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The nervous system gives preferential treatment to objects near the hands that are candidates for action.
It is not yet understood how this process is achieved. Here we show evidence for the mechanism that
underlies this process having used an experimental technique that maps the use of spatial frequencies
(SFs) during object recognition across time. We used this technique to replicate and characterize with
greater precision the coarse-to-fine SF sampling observed in previous studies. Then we show that the
visual processing of real-world objects near an observer’s hands is biased toward the use of low-SF
information, around 288 ms. Conversely, high-SF information presented around 113 ms impaired object
recognition when objects were presented near the hands. Notably, both of these effects happened
relatively late during object recognition and suggest that the modulation of SF use by hand position is at
least partly attentional in nature.

Keywords: action-perception, spatial frequencies, magnocellular pathway, hand-position, object
recognition

Supplemental materials: http://dx.doi.org/10.1037/xge0000296.supp

Human perception and action systems interact to produce
very accurate, visually guided movements to accomplish every-
day tasks (e.g., reaching and grasping). It is therefore not
surprising that action can have a large effect on perceptual
processes. Research during the last decade has demonstrated
that performance is affected by the type of action being per-
formed and the spatial relationship between an observer’s effec-
tors (e.g., hands, tools) and the target object (Bekkering & Neg-
gers, 2002; Fagioli, Hommel, & Schubotz, 2007; Wohlschläger,
2000).

More recently, it has been hypothesized that the effect of hand
proximity on vision represents a biasing of visual processing
toward pathways responsible for different aspects of visual input
(i.e., perception and action; Abrams & Weidler, 2014; Goodhew,

Edwards, Ferber, & Pratt, 2015; Goodhew, Fogel, & Pratt, 2014;
Gozli, West, & Pratt, 2012). Current models of vision propose that
visual processing is divided into two major pathways known as the
parvocellular (P) and magnocellular (M) systems, whose separa-
tion begins at the retinal level (Derrington & Lennie, 1984; De
Valois, Albrecht, & Thorell, 1982; Kaplan & Shapley, 1986;
Shapley, 1990), and is responsible for the functional distinction
between visual perception and vision for action (Goodale &
Milner, 1992). Further, the ventral–perception visual stream has
a larger number of projections from the P pathway while the
dorsal–action visual stream has a larger number of projections
from the M pathway (Livingstone & Hubel, 1988).

Crucially, the M and P pathways preferentially treat separate
bands of spatial frequencies (SFs): Low SFs, which provide coarse
visual information, are extracted early and processed through the
fast-acting M pathway; conversely, high SFs, which provide finer
visual information, are extracted later and processed more slowly
by the P pathway. This coarse-to-fine SF extraction has been
observed behaviorally in numerous studies (e.g., Hughes, Nozawa,
& Kitterle, 1996; Hupé et al., 2001; Schyns & Oliva, 1994;
Caplette, Wicker, & Gosselin, 2016). Further, this temporal dis-
tinction between the processing of low and high SFs is present in
both the early visual cortex (Goddard, Carlson, Dermody, & Wool-
gar, 2016; Jemel, Mimeault, Saint-Amour, Hosein, & Mottron,
2010; Parker & Salzen, 1977) and the frontal cortex (Bar et al.,
2006; Goddard et al., 2016).
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A growing body of evidence suggests that hand position near a
stimulus can bias visual processing toward the action-oriented M
pathway, which preferentially treats low SFs, and impair the process-
ing of high-SF information conducted along the perception-oriented P
pathway (Abrams & Weidler, 2014; Goodhew et al., 2014; 2015;
Gozli et al., 2012). This mechanism is hypothesized to facilitate
precise interaction with objects that are candidates for action by
up-signaling visual information conducted along the dorsal–action M
pathway, and down-signaling perceptual information along the P
pathway (see Goodhew et al., 2015, for a review).

At this point, many aspects of the effect of hand position on SF
sampling remain unclear, i.e., (a) What specific SF bands during
visual processing are differentially affected by hand position? (b)
What is the impact of hand position on the visual treatment of
ecologically valid objects that people would find in their everyday
lives? And notably, (c) at which stage or stages of object recog-
nition does hand position affect SF sampling? To address these
research questions, we employed a technique that maps, with
unprecedented resolution, the use of SFs contained in everyday
objects across time. More specifically, we created dynamic stimuli
from still images (e.g., a bench, a pale, a plant, a wrapped gift, a
cake), which were presented as 333-ms videos that randomly
revealed SF bands (ranging from 0.5 to 128 cycles per image [cpi])
at variable time points (ranging from early to late time points
within the video). In Experiment 1, we tested the value and
reliability of this method by examining the time course of SF
sampling during object recognition with hands in a typical down-
ward position. We expected to find the coarse-to-fine sampling
that has been observed in past studies (e.g., Caplette et al., 2016;
Hughes et al., 1996; Hupé et al., 2001; Schyns & Oliva, 1994). In
a second experiment, with a new set of subjects, we investigated
the impact of hand position on this pattern of SF extraction by
contrasting conditions in which subjects placed their hands either
near or far from the stimulus.

