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Local increases in the mean of a random field are detected (conserva-
tively) by thresholding a field of test statistics at a level u chosen to control
the tail probability or p-value of its maximum. This p-value is approximated
by the expected Euler characteristic (EC) of the excursion set of the test statis-
tic field above u, denoted Eϕ(Au). Under isotropy, one can use the expansion
Eϕ(Au) =∑

k Vkρk(u), where Vk is an intrinsic volume of the parameter
space and ρk is an EC density of the field. EC densities are available for a
number of processes, mainly those constructed from (multivariate) Gaussian
fields via smooth functions. Using saddlepoint methods, we derive an ex-
pansion for ρk(u) for fields which are only approximately Gaussian, but for
which higher-order cumulants are available. We focus on linear combinations
of n independent non-Gaussian fields, whence a Central Limit theorem is in
force. The threshold u is allowed to grow with the sample size n, in which
case our expression has a smaller relative asymptotic error than the Gaussian
EC density. Several illustrative examples including an application to “bub-
bles” data accompany the theory.

1. Introduction. Data which can be modeled as realizations of a smooth ran-
dom field are increasingly abundant, owing to advances in scanning technology
and computer storage. Traditionally, such data have arisen in the fields of oceanog-
raphy, astronomy and medical imaging (see [40] for an easy introduction). More
recently (e.g., [16] or the January 2005 front cover of Nature [3]), the “bubbles”
paradigm in the cognitive sciences has provided new and interesting applications.
The difficult inference step is most often assessing the significance of the test sta-
tistic field arising from such data, as the multiple comparisons problem precludes
“pixel-wise” significance testing. Commonly, the supremum of the statistic image
is compared to an estimate of its upper pth quantile under the global null hypoth-
esis of a zero mean function (equivalently, the statistic field is thresholded at this
quantile to identify regions of activation). A leading approach to approximating
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these quantiles uses the expected Euler characteristic (EC) of the excursion of the
field above a threshold ([2, 38]), as described below. However, a common thread in
these analyses is the assumption that the random field data are Gaussian; in some
applications this assumption is known to be flawed.

Practitioners of voxel-based morphometry in neuroimaging have highlighted
the problem [27, 37], but have stopped short of proposing a theoretical solution. In
the context of galaxy density random fields, Matsubara [21, 22] obtained approx-
imations to the expected EC in three dimensions using Edgeworth series (though
he never made the jump to a saddlepoint expansion). Catelan and coauthors [8]
had previously used a similar approach (also in an astrophysics context) to get at
the mean cluster size of excursions for non-Gaussian fields. Rabinowitz and Sieg-
mund [25] used saddlepoint methods to approximate the tail probability for the
supremum of a particular non-Gaussian field, a smoothed Poisson point process.
Although they supplied a first-order version of the expected EC and published
heuristic arguments, their work originated some of the central lines of reasoning
of the current article (indeed, since the paper is cited often we henceforth refer
to it as RS). We shall formulate a general approximation to the expected EC for
asymptotically Gaussian fields with known (decaying) cumulants, and compare its
relative error to that under a full Gaussian assumption. In particular, our approx-
imation is found to outperform the Gaussian expected EC in a particular “large
threshold” asymptotic setting. Throughout, we underscore the connection between
our results and those of RS.

For concreteness, we consider processes of the form

Z(t)= 1√
n

n∑
i=1

Wi(t),(1.1)

where the Wi ’s are i.i.d. smooth random fields on T ⊂ RN with zero mean, con-
stant variance σ 2 and finite higher cumulants. Such a Z(t) is a special case of what
we call a Central Limit random field (CLRF), and usually should be thought of
as a test statistic derived from data. We call Au = Au(Z,T ) = {t ∈ T ;Z(t) ≥ u}
the excursion set of Z above u. We denote the EC, an integer-valued set func-
tional, by ϕ(·). For a working definition of the EC, see [34], and for a more rig-
orous account the reader is referred to Part II of Adler and Taylor [2]. As the
latter volume is the second major source of methodology used in this article, it
will be referenced as AT. Very loosely (ignoring what happens on the bound-
ary), in 2D the EC counts #“blobs” − #“holes” in a set, while in 3D it counts
#“blobs” − #“tunnels” + #“hollows” [40].

