at

different but constant speeds—henceforth we
speak about simple parallel observers—the relative
importance of the features would be invariant
across frames in their classification movies
(McCabe, Blais, & Gosselin, 2005). To illustrate,
consider the following toy problem: A simple par-
allel observer is exposed for the duration of two
frames ( f1 and f1) to a pseudoletter composed of
two parts (p1 and p2) each sufficient to identify
the pseudoletter. Bubble masks can be represented
as 2 ! 2 matrices:

p1f2 p2f2
p1f1 p2f1

! "
,

where a cell is equal to 1 when there is a bubble
and to 0 otherwise. Suppose that the observer
requires only one frame to process p1 and two
frames to process p2. A total of 13 bubble masks
(out of a possible 15) would lead to correct
responses:

0 0

1 0

! "
,

1 0

0 0

! "
,

0 1

1 0

! "
,

0 0

1 1

! "
,

1 0

0 1

! "
,

1 1

0 0

! "
,

1 0

1 0

! "
,

0 1

0 1

! "
,

0 1

1 1

! "
,

1 1

0 1

! "
,

1 0

1 1

! "
,

1 1

1 0

! "
, and

1 1

1 1

! "
;

and the remaining two would not:

0 0
0 1

! "
and

0 1
0 0

! "
:

The classification movie computations described
in the “Results and discussion” section—in the
ongoing example, it rather is a classification
image—would consist in summing up all bubble
masks weighted by plus or minus 1/(number of
bubbles), respectively, if the mask led to a correct

Figure 5. Results of the overall a priori feature analysis, all letters
and all frames confounded. Error bars indicate 95% confidence
intervals. To view a colour version of this figure, please see the
online issue of the Journal.
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or an incorrect letter identification:

0 0

1 0

! "
þ

1 0

0 0

! "
þ 1

2

0 1

1 0

! "
þ 1

2

0 0

1 1

! "

þ 1

2

1 0

0 1

! "
þ 1

2

1 1

0 0

! "
þ 1

2

1 0

1 0

! "
þ 1

2

0 1

0 1

! "

þ 1

3

0 1

1 1

! "
þ 1

3

1 1

0 1

! "
þ 1

3

1 0

1 1

! "
þ 1

3

1 1

1 0

! "

þ 1

4

1 1

1 1

! "
$

0 0

0 1

! "
$

0 1

0 0

! "

¼
3:75 1:75

3:75 1:75

! "
:

The relative importance of the two parts is the
same across frames, and this is always true of
simple parallel observers.

Our results do not fully support the hypothesis
that humans are simple parallel observers. Indeed,
there are modulations of the relative importance of
the feature classes across time in some letters (see
Figure 4). This is particularly clear for letters
“C”, “F”, “M”, “U”, “W”, and “Z”. But the hypoth-
esis does fit with the results obtained for some
letters. In letter “G”, for example, the relative use-
fulness of the terminations, the horizontal bar, and
the intersection is approximately constant across
time. Interestingly, these three features are next
to each other spatially in letter “G” (see also
Figure 2). This may result from the fact that
these features fall within the “spotlight” of atten-
tion, which permits their simultaneous processing.
Note, however, that our analysis does not allow us
to infer whether two regions (or more) that are
simultaneously above statistical threshold in our
classification movies are actually processed simul-
taneously. Thus, it could be that on some trials,
participants used one region, and, on other trials,
they used the other region.

In the second a priori feature analysis, we
computed the importance of each feature class
with all letters and frames confounded
(see Figure 5). The most important outcome of
this analysis is the confirmation of the prime

