
Current Biology 17, 336–340, February 20, 2007 ª2007 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2006.12.025
Report
Nonaccidental Properties Underlie
Shape Recognition in Mammalian
and Nonmammalian Vision
Brett M. Gibson,1,* Olga F. Lazareva,2

Frédéric Gosselin,3 Philippe G. Schyns,4

and Edward A. Wasserman2

1Department of Psychology
University of New Hampshire
Conant Hall
10 Library Way
Durham, New Hampshire 03824
2Department of Psychology
University of Iowa
Iowa City, Iowa 52242
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Summary

An infinite number of 2D patterns on the retina can cor-

respond to a single 3D object. How do visual systems
resolve this ill-posed problem [1] and recognize ob-

jects from only a few 2D retinal projections in varied
exposure conditions? Theories of object recognition

rely on the nonaccidental statistics of edge properties
[2–7], mainly symmetry, collinearity, curvilinearity,

and cotermination. These statistics are determined
by the image-formation process (i.e., the 2D retinal

projection of a 3D object [4]); their existence under
a range of viewpoints enables viewpoint-invariant rec-

ognition. An important question in behavioral biology
is whether the visual systems of nonmammalian ani-

mals have also evolved biases to utilize nonaccidental
statistics [8, 9]. Here, we trained humans and pigeons

to recognize four shapes. With the Bubbles [10] tech-
nique, we determined which stimulus properties both

species used to recognize the shapes. Both humans
and pigeons used cotermination, the most diagnostic

nonaccidental property of real-world objects, despite
evidence from a model computer observer that coter-

mination was not the most diagnostic pictorial infor-
mation in this particular task. This result reveals that

a nonmammalian visual system that is different ana-
tomically from the human visual system [11–13] is

also biased to recognize objects from nonaccidental
statistics.

*Correspondence: bgibson@cisunix.unh.edu
Results and Discussion

Comparative research is vital for our understanding of
vision. When members of different species respond sim-
ilarly to the same visual information, we gain confidence
in the prominence of this information (e.g., nonacciden-
tial statistics), irrespective of cultural or genetic influ-
ences. Birds represent an important group to compare
with mammals, the other major class of warm-blooded,
highly mobile, visually oriented animals [11–13]. Be-
cause of the unique demands of flight, for the last 200
million years birds have been under strong evolutionary
pressures to keep their overall size to a minimum. Al-
though a very large portion of the avian central nervous
system is devoted to visual processing [14], the bird
brain is still just a fraction of the size of our own. It is
this extraordinary mixture of visual competence and
small size that makes the study of birds critical to our
understanding of the general mechanisms of visual
cognition. Thus, three pigeons and six humans partici-
pated in our two-phase investigation into the role of non-
accidental statistics in the recognition of simple objects.

In the first phase, pigeon and human observers were
subjected to a four-choice recognition task in which
they learned to discriminate grayscale images of four
objects (see Figure 1). Upon learning to recognize the
shapes to criterion, subjects entered a second phase
in which Bubbles determined the information that both
species used to identify the shapes. On each trial of
Bubbles testing, a shape was randomly selected, and
its information was partially revealed via a number of
randomly located Gaussian apertures. We then used
the observer’s response to ascertain the image proper-
ties underlying identification of each of the four shapes.
To provide a benchmark for the information used in test-
ing the two species, we also included a performance-
matched model computer observer that knew perfectly
the images of the objects and the location of the aper-
tures (see Experimental Procedures). The human partic-
ipants were divided into a ‘‘no-noise’’ group and a
‘‘noise’’ group (see Experimental Procedures). For the
participants in the no-noise group, the number of bub-
bles sampling the images was adjusted on a trial-by-trial
basis to maintain the same performance level as that of
the pigeons. For the participants in the noise group and
the model observer, the number of bubbles was the av-
erage number that the pigeons were administered, and
noise was added to the images on a trial-by-trial basis
to maintain the same performance level as that of the
pigeons. Thus, the noise group provided an additional
comparison of human performance with the model
observer when both observers encountered noise.

