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Recent investigations have proposed that visual information may be sampled in a discrete
manner, similarly to the snapshots of a camera, but this hypothesis remains controversial.
Moreover, assuming a discrete sampling of information, the properties of this sampling—
for instance, the frequency at which it operates, and how it synchronizes with the environ-
ment—still need to be clarified. We systematically modulated the signal-to-noise ratio of
faces through time and examined how it impacted face identification performance. Alto-
gether, our results support the hypothesis of discrete sampling. Furthermore, they suggest
that this mechanism may operate at a rate of about 10–15 Hz and that it is synchronized
with the onset of the stimulus.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction of stimuli through time and by examining how it impacts
When a stimulus is processed by the visual system, the
temporal unfolding of visual information extraction may
assume different profiles. Despite the fact that we experi-
ence a continuous flow of information when we look at
the world surrounding us, recent evidence suggests that
information is processed in a discrete manner, such that
information extraction occurs in distinct moments, in a
way similar to the snapshots of a camera (Busch, Dubois,
& VanRullen, 2009; Busch & VanRullen, 2010; Landau &
Fries, 2012; Mathewson, Fabiani, Gratton, Beck, & Lleras,
2010; Mathewson, Gratton, Fabiani, Beck, & Ro, 2009;
Mathewson et al., 2012; Rohenkohl, Cravo, Wyart, & Nobre,
2012; VanRullen & Koch, 2003; VanRullen, Reddy, & Koch,
2005). Here, we propose to test the periodicity of percep-
tion by systematically modulating the signal-to-noise ratio
performance. If periodicity is found, this technique will al-
low us to further characterize its temporal properties.

The empirical evidence in support of the hypothesis of a
periodicity in perception started to emerge in the middle of
the twentieth century. For instance, it was shown that the
visual threshold for detecting a flash of light varies period-
ically in the few milliseconds preceding the onset of an eye
saccade (Latour, 1967); and that the visual threshold for
detecting two flashes displayed successively varies period-
ically as a function of the time interval between them (La-
tour, 1967). These results were viewed as evidence for
discrete information sampling based on the following lo-
gic: if, as postulated by the hypothesis of discrete informa-
tion sampling, little or no information is being processed
during some moments, the probability of detecting a brief
stimulus should vary as a function of the state of this
extraction process. The detection rate should decrease if
the stimulus is presented during a ‘‘no extraction’’ state.
Likewise, a stimulus with an onset occurring during a ‘‘no
extraction’’ state should have to wait until the next extrac-
tion state before the processing begins, thus leading to a
longer reaction time. As a result, another piece of evidence
in support of discrete information processing is that peri-
odicities can be observed in reaction time distributions
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(Dehaene, 1993; Latour, 1967; Venables, 1960; White &
Harter, 1969).

A renewal of interest for the hypothesis of discrete per-
ception came from the observation that the wagon-wheel
illusion, which consists of perceiving a spoked wheel as
rotating differently from its true rotation (i.e. more slowly,
stationary, or with a reversed direction of rotation) can oc-
cur under continuous illumination (Purves, Paydarfar, &
Andrews, 1996; Reddy, Remy, Vayssiere, & VanRullen,
2011; Simpson, Shahani, & Manahilov, 2004; VanRullen,
2006, 2007; VanRullen, Reddy, & Koch, 2006; VanRullen
et al., 2005). The wagon-wheel illusion was first observed
in movies (i.e. under stroboscopic presentation). The cine-
matic version of this illusion occurs because the speed at
which the camera captures the information differs from
the frequency of rotation of the spoked wheel, therefore
resulting in temporal aliasing. However, the occurrence
of this illusion under continuous illumination cannot be
attributed to stimulus presentation constraints. Thus, some
researchers have hypothesized that a discrete sampling of
information by the visual system could be the basis for the
illusion (Andrews & Purves, 2005; Andrews, Purves,
Simpson, & VanRullen, 2005; Purves et al., 1996; Rojas,
Carmona-Fontaine, López-Calderón, & Aboitiz, 2006; Simp-
son et al., 2004; VanRullen et al., 2005).

The wagon-wheel illusion under continuous illumina-
tion has been used as a tool to determine the properties
of information sampling through time. For example, it
was shown that the illusion is most prevalent when the
wheel rotates at a temporal frequency of about 10 Hz,
and it was proposed (based on a motion-energy model)
that a system that samples information at a rate of 15 Hz
could account for these data (VanRullen et al., 2005). It
was also shown that attention was required for the illusion
to occur (VanRullen et al., 2005) and that a decrease in
power of the 13 Hz band of the EEG power spectrum was
correlated with the occurrence of the illusion (VanRullen
et al., 2006), suggesting that the discrete mechanism is
attention-driven and that 13 Hz cortical oscillations are a
potential candidate for this mechanism. However, other
studies using different experimental settings have ob-
tained results suggesting a sampling frequency other than
13 Hz (e.g. Busch & VanRullen, 2010; Busch et al., 2009;
Dehaene, 1993; Landau & Fries, 2012; Latour, 1967; Math-
ewson et al., 2009, 2010; VanRullen, Carlson, & Cavanagh,
2007).