importance of terminations and horizontals. The
case of terminations is especially surprising
because no research team has ever suggested that
terminations could be key features for letter
identification except Fiset et al. (2008). Indeed,
Fiset et al. conducted a Bubbles experiment to
uncover the spatial features for uppercase and low-
ercase Arial letter identification at different spatial
scales—they did not sample time. The results of
the a priori feature analyses in the two studies
are strikingly similar (r ¼ .96). Apart from inter-
sections, which came in fourth position in Fiset
et al. and are in sixth position here, the order of
importance of the nine remaining features is
exactly the same. This really is striking given
that the stimulation parameters used in Fiset
et al. differed greatly from those used in the
present experiment: Fiset et al. used spatial
bubbles with a standard deviation of 0.72, 0.36,
0.18, 0.09, and 0.045 letter width, respectively,
from the lowest to the highest spatial frequency
band along which stimuli were filtered (1–2,
2–4, 4–8, 8–16, and 16–32 cycles per letter),
instead of randomly located space–time bubbles
with a standard deviation of 0.13 letter width
across space and with a standard deviation of
40.8 ms across time; Fiset et al. displayed the
letters for 200 ms instead of 100 ms; and Fiset
et al. used letters with an average width of 1.35
degrees of visual angle instead of 0.78 degrees of
visual angle (reducing letter size is known to
induce a shift in the use of spatial information
toward lower spatial frequencies; e.g., Majaj
et al., 2002). This suggests that the results
obtained in the experiment reported in this
article are robust to parameter changes and that
they generalize to different experimental con-
ditions. However, it could also be that the
results are an artefact of the a priori feature analy-
sis and letter statistics. Fiset et al. also report an a
priori feature analysis applied on an ideal observer
classification images. An ideal observer optimally
uses all the information available to perform the
task at hand (e.g., Solomon & Pelli, 1994). The
purpose of such a model is not so much to fit
human data but to understand how the human
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data diverge from an optimal implementation that
uses all the available information, without con-
straint. For the ideal observer, the terminations
ranked 5th and 6th out of the 10 feature classes,
and the horizontals ranked 7th and 4th for
lowercase and uppercase letters, respectively.
The correlation between the relative importance
of the features for human observers and ideal
observer is quite low (r ¼ .16). On this basis,
we are confident that the prime importance of
the terminations and horizontals, in particular,
and the relative importance of the other features
for human participants is due to constraints
imposed by the human visual system rather
than by constraints imposed by the stimuli or
analyses.

But why exactly are terminations and horizontals
so important for human letter identification?
Regarding terminations, one possible hypothesis is
that, because they are located on the extremities of
letters, they are less likely to suffer from visual
crowding than other features. This hypothesis is
supported by the results of Fiset et al. (2008) with
lowercase letters. Indeed, although terminations
were the most important feature for both letter
cases, they were more important relative to the
other features for lowercase letters than to those
for uppercase letters. Since the distance between
the terminations and the rest of the letter is, on
average, larger in lower- than in uppercase letters
(i.e., because of their extensions), their sparing
from crowding should be more important. This
hypothesis also predicts that terminations should
become even more important in word recognition,
where crowding is further increased by adjacent
letters. Interestingly, Chung, Tjan, and Lin (2008)
showed that the extremities of lowercase letters are
very useful for the correct identification of the
middle letter in random triplets of letters.
Regarding horizontals, it is possible that their
importance also comes froma reduction of crowding
when they are part of a letter. In fact, horizontals
create some space either around the letter (e.g., in
letterT) orwithin the letter (e.g., letterH), therefore
reducing the crowding between letters in a letter
string, or between features in an isolated letter.

Other explanations are possible, however, and
additional research will be necessary to understand
why terminations and horizontals are important
for letter identification.

One other important question that remains is:
Why are the letter features extracted in the
particular temporal order found here (see
Figure 4)? We have examined different hypoth-
eses but none has yet proven effective in correctly
accounting for the findings reported above. For
instance, we have examined whether the order
of feature extraction follows a systematic
spatial pattern. That is, were the different
spatial locations (e.g., upper left quadrant, upper
middle quadrant, upper right quadrant, etc.) pro-
cessed in a systematic order? On each frame, we
found a similar number of significant pixels
across the stimulus areas, which led to a rejection
of this hypothesis. We have also implemented an
optimal sequential model—somewhat similar to
“Mr. Chips” (Legge, Klitz, & Tjan, 1997)—to
reveal the “optimal” order of feature extraction.
In this model, on each time frame, a Gaussian
window (we tried window sizes of standard devi-
ations ranging from 2 to 9 pixels but this made
little difference) was moved across the spatial
extent of the letter to find which group of
pixels would maximally decrease the uncertainty
(i.e., minimize the entropy) about the target iden-
tity given the information that had already been
accumulated before. A feature analysis across all
letters revealed that this optimal sequential
model did not primarily use terminations.
Moreover, when similar features were used by
the ideal and the human observers for a given
letter, the order in which they were used
usually differed. For letter “E”, for example, our
optimal model first used the middle horizontal
bar and then moved to the lower one, whereas
for the human observers, this order was reversed.
Overall, then, a straightforward account of the
order in which the letter features become useful
for normal human readers has yet to be uncov-
ered. Future studies will be needed to further
our understanding of the dynamics of letter
identification.
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