For each kind of observer (pigeon, human, and
model), those image pixels that significantly correlated
with the performance of one or more observers (Sr =
4,791 pixels; FWHM = 18.84; Zcrit = 3.24; p < .05) are
shown in color overlaying grayscale images of the ob-
jects in Figure 1. The three basic colors (key in the center
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Figure 1. Statistically Thresholded Classifi-

cation Images for Each Species with Each

of the Four Objects Taken into Consideration

Each of the four columns corresponds to one

of the four objects, whereas each of the four

rows corresponds to one of the four observer

groups. The three basic colors (key in the

center of the figure) indicate the pixels that

were used by individual observers; combina-

tions of different basic colors indicate overlap

in the use of pixels by two or three observers.

The color pixels overlay grayscale images of

the objects and indicate the regions that

reached statistical significance for the indi-

vidual classification images.
of the figure) indicate the pixels used by individual ob-
servers; combinations of different basic colors indicate
overlap in the use of pixels by two or three observers.
To formally determine the correspondence between
significant image pixels and possible object properties,
we precisely defined three regions of interest (ROIs)
representing: (a) cotermination information, the most
informative nonaccidental property in the real world
[3], (b) edge information, another nonaccidental prop-
erty [2], and (c) shading information, an accidental
property of the chosen shapes [2, 15] (see Figure 2
and Experimental Procedures). For both species and
the model observer, we computed the percentage of
ROIs (Ncotermination = 6,423, Negde = 4,872, and Nshading =
7,792 pixels) containing significant pixels; this is a good
measure of information use because it factors out the
size of the ROIs. Bonferroni-corrected tests were ap-
plied within species on all pairwise differences between
the percentages (family-wise p < .05; Zcrit = 2.13).

Pigeons and humans in both the no noise and noise
groups used coterminations (18.7%, 14.4%, and 2.2%
of ROIs containing significant pixels, respectively)
more than edges (10.3%, 9.5%, and 1.6% of ROIs
containing significant pixels, respectively; Z = 13.42,
Figure 2. Cotermination, Edge, and Shading

Regions for Each of the Four Objects

Each of the four columns corresponds to one

of the four objects. Each of the three rows

corresponds to one of the three regions of

interest (ROIs) (coterminations, edges, and

shading). Overlaid on the grayscale objects,

the color pixels indicate the object informa-

tion inside (green) and outside (red) the

intersection of the area occupied by the four

objects.
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Figure 3. The Relative Use of Cotermination,

Edge, and Shading Regions for Each of the

Observers

Standardizing the percentage of ROIs (coter-

mination, edge, and shading) containing sig-

nificant pixels (indicated above each bar) to

sum to 1 within each subject group facilitated

the comparison of the histogram bars.
Z = 8.52, and Z = 2.24, respectively) and more than shad-
ing (6.9%, 4.0%, and 0.5% of ROIs containing significant
pixels, respectively; Z = 17.43, Z = 17.80, and Z = 7.10,
respectively). Also, pigeons and humans in both the
no-noise and noise groups used edges more than shad-
ing (Z = 7.67, Z = 13.79, and Z = 6.76, respectively). In
contrast, the model observer used edges (8.5% of
ROIs containing significant pixels) more than cotermina-
tions and shading (6.4% and 0.7% of ROIs containing
significant pixels, respectively; Z = 4.40 and Z = 23.34,
respectively), and it used coterminations more than
shading (Z = 15.38). Figure 3 illustrates the relative use
of the different ROIs for each subject group. The raw
percentages of ROIs containing significant pixels (indi-
cated above each bar) sum to 1 within each subject
group to facilitate comparison.

The performance of humans in both the no-noise and
noise groups was similar and indicated that the intro-
duction of noise did not make the human performance
more similar to the performance of the model. This is
not to say that introducing noise did not alter the perfor-
mance of humans; it did lead to new object regions be-
ing used in some instances (e.g., barrel) and reduced the
number of significant pixels overall (for one human par-
ticipant from the noise group, not a single focal region
correlated significantly with performance). The results
suggest that both pigeons and people utilized nonacci-
dental cotermination information even though this infor-
mation is not the most diagnostic for distinguishing
among the present pictorial stimuli, as demonstrated
by the model observer. Notably, the pattern of informa-
tion use remains unchanged when the percentage of
significant pixels falling in each ROI or ROI normalized
for size is used as an alternative measure (data not
shown). One concern with the current results is that
the people might appear to have been more consistent
in their use of information than the pigeons. Of all sig-
nificant pixels in the biological species’ classification
images, however, there was 24% overlap among the
human participants who did not have additive noise,
17% overlap among the pigeons, and only 8% overlap
among the human participants who did have additive
noise. Thus, there does not appear to be a robust differ-
ence between biological species. It appeared that one
pigeon contributed primarily to the classification image
for the wedge stimulus; that bird recognized the wedge
80% of the time, whereas it recognized the arch, barrel,
and cube 60%, 69%, and 58% of the time, respectively.
Obviously, this bird had an especially effective strategy
for recognizing wedges; it consistently used the base of
the wedge, a portion also used by the model observer.
Why did the other pigeons’ wedge-classification images
not contain significant pixels? It does not appear that
these birds had trouble with the wedge or that they re-
sponded randomly; their average correct responses
were 63%, 56%, 52%, and 49%, respectively, for the
arch, barrel, cube, and wedge. It is either that these birds
did not employ a wedge-recognition strategy that was
stable over time or that the strategy that they used in-
volved too large an area of the object.