An alternative explanation for the wagon-wheel illusion
under continuous illumination was proposed, which posits
that the illusion is caused by perceptual rivalry (Holcombe,
Clifford, Eagleman, & Pakarian, 2005; Kline & Eagleman,
2008; Kline, Holcombe, & Eagleman, 2004, 2006). Due to
the debate regarding the origin—perceptual rivalry vs. dis-
crete sampling—of the illusion, our understanding of the
temporal properties of visual information sampling would
likely benefit from using a method different from that of
the wagon-wheel illusion paradigm. Furthermore, because
the wagon-wheel illusion principally recruits motion per-
ception mechanisms, the properties of the information
sampling of other domains of vision remain to be exam-
ined. Hence, supporting evidence for perceptual oscilla-
tions came from studies demonstrating that the visual
system can be trained, using a rhythmic stimulation, to be-
come more sensitive to stimuli presented in phase with
this rhythmic stimulation (Lakatos, Karmos, Mehta, Ulbert,
& Scroeder, 2008; Mathewson et al., 2010, 2012; see also
Jones, Moynihan, MacKenzie, & Puente, 2002 for a similar
phenomenon in audition). Moreover, it was shown that
the probability that a stimulus is detected or reaches con-
sciousness is modulated by the phase of the ongoing brain
oscillations in low frequency rhythms (Busch & VanRullen,
2010; Busch et al., 2009; Lakatos et al., 2008; Mathewson
et al., 2009, 2012). Rohenkohl et al. (2012) have also shown
that the improvement in detecting stimuli that are in
phase with a rhythmic stimulation occurs via a contrast
gain. These observations support the idea that perception
is discrete and that the state of the extraction process
may determine whether a stimulus is perceived or not.

If perception is indeed discrete, its properties remain to
be clarified. For example, it was proposed that a sampling
occurring at a rate of around 13–15 Hz (VanRullen et al.,
2005, 2006) could be related to the occurrence of the wa-
gon-wheel illusion under continuous light, and perceptual
modulations at a rate of around 7–10 Hz have been ob-
served in detection tasks (Busch & VanRullen, 2010; Busch
et al., 2009; Landau & Fries, 2012; Mathewson et al., 2009).
Does that mean that the sampling frequency varies as a
function of the kind of visual processing required by the
task? Relatedly, does this information sampling synchro-
nize with the visual stimulation and if so, how? For exam-
ple, is the sampling resetting its phase at the beginning of
each trial in a visual perceptual experiment (i.e. with stim-
ulus onset)? Or is the sampling evolving without synchro-
nizing with the external world, as a passive ongoing
oscillation (i.e. random)? Synchronization with the stimu-
lation is more consistent with the periodicities observed in
reaction time distributions as well as in the visual thresh-
old preceding the onset of an eye saccade. Nevertheless,
how the information sampling synchronizes with the
external word remains unclear.

We propose an alternative experimental approach in
order to address these questions. The method consists of
systematically varying the signal-to-noise ratio of stimuli
through time while maintaining stimuli energy constant
and examining how different temporal profiles of signal-
to-noise ratio impact performance. If perception is indeed
discrete, the greater the overlap between the SNR’s profile
and the observer’s information processing profile, the bet-
ter the performance should be.

The method that we propose is essentially a classifica-
tion image technique (e.g. Eckstein & Ahumada, 2002;
Gosselin & Schyns, 2004). Classification image techniques
have been used to probe time before, but never to specifi-
cally verify the presence of periodicities in information
processing (e.g. Blais et al., 2009; Fiset et al., 2009; Gold
& Shubel, 2006; Neri & Heeger, 2002; Neri & Levi, 2008;
Vinette, Gosselin, & Schyns, 2004). For instance, Vinette,
Gosselin and Schyns (2004) used temporal classification
images to reveal the time course of visual features utiliza-
tion in a face identification task. On each trial, different fa-
cial areas were selected and rendered visible while the rest
of the face was hidden behind a gray mask. The visibility of
the facial areas also varied through time, so that different
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Fig. 1. Top: examples of signal-to-noise ratio profiles in Exp. 1 (inset) and 2. The different line styles represent different trials. Bottom: faces embedded in
white noise with the signal-to-noise ratio for that trial represented by a solid black line in the Exp. 2 graph.
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facial areas were visible at different moments within the
trial. The underlying assumption was that if the informa-
tion useful for the task is available at the right moment,
the probability that the participant responds correctly will
increase. In contrast, if the information useful for the task
is not available at the right moment during the processing,
then the probability that the participant responds correctly
will decrease. They found that the left eye was the first vi-
sual area used in a face identification task, followed by the
right eye. Interestingly, 10 Hz oscillations were observed in
the time course of information use for a face identification
task (Vinette et al., 2004; see Blais et al., 2009, for similar
findings during word reading).