General Method

Materials

The experimental programs ran on Mac Pro (Apple, Inc., Cu-
pertino, CA) computers in the Matlab (Mathworks, Inc., Natick,
MA) environment, using functions from the Psychophysics Tool-
box (Brainard, 1997; Pelli, 1997). All stimuli were presented on
Asus VG278H monitors (1,920 � 1,080 pixels at 120 Hz; Fre-
mont, CA), calibrated to allow linear manipulation of luminance.
Luminance ranged from 1.6 cd/m2 to 159 cd/m2.

Stimuli

Eighty-six grayscale images of everyday man-made objects
were selected from the database used in Shenhav et al. (2013) and
from Internet searches. Images were 256 � 256 pixels and median
object width was 220 pixels. The objects were cropped manually
and pasted on a homogenous mid-gray background. The SF spec-
trum of each image was set to the mean SF spectrum of the images,
and mean luminance was equalized across images using the
SHINE toolbox (Willenbockel et al., 2010). Resulting images had
a root mean-square (RMS) contrast of about 0.20.

On each trial, participants were shown a short video (333 ms)
consisting of an object image, with random SFs gradually revealed
at random time points (e.g., Video S1; Video S2); that is, on each
video frame, there would typically be several SFs shown among all
possible SFs, and these would change from frame to frame. To
create these dynamic stimuli on each trial, we first randomly
generated a matrix of 256 SFs � 40 frames (with SFs ranging from
0.5 to 128 cpi, and each frame lasting 8.33 ms), in which most
elements were 0s and a few were 1s. The number of 1s was
adjusted on a trial-by-trial basis to maintain performance at 75%
correct. We then convolved this sparse matrix with a 2D Gaussian
kernel (a bubble; �SF � 1.5 cpi; �time � 15 ms). This resulted in
the trial’s sampling matrix: an SF � Time plane with randomly
located bubbles. Every column of this sampling matrix was then
rotated around its origin to create isotropic, two-dimensional (2D)
random filters. Finally, these 2D random filters were dot-
multiplied by the base image’s spectrum and inverse fast-Fourier
transformed to create a filtered version of the image for every
video frame (see Figure 1 for an illustration of this method). To
ensure accurate luminance display, we applied noisy-bit dithering
to the final stimuli (Allard & Faubert, 2008).

Procedure

Participants sat in front of a computer monitor, in a dimly lit room.
They completed two 500-trial blocks on the first day and two more on
the second day. A short break occurred every 50 trials. Each trial was
comprised of the following events: a fixation cross (300 ms), a blank
screen (200 ms), the video stimulus (333 ms), a fixation cross (300
ms), a blank screen (200 ms), and an object name at the basic level of
abstraction that remained on screen either until a response was pro-
vided, or for a maximum of 1 s, in which case it was replaced by a
blank screen until a response was provided. The number of bubbles
was adjusted on a trial-by-trial basis using a gradient-descent algo-
rithm to maintain performance at 75% correct. Subjects were asked to
indicate whether the name matched the object as accurately and as
rapidly as possible. The basic-level name and the object matched 50%
of the time; on the trials in which they didn’t match, the name was
randomly chosen among the basic-level names of all other objects.

Regression Analysis

Accuracies and response times were transformed into z scores
for every object (separately for each condition in Experiment 2) to
minimize variability due to differences in object recognizability or
familiarity with the object name. Further, z scores were calculated
for each 500-trial block to diminish variability due to task learning,
and for each subject to minimize residual individual differences in
performance. Trials associated with z scores over 3 or below �3
(either in accuracy or response times) were discarded from the
regressions (2.23% of trials in Experiment 1; 0.26% of trials in
Experiment 2).