Findings from a recent study [16] involving stimuli sim-
ilar to those in the current experiment indicated that
pigeons may pay more attention to the surface cues of
these objects than to the edges. One important differ-
ence between the studies is that the tasks for assessing
the use of object features are quite different. Pigeons
were trained to discriminate multiple views of the four
shapes with shading information (to promote learning)
before being tested for transfer to line images of the
same shapes (without shading) [16]. The pigeons failed
to transfer, suggesting that they did not use common in-
formation between the shaded and line-drawing ver-
sions of the same objects. One advantage of the Bub-
bles technique is that a transfer task is not required to
ascertain the prevalence of one type of information
over the other (e.g., shading over nonaccidental edge
properties). Also, from a formal standpoint, edges are
defined as sharp changes in shading [17], implying an
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edge-extraction process that extends beyond the exact
location of the edge in the image, one that detects a local
transition in global uniformity.

As mentioned earlier, nonaccidental properties help
humans to resolve the ill-posed problem of object
recognition [2–8]. In nonhuman primates, neurons of
the inferior temporal cortex have also been shown to
represent objects [18, 19], as well as to encode nonacci-
dental properties [7, 20]. Our work has disclosed a bias
toward cotermination in a phylogenetically distant non-
mammalian visual system. The measure of a compu-
tational theory is the possibility of multiple, system-
specific implementations of a generic set of constraints
[21]. Evidence of such generic biases in mammalian
and nonmammalian visual systems confirms the ubiqui-
tous nature of nonaccidental properties in the phyloge-
netic or ontogenetic emergence of object-recognition
systems, irrespective of their anatomical structure. Un-
derstanding how avian visual systems solve problems
that require considerable computational prowess may
lead to future technological advances (for example,
small visual prosthetics for the visually impaired) in the
same way that understanding visual processing in hon-
eybees has led to the development of flying robots and
unmanned helicopters [22, 23].

Experimental Procedures

Observers and Experimental Set-Up

Three adult feral pigeons were individually housed and maintained

at 85% of their ad lib weights by the use of controlled feedings

of mixed grain; the birds had free access to water. The pigeons

were studied in operant chambers equipped with a responsive

touchscreen and a CRT on the front wall for stimulus display.

Pigeons’ object-recognition responses were recorded from yellow,

blue, red, and green report areas that were located to the NW, NE,

SW, and SE of the display area, respectively. Six adult human partici-

pants (three females and three males, mean age = 26.6 years, std =

4.9 years) with normal, or corrected-to-normal, vision participated in

the experiment. Humans were studied with a Macintosh PowerBook

computer; they indicated their recognition response with specific

keyboard key presses.

Training Phase

On each trial of the training phase, a 128 3 128 pixel (for humans,

spanning 3.67 3 3.67 degrees of visual angle at a viewing distance

of 0.5 m) grayscale image representing one of four geometrical

shapes (arch, barrel, brick, and wedge, see Figures 1 and 2) was ran-

domly selected. For pigeons, the four colored report areas ap-

peared, and the response was recorded; food was delivered after

a correct response. Humans responded by depressing the appropri-

ate keyboard key and received immediate feedback. The trial was

repeated until the correct response was made. The training phase

continued until criterion was reached (a minimum of 80% correct

responses to each stimulus and an average of 85% correct re-

sponses to all four stimuli).