Moreover, Neri and Levi (2008) examined directional
tuning in human observers using a classification image
technique and found some oscillations—albeit slower than
in other studies (i.e. about 3 Hz)—in their participant’s sen-
sitivity to target direction: it peaked between 30 and 60 ms,
declined to 0 between 120 and 180 ms, and rose again be-
tween 240 and 300 ms. They proposed a self-normalization
process with a delay of 90 ms to explain this oscillation.
However, this oscillation in directional sensitivity also fits
within a discrete processing framework: the frames on
which the system was not processing (or processing less)
were the ones on which directional sensitivity declined.

Here, two experiments were conducted using the meth-
od proposed above (see Fig. 1), i.e. modulating stimulus
visibility through time. In Exp. 1, the signal-to-noise ratio
of stimuli was modulated as a function of time with one
sine function characterized by a particular frequency (i.e.
5, 10, 15 or 20 Hz) and phase (0, p/3, 2p/3, p, 4p/3 or 5p/
3) that varied randomly across trials. Exp. 2 modulated
the signal-to-noise ratio of stimuli using a composite
waveform function, to allow us to characterise the sam-
pling properties more precisely.

2. Experiment 1

2.1. Methods

2.1.1. Participants
Six students from the Université de Montréal took part

in this experiment. All had normal or corrected-to-normal
visual acuity. All procedures were carried out with the eth-
ics approval of the Université de Montréal.

2.1.2. Material and stimuli
The stimuli were displayed on a high-resolution Sony

monitor at a refresh rate of 120 Hz. The experiment ran
on a Macintosh G4 computer. The experimental program
was written in Matlab, using functions from the Psycho-
physics Toolbox (Brainard, 1997; Pelli, 1997). The monitor
was calibrated to allow linear manipulations of luminance.
The background luminance was of 38.9 cd/m2.
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Stimuli were ten grayscale pictures of faces subtending
7 � 7 degrees of visual angle—five female and five male
faces with a neutral expression were used. The eyes, nose
and mouth position on those pictures were aligned using
rotation, translation and scaling. Faces were displayed
through an oval aperture subtending 4.8 � 7 degrees of vi-
sual angle to reveal only their inner features. The lumi-
nance and spatial spectra were equated across stimuli.
The viewing distance was maintained at 57 cm by using
a chinrest.

We varied the signal-to-noise ratio sinusoidally as a
function of time while maintaining stimulus energy con-
stant. On each frame (f) of every trial, a weighted sum of
a face stimulus (set to unit energy by dividing by

p
E, E

being its original energy) and a white Gaussian noise field
of the same size (set to unit energy by dividing by

p
N, N

being its original energy)1 was performed. A different noise
sample was generated on each trial, but this noise sample
was used on every time frame within one trial. The weights
(a and b, respectively, for the signal and the noise) were cho-
sen so that the signal-to-noise ratio changed according to a
sinus with a frequency of 5, 10, 15 or 20 Hz and a phase
(i.e. relative to stimulus onset) of 0, p/3, 2p/3, p, 4p/3, or
5p/3—resulting in a total of 24 possible signal-to-noise ratio
functions (signal-to-noise). The sinusoidal variation was
determined by the function signal-to-noise(f) =
A�sin(wt + U)/2 + 0.5, where A is the maximum amplitude
of the signal (controlled with QUEST, see below), and w
and U are the frequency and the phase of the modulation,
respectively. More specifically, a =

p
(signal-to-noise(f) � b2)

and b =
p

(E/(signal-to-noise(f) + 1)).2
2.1.3. Procedure
Participants had to perform a face identification task.