To uncover which spatial frequencies in which time frames led
to accurate object recognition, we performed multiple least-square
linear regressions between accuracies and corresponding sparse
matrices, separately for each subject (and each condition, in Ex-
periment 2). The resulting matrices of regression coefficients were
then summed across subjects and convolved with a Gaussian
kernel (�SF � 5 cpi; �time � 42 ms); henceforth we shall refer to
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these matrices as classification images. The same procedure was
repeated with 500 bootstrapped samples, which were then used to
transform the summed regression coefficients into z scores. Fi-
nally, we applied a cluster test (Chauvin, Worsley, Schyns, Arguin,
& Gosselin, 2005) to the classification images to assess their
statistical significance. Given an arbitrary z-score threshold (here,
�3.5), this test gives a cluster size, k, above which the specified
p-value (here, p � .05, two-tailed), is satisfied, controlling the
family-wise error rate (FWER) while taking into account the
correlation in the data.

Experiment 1

In Experiment 1, we tested the value of this new method by
examining the time course of SF sampling during object recogni-
tion with hands in a typical downward position. We expected to
find the classic coarse-to-fine sampling that has been observed in
past studies (e.g., Caplette et al., 2016; Hughes et al., 1996; Hupé
et al., 2001; Schyns & Oliva, 1994).

Method

On the campus of the University of Montreal, 23 right-handed
adult participants (10 men; mean age � 22.14; SD � 1.85) were
recruited. Subjects had normal or corrected-to-normal vision, and
did not suffer from any visual or reading disability. The study was
approved by the ethics board of the University of Montreal’s
Faculty of Arts and Sciences. Written consent from all participants
was obtained after the procedure had been fully explained, and a
monetary compensation was provided upon completion of the
experiment. During the task, chin rests were used to maintain
viewing distance at 76 cm; images subtended 6 � 6 degrees of
visual angle.

Results and Discussion

Participants responded correctly on an average of 75.02% of the
trials and required an average of 84.32 bubbles to do so. The mean
response time was 719 ms. The z-scored group-classification im-

Figure 1. Illustration of the sampling method. On each trial, we randomly generated a matrix of dimensions
256 � 40 (representing respectively SFs and frames) in which most elements were zeros and a few were ones.
We then convolved this sparse matrix with a 2D Gaussian kernel (a “bubble”). This resulted in the trial’s
sampling matrix, shown here as a plane with a number of randomly located bubbles. Every column of this
sampling matrix was then rotated around its origin to create isotropic 2D random filters. Finally, these 2D
random filters were dot-multiplied by the base image’s spectrum and inverse fast Fourier transformed to create
a filtered version of the image for every video frame.
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age is illustrated in Figure 2. We included the SFs from 0.08 to
9.83 cycles per degree (cpd; equivalent in this experiment to 0.5 to
59 cpi) in our analyses, because they have been consistently
identified as contributing to accurate object recognition (e.g., Ca-
plette, West, Gomot, Gosselin, & Wicker, 2014; Caplette et al.,
2016; Gold, Bennett, & Sekuler, 1999). The z scores indicate the
correlation between the presentation of a given SF on a given time
frame and accuracy; white curves indicate significant clusters (p �
.05, two-tailed, FWER-corrected). This analysis revealed a first
earlier significant cluster that peaked at 2.25 cpd and 13 ms
(zmax � 4.49, k � 148) and led to accurate object recognition. A
second later, significant cluster peaking at 5.08 cpd and 304 ms
(zmax � 5.05, k � 1,240) also led to accurate object recognition.

To reduce the dimensionality of the results and characterize
them more concisely, we fitted a linear model on the classification
image. The model consisted of a surface defined by the inequalities
a1 � b1t � f � a2 � b2t, where f stands for spatial frequency (cpd),
t stands for time (s), and a1, a2, b1, and b2 are free parameters. The
model was fitted using the Nelder–Mead simplex method. The best
fitting model (R2 � 0.67) displayed a clear coarse-to-fine pattern,
such that the highest SFs sampled were steadily increasing across
time (a2 � 3.68 cpd; b2 � 10.32 cpd/s) and such that, perhaps
more surprisingly, the lowest SFs sampled were the same through-
out the video (a1 � 0.69 cpd; b1 � 0.00 cpd/s; see Figure 2).

In summary, the observed time course of SF sampling matches
a coarse-to-fine model, thus confirming what has been observed in
previous studies. Further, our method characterized this sampling

pattern with greater precision than previous methods and showed
that low SFs continue to be used in the latest time frames (see also
Caplette et al., 2016). Together, these results demonstrate the value
and the reliability of our method.