Testing Phase

On each trial of the testing phase, the geometrical shapes were par-

tially revealed by a mid-gray mask punctured by several Gaussian

punch holes of 8 pixels (0.23 degrees of visual angle, for humans)

of standard deviation (called ‘‘bubbles’’). For the participants in

the no-noise group, the number of bubbles sampling the images

was adjusted on a trial-by-trial basis with the QUEST algorithm

[21] to maintain the same performance level (58% correct) as that

of the pigeons (see below). Humans in this group required on aver-

age 5.95 (std = 3.23) bubbles. For the participants in the noise group

and the model observer, the number of bubbles was maintained

at 38, the average number that the pigeons were administered.

We added Gaussian noise to the bubble images and varied the
signal-to-noise ratio with the QUEST algorithm [21] to maintain

model performance at 58% correct, the performance level of

the other observers. For each trial, the model determined the

Pearson correlation between the sparse noisy input and each of

the four possible geometric shapes partially revealed with the

same bubble mask; the highest correlation determined the re-

sponse. The six human participants completed two blocks of test-

ing with the bubbled images; each block comprised 500 trials,

for grand totals of 3,000 trials in both the no-noise and the noise

group. The model observer completed a total of 9,600 trials, like

the pigeons did.

For pigeons, bubble numbers were adjusted every 10 days of test-

ing (20, 40, 50, 50, 30, 30, 40, 40, 40, and 40 bubbles) so that perfor-

mance between chance and ceiling levels (mean = 58% correct,

std = 14%) would be maintained. During each daily session, the

pigeons were presented 40 bubbled geometric shapes interspersed

among 160 unbubbled geometric shapes. The pigeons were tested

over 80 days.

Bubbles Analysis

We performed least-square multiple linear regressions on the bub-

bles and accuracy data [10] to pinpoint the features that different

observers used to discriminate the objects. The plane of regression

coefficients yielded by this operation is called a classification image

[24]. We computed one such classification image per observer per

geometric shape. We smoothed all classification images (with

a Gaussian kernel with sigma identical to the sigma of the bubbles

used in the experiment) and Z scored the resulting images. To esti-

mate the parameters of the distribution of the null hypothesis, we

used the area of the classification images that did not contain a sig-

nal (i.e., the complement of the intersection of all of the object areas).

Next, we applied the Pixel test to each classification image and de-

termined the number of significant pixels in the ROIs [25]. Tests on

the difference of percentages with Bonferroni corrections for multi-

ple comparisons allowed us to assess the reliability of the results.

Regions of Interest

Prior to Bubbles testing, we precisely defined the ROIs for the non-

accidental and accidental properties considered in our analyses.

Cotermination information was defined in terms of the contours fall-

ing within a radius of 15 pixels from the actual coincidences of two or

more edges (color pixels in Figure 2, row 1). The contours of the ob-

jects were extracted using the Canny method implemented in the

Image Processing toolbox for Matlab. These fine contours were con-

volved with a Gaussian kernel with a sigma of 4 pixels to allow for

some spatial uncertainty. The coincidences of two or more contours

were annotated by a human observer. Edge information was defined

in terms of the contours that were not included in the coterminations

(color pixels in Figure 2, row 2). Finally, shading information was de-

fined in terms of the object area that was neither edge information

nor cotermination information (color pixels in Figure 2, row 3). Only

the edges and surfaces within the region that defined the intersec-

tion of the four objects were retained for each of the three classes

defined above (green pixels in Figure 2). We discarded the objects’

area outside the intersection of the four objects (red pixels in Fig-

ure 2) because it always contained a mixture of accidental position

information and either nonaccidental cotermination information or

nonaccidental edge information. The model observer used acciden-

tal position information within this region because it used all the

available information. We do not know, however, whether the pi-

geons and the humans used this accidental information because it

is confounded with cotermination and edge information. Indeed,

36% of cotermination and 35% of edge pixels—but only 1% of shad-

ing pixels—fall outside the intersection of the shape areas. Each

biological species might have used position, cotermination, or

edge information, or they might have used a combination of position

and either cotermination or edge information. Note that this obser-

vation reinforces our main argument: humans and pigeons behaved

unlike the model observer; they focused (with 63% of all their sig-

nificant pixels) on the shape areas containing most (65%) of the

nonaccidental features, especially coterminations, whereas the

model observer focused (with 63%) on the shape areas containing

accidental position information.
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