This task was selected because it is relatively taxing for the
visual system, and the maximum signal-to-noise ratio could
therefore remain relatively high. Each face in our set of stim-
uli was associated with a keyboard key, and participants had
to press on the appropriate key to identify the face during
the experimental phase. Before the experimental phase,
the participants had 10 min to familiarize themselves with
the set of 10 faces and their associated keys. A practice phase
then began: each practice block contained 75 trials. On each
trial, a fixation cross was first displayed at the center of the
screen for a duration of 500 ms. It was immediately replaced
by the full contrast stimulus (i.e. without noise) for a dura-
tion of 200 ms. A homogeneous gray screen was displayed
at the end of stimulus presentation and remained on screen
1 The energy of a stimulus can be defined by the sum of the squared
contrast of the pixels of the image (or, in other words, by the sum of the
squared differences between each pixel luminance value and the mean
luminance of the image). Thus, by dividing an image by the square root of
its original energy, the resultant energy of this image is 1. Here, we set the
energy of the image and of the noise to a value of 1 in order to be able to
entirely manipulate the total energy with the weights a and b. The value of
these weights was adjusted so that the total energy of the stimulus
(signal + noise) was constant across time, and equal to the original energy
of the face image.

2 This non-linear contrast manipulation introduces high-temporal fre-
quency harmonics (i.e. above 20 Hz). These artefacts, however, accounted
for only 6.04% of the total energy, which is negligible.
until the participant responded. The participant’s task was
to identify the face as quickly and as accurately as possible
by pressing on the appropriate key. The participants had
the choice of looking at the keyboard to find the appropriate
response key or to learn the position of the keys by heart (in
which case they did not have to search the keyboard). The
practice phase ended when the participant’s performance
reached 95% on two successive blocks.

Each subject completed 7 blocks of 160 trials in the
experimental phase. The sequence of events on each trial
of the experimental phase was the same as in the practice
phase, with the exception that the signal-to-noise ratio of
the stimulus presented was manipulated through time as
described in the Material and stimuli section. Performance
was maintained at 75% by adjusting the maximum signal-
to-noise ratio on a trial-by-trial basis with QUEST, irrespec-
tive of the frequency and the phase of the temporal profile
of the signal-to-noise ratios (Watson & Pelli, 1983).

2.2. Results and discussion

The maximum signal-to-noise ratio necessary to main-
tain performance at 75% correct had a median of 0.33
across participants (first quartile: 0.27, third quartile:
0.59). On average, the peak signal contrast was of 0.25
(std = 0.12), and the RMS noise contrast was of 0.27
(std = 0.01). On average, participants responded 1.3 s
(std = 3.1 s) following stimulus onset.

We searched for the pattern of frequencies and phases
that best predicted the subjects’ performance using an
analysis procedure (see Fig. 2a) that amounts to a multiple
linear regression on the properties of the sampling func-
tions that were used during the experiment (explanatory
variables) and on the participant’s response accuracy (pre-
dictor variables). The logic here is that when the profile of
the signal-to-noise ratio on a trial match the properties of
the participant’s sampling profile, then the probability of a
correct response should increase. In contrast, when the
profile of the signal-to-noise ratio does not match the par-
ticipant’s sampling profile, then the probability of a correct
response should decrease. Thus, by allocating positive
weights to the frequencies and phases that characterized
the signal-to-noise ratio profiles that led to a correct re-
sponse and negative weights to the frequencies and phases
that characterized the signal-to-noise ratio profiles leading
to an incorrect response, we can determine which proper-
ties were correlated with accuracy. In other words, for each
trial of the experiment, we created a 4 � 6 matrix (i.e. four
frequencies, six phases) and we put a negative or a positive
weight (i.e. depending on the accuracy for that trial) in the
appropriate cell, i.e. the one corresponding to the fre-
quency and phase of the temporal profile of the signal-
to-noise ratio on that trial. The weights corresponded to
the accuracies transformed into z-scores (i.e. using the
mean accuracy across all trials and the standard deviation
of the accuracies across all trials). All these weighted
matrices were then summed in order to produce a 4 � 6
matrix of regression coefficients that, henceforth, we will
call the classification image. The accuracies were trans-
formed into z-scores to take into account the different
number of correct and incorrect trials, so that even if there



Fig. 2a. Illustration of the analysis procedure in the Fourier domain. Left panel: each sinusoidal function used during the experiment was Fourier
transformed, and the magnitude values for each frequency were placed into the corresponding cell of a 4 � 6 matrix (i.e. cells colored in white indicate the
frequency and phase of the signal on that trial). Note that in Exp. 1 we did not need to Fourier transform the signal function: it was a pure sine wave, so we
knew exactly the frequency and the phase of the signal presented. Therefore, we only had to put a negative or a positive weight (i.e. depending on the
accuracy on that trial) in the appropriate cell, i.e. the one that corresponded to the frequency and phase of the temporal profile of the signal-to-noise ratios
on that trial. Individual classification images were generated by calculating a weighted sum of all these matrices. The weights consisted of the participant’s
accuracy, transformed into z-scores, on each trial. Right panel: the group classification image was calculated by summing the individual classification
images.
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were more correct than incorrect trials, the two kinds of
trials would have an equal importance in the classification
image.