Experiment 2

In Experiment 2, we employed the technique that was validated
in Experiment 1 to investigate with unprecedented precision how
hand position (i.e., when hands are near or far from the stimulus)
modulates the time course of SF sampling. We expected to repli-
cate, with everyday objects, the finding that the proximity of the
hands to the stimulus enhances the extraction of low SFs and/or
impairs the extraction of high SFs reported in the literature. Fur-
thermore, we believed that the high-SF resolution of our method
would allow us to detect the precise SFs affected by hand position,
and that its high temporal resolution would allow us to discover the
precise moments during object recognition that hand position
would influence SF processing.

Method

On the campus of the University of Montreal, 28 right-handed
adult participants (17 women; mean age � 22.1, SD � 2.19) were
recruited. Subjects had normal or corrected to normal vision, and
did not suffer from any visual or reading disability. The study was
approved by the ethics board of the University of Montreal’s
Faculty of Arts and Sciences. Written consent from all participants
was obtained after the procedure had been fully explained, and a
monetary compensation was provided upon completion of the
experiment.

During the task, chin rests were used to maintain viewing
distance at 35 cm; images subtended 13 � 13 degrees of visual
angle. It is important to note, half the trials were performed with a
key press (hands–distal condition), and half were performed with
two mice attached to either side of the monitor (hands–proximal
condition; see Gozli et al., 2012). Participants’ elbows were resting
on the table while in the hands–proximal condition so that no
physical effort had to be exerted. Conditions were alternated in
blocks of 50 trials (the first condition was counterbalanced among
participants).

Results and Discussion

Participants responded correctly on an average of 73.13% of the
trials in the hands–proximal condition, and of 74.10% in the
hands–distal condition, t(27) � 0.96, p 	 .25; they required an
average of 66.26 bubbles in the hands–proximal condition, and of
66.93 bubbles in the hands–distal condition, t(27) � 0.84, p 	 .25.
In agreement with a previous study (Reed, Grubb, & Steele, 2006),
the mean response time was shorter in the hands–proximal condi-
tion compared to the hands–distal condition (633 ms vs. 747 ms;
t(27) � 4.26, p � .001).

Figure 3 illustrates the z scored group classification images for
the two conditions and the contrast between them. Z scores indi-
cate the correlation between accuracy and the presentation of a
given SF on a given time frame; white curves indicate significant
clusters (p � .05, two-tailed, FWER-corrected). In the hands–
proximal condition, a first cluster that peaked at 1.27 cpd and 88

Figure 2. Classification image depicting the correlations between SF-
time pixels and accurate object recognition. Pixels enclosed by solid lines
are significant (p � .05, two-tailed, FWER-corrected). Dashed lines rep-
resent the best fitting linear SF sampling model (see text for details).
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ms (zmax � 5.08, k � 391) and a second cluster that peaked at 0.35
cpd and 296 ms (zmax � 4.17, k � 78) led to accurate object
recognition, while a third cluster that peaked at 4.31 cpd and 113
ms (zmax � 4.60, k � 81) led to inaccurate object recognition. In
the hands–distal condition, a unique cluster that peaked at 1.15 cpd
and 46 ms (zmax � 4.63, k � 191) led to statistically significant
accurate object recognition. This is very similar to the early SF-
sampling pattern observed in Experiment 1.

In the contrast between these two conditions, one cluster that
peaked at 0.27 cpd and 288 ms (zmax � 4.26, k � 51) led to more
accurate recognition in the hands–proximal condition than in the
hands–distal condition, whereas a second cluster that peaked at
4.42 cpd and 104 ms (zmax � 4.46, k � 124) led to more accurate
recognition in the hands–distal condition than the hands–proximal
condition.

Given the fact that each object was repeated 23 times, on
average, during the course of the experiment (although always
with different SFs revealed at different moments), we tested
whether there was some learning effect. To do that, we contrasted
classification images derived from the first and last blocks of trials.
We did not find any significant difference; however, this result
should be interpreted carefully, given the poor signal-to-noise ratio
in our data.

In summary, we showed that the sampling of relatively high SFs
peaking at 4.42 cpd was impaired and that the sampling of rela-
tively low SFs peaking at 0.27 cpd was enhanced when objects
were near the hands. Most important, by evaluating the time course
of SF sampling when hands were near target objects, we showed
that the bias toward low SF processing occurred in the latest time
frames at around 288 ms, whereas the decreased sensitivity to high
SFs occurred around 104 ms.

General Discussion

The main goal of the present study was to investigate how the
time course of SF sampling is altered when objects are presented
near the hands. On each trial, subjects had to recognize an object
from a brief video sampling random SFs on random frames; we
then reverse-correlated the revealed SFs and time frames with

response accuracy. This technique allowed us to map the time
course of SF sampling with unprecedented precision.