The same procedure was then repeated one thousand
times on shuffled accuracies to determine statistical signif-
icance. In other words, by using the same SNR profiles as
those that were created during the experiment and by
shuffling the accuracies of all the participants, we ran-
domly generated 1000 matrices of regression coefficients,
thus producing 24,000 regression coefficients (since there
were 24 cells—4 frequencies � 6 phases—in each matrix).
We then used the 50 highest (i.e. 99.9 percentile) values
as our statistical threshold (i.e. 100-5/24, since a Bonfer-
roni correction was applied to adjust for the multiple com-
parisons across frequencies and phases). The results of this
analysis, displayed in Fig. 3, show that one frequency—
10 Hz with a phase between 4p/3 and 2p—was positively
correlated with accuracy. There was a difference of 7% be-
tween the mean accuracy associated with the SNR profile
that led to the worst performance and the mean accuracy
associated with the SNR profile that led to the best
performance.

The observation that some frequencies are correlated
with accuracy is consistent with the idea that visual infor-
mation is processed in a discrete manner. In fact, as ex-
plained in the Introduction, this hypothesis predicts that
the performance will be influenced by the amount of over-
lap between the SNR’s profile and the observer’s informa-
tion processing profile. Here, we find that the subjects’
performance is indeed influenced by the SNR’s profile;
the performance is best when the SNR varies at a frequency
of 10 Hz with a phase between 4p/3 and 2p.

Exp. 1 also provides some information regarding how
the information processing mechanism synchronizes with
the environment. Indeed, the fact that only a restricted
range of phases attained statistical significance for each
frequency suggests that the information sampling is in
phase with the beginning of a trial.

In Exp. 2, we will use composite waveforms instead of
pure sine waves to modulate the SNR through time. This
will allow us to verify if our findings can be replicated
using a different stimulus generation procedure. Moreover,
composite waveforms will allow us to characterize the
sampling properties more precisely.

3. Experiment 2

3.1. Methods

3.1.1. Participants
Six students from the Université de Montréal who had

not participated in the previous experiment took part in



Fig. 3. Group classification image obtained in Exp. 1, computed in the
Fourier domain. Red and blue correspond to positive and negative
correlations, respectively. White star indicates significant combinations
of frequency and phase. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 2b. Illustration of the analysis procedure in the temporal domain. Bottom panel: individual classification vectors were generated by calculating a
weighted sum of all the signal-to-noise ratio functions used during the experiment. The weights consisted of the participant’s accuracy, transformed into z-
scores, on each trial. The different shades of gray represent the different signal-to-noise ratios at each temporal frame. Top panel: the group classification
vector was calculated by summing the individual classification vectors.
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this experiment. All had normal or corrected-to-normal vi-
sual acuity. All procedures were carried out with the ethics
approval of the Université de Montréal.

3.1.2. Material and stimuli
The material and stimuli were the same as in Exp. 1,

with the exception that the sampling function used to
manipulate the signal-to-noise ratio changed according
to a composite waveform made of four frequencies (5,
10, 15 or 20 Hz), the relative amplitude and the phase of
each frequency varying randomly from one trial to the
other. In order to do so, we created 24-cell vectors of white
Gaussian noise that we then low-passed to keep the tem-
poral frequencies at 20 Hz and under.

3.1.3. Procedure
The procedure was the same as the one used in Exp. 1.

3.2. Results and discussion

The maximum signal-to-noise ratio necessary to main-
tain performance at 75% correct had a median of 0.47
across participants (first quartile: 0.40, third quartile:
0.57). On average, the peak signal contrast was of 0.28
(std = 0.08), and the RMS noise contrast was of 0.26
(std = 0.01). On average, participants responded 1.2 s
(std = 0.97 s) following stimulus onset.

We searched for the pattern of frequencies and phases
that best predicted the subjects’ performance using an
analysis procedure (see Fig. 2a) that amounts to a multiple
linear regression on the properties of the sampling func-
tions that were used during the experiment (explanatory
variables) and on the participant’s response accuracy (pre-
dictor variables). That is, a Fourier transform was applied
to each signal-to-noise function used during the experi-
ment, and the magnitude values for each frequency were



Fig. 4a. Group classification image obtained in Exp. 2, computed in the
Fourier domain. Red and blue correspond to positive and negative
correlations, respectively. White star indicates significant combinations
of frequency and phase. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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placed into a 4 � 40 matrix (i.e. four frequencies, 40 line-
arly spaced phase bins from [�p,p[). A weighted sum of
all those matrices was calculated, using the accuracies
transformed into z-score values as weights. The same pro-
cedure was then repeated one thousand times on shuffled
accuracies to determine statistical significance. In other
words, by using the same SNR profiles as those created
during the experiment and by shuffling the accuracies of
all the participants, we randomly generated 1000 matrices
of regression coefficients, thus producing 160,000 regres-
sion coefficients (since there were 160 cells—4 frequen-
cies � 40 phases—in each matrix). We then used the 50
highest values (i.e. 99.9 percentile) as our statistical
threshold (i.e. 100-5/160, since a Bonferroni correction
was applied to adjust for the multiple comparisons across
frequencies and phases).

The results of this analysis (see Fig. 4a) show that the
15 Hz frequency was positively correlated with accuracy.
Fig. 4b. Group classification vector obtained in Exp. 2, computed in the temporal
above an arbitrary z-threshold of 2.38 (p < 0.01). The dashed red line indicates the
magnitude of the different frequencies composing the sinus discrete model desc
vector had the best fit with the temporal classification vector of the humans.
The performance was best when the signal-to-noise ratio
started with a peak (phase of 0.15p). This finding in the
Fourier classification image again shows that a phase was
significantly correlated with correct responses. This cor-
roborates the hypothesis that the information sampling
was in phase with the stimulus (i.e. at least for the 15 Hz
frequency).

We then searched for the temporal pattern of signal-to-
noise ratios that best predicted the subjects’ performance
using an analysis procedure (see Fig. 2b) that amounts to
a multiple linear regression on the sampling functions that
were used during the experiment (explanatory variables)
and on the participant’s response accuracy (predictor vari-
ables). We called the result of this analysis a temporal clas-
sification vector (i.e. the signal-to-noise ratio function that
best predicted subjects’ performance). The temporal classi-
fication vector was computed by summing all the signal-
to-noise functions used during the experiment weighted
by the corresponding accuracy transformed into z-scores.
The individual vectors of regression coefficients were then
summed into a group vector, which we call a classification
vector. This classification vector is presented in Fig. 4b. A
Pixel test was applied in order to determine statistical sig-
nificance (Zcrit = 2.84, p < 0.05). The time frames occurring
between the stimulus onset and 25 ms after the stimulus
onset and between 133 and 150 ms after the stimulus on-
set reached statistical significance, suggesting that when
the stimulus was visible at those moments, the partici-
pants’ performance increased. A glance at the temporal
classification vector reveals that another group of frames,
around 75 ms following stimulus onset, were very close
to reaching statistical significance. The Pixel test allows
us to reveal whether each piece of information (i.e. each
pixel in an image, each frame in our SNR temporal profiles,
etc.) is correlated with performance, but another test—the
Cluster test—permits us to reveal the clusters of contiguous
domain. The blue lines indicate the significant clusters of connected pixels
significance threshold based on the pixel test. The inset shows the relative
ribed in footnote 4—that is, the one for which the temporal classification
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information in a signal that are correlated with perfor-
mance (Chauvin, Worsley, Schyns, Arguin, & Gosselin,
2005). The Pixel test and the Cluster test can both be con-
ducted without the need to apply a p-value correction (Po-
line, Worsley, Evans, & Friston, 1997). We therefore
performed a Cluster test (Chauvin et al., 2005) to verify if
the middle peak in the temporal classification vector is cor-
related with the participants accuracy. The Cluster test was
implemented as a bootstrap (10,000 vectors of regression
coefficients were randomly generated) to determine statis-
tical significance. The Cluster test gives a statistical thresh-
old for the size of clusters of connected elements above an
arbitrary z-score threshold. With the arbitrary z-score
threshold set to 2.38, the statistical threshold correspond-
ing to a family-wise error of p = .01 was a cluster size of 2.
Thus, any cluster of two time frames or more reaching the
significance threshold indicates that when some visual
information was available at that specific moment, the
probability that the participants answered correctly signif-
icantly increased. The temporal classification vector pre-
sented in Fig. 4b demonstrates how the different time
frames were correlated with accuracy.3

The results of Exp. 2 show that within the 200 ms stim-
ulus duration, there were three moments during which a
high signal-to-noise ratio was particularly useful. There
was a difference of 7% between the mean accuracy associ-
ated with the SNR profiles that were most correlated with
the temporal classification vector (top 1%) and the mean
accuracy associated with the SNR profiles that were least
correlated with the temporal classification vector (bottom
1%). These oscillations in the usefulness of visual informa-
tion through time are consistent with a discrete processing
of information at �15 Hz4 (see the inset in Fig. 4b).