We first put our method to the test by examining the time course
of SF sampling in a basic object-recognition task. As expected, we
observed the classic coarse-to-fine sampling reported in the liter-
ature (Caplette et al., 2016; Hughes et al., 1996; Hupé et al., 2001;
Schyns & Oliva, 1994). However, our method allowed us to
characterize this coarse-to-fine sampling with much greater preci-
sion than previous methods, notably indicating that low SFs are
used continuously. These results demonstrate the value and the
reliability of our method.

In our second experiment, we tackled our main research ques-
tion: How exactly does hand position alter SF sampling? We
replicated the finding—and extended it to everyday objects—that
the prioritization of objects near the hands is driven by an in-
creased use of relatively low SFs and a decreased use of relatively
high SFs when hands were proximal to the target object. What is
important to note is our high-resolution technique provided the
increased resolution to reveal that this effect is driven specifically
by low SFs peaking at 0.27 cpd and high SFs peaking at 4.42 cpd.
These results are consistent with a biasing of processing toward
magnocellular pathways when hands are near the stimuli.

Most important to note: This technique gave us a novel oppor-
tunity to examine the time course of SF use as a function of hand
position. In both hands–proximal and –distal conditions, low SFs
in early stages of object recognition (peaking at 46 ms and 88 ms)
contributed to accurate object recognition, and high SFs presented
around 113 ms led to decreased accuracy in the hands–proximal
condition. In later stages of object recognition (around 288 ms),
low SFs contributed significantly more to accurate object identi-
fication in the hands–proximal condition than in the hands–distal
condition.

The time course of the effect of hand position on SF sampling
informs us about underlying object-recognition mechanisms. The
discovery that hand position modulates SF sampling in later time
frames (	100 ms) suggests that the effect is attentional rather than
purely perceptual. The fact that hand position modulates the use of
high SFs seen around 113 ms and low SFs seen around 288 ms in

Figure 3. Group classification images depicting the correlations between SF-time pixels and accurate object
recognition: (a) hands–proximal condition; (b) hands–distal condition; (c) hands–proximal condition � hands–
distal condition. Pixel clusters enclosed by white lines are significant (p � .05, two-tailed, FWER-corrected).
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the videos implies that this information is processed by the brain
later than these latencies. This is relatively late by object-
recognition standards: the first bottom-up object processing sweep
is believed to extend up to about 100 ms after stimulus onset
(Lamme & Roelfsema, 2000). Thus, the effect of hand position on
SF processing appears to have a top-down component, which
involves attentional selection of visual information. Some re-
searchers have already proposed that space near the hands is
attentionally prioritized (Abrams, Davoli, Du, Knapp, & Paull,
2008; Reed et al., 2006; Reed, Betz, Garza, & Roberts, 2010); our
findings furthermore elucidate that specific SFs are prioritized or
inhibited in the near-hands space. This finding reconciles atten-
tional and magnocellular accounts of the hands effect: Attention
acts on specific SFs by biasing processing toward the magnocel-
lular or parvocellular pathway (attention can exert its influence as
early as the LGN; e.g., O’Connor, Fukui, Pinsk, & Kastner, 2002;
McAlonan, Cavanaugh, & Wurtz, 2008). Faster processing in
near-hands space (e.g., Reed et al., 2006) might be due to this
biasing toward the magnocellular pathway, which conducts infor-
mation at a faster rate (see Gozli et al., 2012).

Further, the recently discovered interaction between the atten-
tional demands of a given task and the SFs modulated by hand
position also supports the hypothesis that the effect of hands on SF
use is attentional (Goodhew & Clarke, 2016). Future studies using
this new, dynamic stimulus-presentation method could help con-
firm this conclusion. For example, both the attentional demands
and hand position could be manipulated (as in Goodhew & Clarke,
2016), and the similarity of the time frames of the effects of both
factors could be assessed. In a related way, we could also evaluate
the time course of SF use in a condition that emphasizes top-down
processing, and in another that emphasizes bottom-up processing
(e.g., through priming the object identity or not before the stimu-
lus). By verifying if the hand-position effect can be explained by
the effect of either condition, we could disentangle these two
explanations; in addition, this would provide a powerful test of
popular object-recognition models (e.g., Bar, 2003; Bullier, 2001).

In conclusion, our results demonstrate that the visual system
biases processing in magnocellular and parvocellular pathways
according to hand position at a late processing stage. Using the
method introduced in this paper, future studies can examine how
the hand–position phenomenon interacts with different attentional
demands.
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