Moreover, the results of Exp. 2 offer some information
about how the system synchronizes with the environment.
The presence of three moments during which a high sig-
nal-to-noise ratio was particularly useful in the classifica-
tion vector suggests that the sampling phase was not
random: had this been the case, the moments at which
information was sampled would have varied from trial to
trial and would therefore have cancelled each other out
in the classification vector across trials. Thus, Exp. 2 repli-
cated the findings of Exp. 1, suggesting that information
sampling synchronizes at least partly with the stimulation.
4. Discussion

In two experiments, the signal-to-noise ratio of faces
was modulated through time such that at some moments,
visual information was available whereas at other
3 Note that we also constructed a temporal classification vector In Exp. 1,
but nothing reached statistical significance. We think that this is due in part
by the stimuli used in Exp. 1. In fact, only 24 SNR temporal profiles were
tested; this is very few to construct a temporal classification vector
(normally a classification image or a classification vector is computed by
correlating random variations in a search space with performance).

4 We have used a simple sinus discrete model with two free parameters
and tried to minimize the square of the sum of the difference between the
model and the human temporal classification vectors using the Nelder-
Mead simplex method. The best fit had a frequency of 14.67 Hz and a phase
of 0.74 rad (r2 = 0.7).
moments, no information was available. The primary aim
of these experiments was to test the hypothesis that visual
information would be sampled periodically. Both experi-
ments indeed corroborate the existence of a periodical
mechanism implicated in visual processing. This finding
is in agreement with previous reports of periodicities in
reaction time distributions (Dehaene, 1993; Latour, 1967;
White & Harter, 1969) and in the visual threshold (Busch
et al., 2009; Busch & VanRullen, 2010; Landau & Fries,
2012; Latour, 1967; Mathewson et al., 2009, 2010, 2012;
Rohenkohl et al., 2012). It is also congruent with the
hypothesis that the wagon-wheel illusion under continu-
ous illumination may be caused by a discrete sampling of
information (Andrews & Purves, 2005; Andrews et al.,
2005; Purves et al., 1996; Rojas et al., 2006; Simpson
et al., 2004; VanRullen et al., 2005).

Furthermore, our results revealed the 10 Hz (i.e. Exp. 1)
and the 15 Hz (i.e. Exp. 2) frequencies as being correlated
with performance. Perhaps the difference found across
experiments in the frequency most correlated with accu-
racy is due to individual differences regarding the rate at
which the discrete mechanism samples information, as dif-
ferent individuals participated in Exps. 1 and 2. If individ-
ual differences exist in the properties of the sampling, it
could be indicated in future studies to use few observers
who would each be submitted to many trials, rather than
many observers submitted to few trials. Nevertheless,
there was enough consistency between subjects to high-
light significant combinations of frequency/phase in the
classification images of Exps. 1 and 2 as well as in the clas-
sification vector of Exp. 2.

Another potential explanation for the different frequen-
cies that correlated with accuracy in Exps. 1 and 2 is that
the sampling frequency of most individuals is neither at
10 nor at 15 but somewhere between 10 Hz and 15 Hz.
Consistently with this hypothesis, it was shown that the
occurrence of the wagon-wheel illusion was correlated
with magnitude changes in 13 Hz brain oscillations (Van-
Rullen et al., 2006). It may be that the mechanism revealed
in our study also underlies the wagon-wheel illusion under
continuous light. This would also mean that sampling
information in discrete snapshots is a mechanism that gen-
eralizes across (at least a subset of) domains of visual
processing.

If a discrete mechanism is implicated in visual informa-
tion processing, one question is whether this mechanism
synchronizes with the external world. Reaction time stud-
ies and studies that have shown periodicities in the visual
threshold preceding the onset of an eye saccade suggest
that sampling is synchronized with the stimulation. More-
over, Landau and Fries (2012) have shown a periodic pat-
tern in detection performance, and they demonstrated
that a luminance stimulus that exogenously attracts atten-
tion could reset the phase of that periodic sampling. Math-
ewson et al. (2012) have also shown that a rhythmic visual
stimulus can entrain an ongoing neural oscillation, such
that the excitability cycles of that oscillation are phase-
locked with the (predictable) appearance of the stimuli.
Such a synchronization of the sampling with the onset of
a stimulus is very similar to what was proposed by the trig-
gered-moment models (Oatley, Robertson, & Scanlan,
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1969; Sternberg & Knoll, 1973; Ulrich, 1987; Venables,
1960). This class of models proposes that the arrival of a
stimulus in the system triggers a moment of processing.
Our results support the idea of synchronization between
the periodic sampling function and the external environ-
ment. Had the phase substantially varied from trial to trial
in our experiments, no combination of frequency/phase
would have been significantly correlated with accuracy
(i.e. entire frequencies, irrespective of phase, would have
correlated). It is possible, however, that other discrete
mechanisms that are not in phase with stimulus onset ex-
ist—for instance, one operating at a lower or higher level of
processing and at a different temporal frequency.

On the other hand, it is also possible that oscillations in
information intake may result from the continuous im-
pulse response function (IRF) of the visual system (Bowen,
1989; Manahilov, 1995; Rashbass, 1976; Tyler, 1992; Wat-
son, 1986). In that case, the oscillations that we have re-
vealed in our data would not reflect a discrete sampling
of information, but would instead be an epiphenomenon
of the visual system’s reaction to a visual stimulation.
The energy in our stimuli was constant across time so,
technically, these IRF models predict a constant sensitivity
threshold. However, for the sake of the argument, we as-
sumed here that the input of the models is the signal-to-
noise variations in our experiments rather than energy
per se. For instance, we have tested how Watson’s 7-free-
parameter working model (Watson, 1982) fitted our data.
We minimized the sum of the square of the difference be-
tween that model and the human temporal classification
vectors obtained in Exp. 2 using the Nelder-Mead simplex
method. We found that 35% of the variance in our data
could be explained by this continuous model. This com-
pares rather poorly to the fit of a simple sinus discrete
model with two free parameters, which explained 70% of
the variance in our data. A likelihood ratio, corrected for
the number of free parameters (Glover & Dixon, 2004),
indicates that our participants’ data in Exp. 2 are about
8,125 times more likely to have occurred if this discrete
model were true than if the IRF model of Watson (1982)
were true. We also tested a few other kinds of IRF models5,
5 We have also tried to define the impulse response function with two,
three or four Gaussian radial-basis functions—Gaussian radial-basis func-
tions are a popular choice for approximating arbitrary functions. The
goodness of fit between the 6-parameter model (i.e. the sum of 2
Gaussians) and our data is about r2 = 0.58; and the goodness of fit between
the 9-parameter model (i.e. the sum of 3 Gaussians) and our data is about
r2 = 0.68 (the goodness of fit between the 12-parameter model (i.e. the sum
of 4 Gaussians) and our data is again about r2 = 0.68—so there is no need to
go any further). Likelihood ratios corrected for the number of free
parameters indicate that the human data is about 679 and 5444 times
more likely to have occurred if a simple sinus discrete model were true
than if the 6-parameter and the 9-parameters Gaussian radial-basis-
function continuous model were true, respectively. Finally, for the sake of
completeness, we have modeled discrete Gaussian radial-basis-function
models and tried to fit them to the human data: the goodness of fit between
the 6-parameter model and our data is about r2 = 0.68 (against r2 = 0.58 for
the 6-parameter continuous model; likelihood ratio = 1.31); the goodness
of fit between the 9-parameter model and our data is about r2 = 0.89
(against r2 = 0.68 for the 9-parameter continuous model; likelihood
ratio = 2.91); and the goodness of fit between the 12-parameter model
and our data is almost r2 = 1 (against r2 = 0.68 for the 12-parameter
continuous model; likelihood ratio = 32).
but we found no evidence whatsoever that an IRF model
could fit our data as well as a discrete sampling model. How-
ever, since we did not test for all the logically possible IRFs,
it remains possible that this class of model could predict the
oscillations we have observed in our participants’ informa-
tion utilization.

As mentioned above, the energy in our stimuli was con-
stant through time. One consequence of this is a perfect
negative correlation between the amount of noise and
the amount of signal on each frame: when the signal level
was high, the noise level was low and vice versa. Thus, our
study does not allow us to tease apart three possibilities:
the perceptual oscillation revealed in our classification
images reflect an oscillating sensitivity (1) to the signal-
to-noise ratio, (2) to the signal only, or (3) to the noise only.

To summarize, our results are in agreement with the
hypothesis of a discrete sampling of visual information
that synchronizes with the visual stimulation, a hypothesis
that has gained popularity recently. Indeed, we showed
oscillations in the time course of information utilization.
We also demonstrated that the frequency and phase with
which the visibility of a stimulus is varied influences per-
formance: the information sampling function of our partic-
ipants was synchronized with the beginning of the trial,
and they performed better when the frequency of the sig-
nal-to-noise ratio varied at a rate of about 10–15 Hz. Yet,
few investigations have been conducted on this topic so
far, and a definitive conclusion regarding the discrete nat-
ure of visual sampling seems premature. For instance, an
IRF model, which is not discrete by nature, could also pre-
dict oscillations in perception. More research will be
needed to clarify both the perceptual and brain mecha-
nisms underlying our results.
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