In some applications the expected EC of Au as a function of u is itself of central
interest. For example, cosmologists compare the observed EC (or 1 − EC, some-
times called the genus) from galaxy survey data with the expected EC from various
hypothesized models of the large-scale structure of the universe (see [18] and the
illustration in Figure 1). In other applications, including neuroimaging and the
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FIG. 1. Galaxies are not uniformly distributed in the universe, but tend to congregate in clusters,
strings or even sheets. Cosmologists have used the EC of regions of high galaxy density to char-
acterize this large-scale structure ([18] used data from the first release of the Sloan Digital Sky
Survey SDSS). In 2D the EC counts #“blobs”—#“holes” in a set. We examine luminous red galaxies
(LRG’s—the most distant objects in the SDSS) from the latest (5th) data release [24]. In (a) we show
LRG’s from a 22.5◦ square patch at 850 ± 50 megaparsecs (Mpc) with roughly the same galaxy
density as in [18] (our sample is part of a sphere, rather than cone-shaped, so we avoid the lumi-
nosity correction). Panel (b) displays the same number of “galaxies” simulated uniformly according
to a Poisson process. In (c)–(d) the LRG’s are smoothed with a Gaussian kernel of s.d. 10 Mpc, and
standardized to have zero mean and unit variance under the Poisson model.

bubbles problem treated in Section 8, interest centers around using this quantity as
an approximation to the p-value:

Eϕ(Au)≈ P

{
sup
t∈T

Z(t)≥ u
}

(1.2)
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FIG. 1. (Continued.) In (e) we compare the observed EC of each image at a continuum of thresholds
with the expected EC under the Poisson model computed using a Gaussian approximation and the
“tilted” correction derived in Sections 4–5. The observed EC for the SDSS image deviates from
the others, reinforcing the nonuniformity of LRG’s. The Gaussian and tilted expected EC’s differ
primarily in the tails; in the range where the expected EC approximates a p-value (bottom-right
zoom) this correction is dramatic. In particular, the tilted curve majorizes the Gaussian one since the
LRG distribution has positive cumulants. The observed EC for the (asymptotically Gaussian) Poisson
data conforms well with both curves. Note that all curves approach 1 as u→ −∞ and 0 as u→ ∞
(top-left zoom).

for large u. The assumption that (1.2)—the so-called “EC heuristic”—is adequate
for statistical inference is no longer a mere heuristic for Gaussian fields; see [33]
or AT, Chapter 14. See also Section 4.4 of the present paper.

To motivate the study of what are known as EC densities, we have the following
well-established result.

THEOREM 1 ([39], AT). Let Z(t) be any isotropic random field on T ⊂ RN ,
a locally convex finite union of convex bodies. Then the expected EC of its excur-
sion set at the level u ∈ R can be written

Eϕ(Au)=
N∑
k=0

Vk(T )ρk(u),(1.3)

where Vk(T ) is the kth intrinsic volume of the search region and ρk(u) is a function
called the kth EC density of the field.

PROOF. The expected EC Eϕ(Au(Z, · )) is a real-valued additive functional
acting on T ; Eϕ(Au(Z,T ∪V ))= Eϕ(Au(Z,T )∪Au(Z,V ))= Eϕ(Au(Z,T ))+
Eϕ(Au(Z,V ))−Eϕ(Au(Z,T )∩Au(Z,V ))= Eϕ(Au(Z,T ))+Eϕ(Au(Z,V ))−
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Eϕ(Au(Z,T ∩ V )). If the process is isotropic, then Eϕ(Au(Z, ·)) is also transla-
tion- and rotation-invariant. Finally, the local convexity of T guarantees that the
functional is continuous (e.g., in the Hausdorff metric). The result then follows
from Hadwiger’s seminal theorem [17, 28], which states that any such functional
is in the linear span of the intrinsic volumes, and hence admits an expansion
like (1.3). �

REMARK. If the field is nonisotropic but derived from a (multivariate)
Gaussian field by a smooth function, then on sufficiently regular parameter
spaces (1.3) holds with Vk(T ) replaced by the kth Lipschitz–Killing curvature
Lk(T ). The latter differential geometric functionals depend both on the space T
and on the covariance structure of the field itself; see AT Chapter 10.

1.1. Intrinsic volumes. The intrinsic volumes of a set T are a generalization
of its volume to lower dimensional measures. There are several ways of describing
these functionals; here we give an implicit definition, which is valid for any locally
convex set T and sufficiently small radius r . Let | · | denote the Lebesgue measure,
B(0, r) be the ball of radius r centred at 0, and T ⊕ B(0, r)= {x + y :x ∈ T ,y ∈
B(0, r)} be the tube of radius r around T . Write ωk = |Bk(0,1)| = πk/2/�(k/2 +
1) for the Lebesgue measure of the unit ball in Rk . Then

|T ⊕B(0, r)| =
N∑
k=0

ωN−krN−kVk(T ).(1.4)

Thus, the intrinsic volumes are related to the coefficients in the Steiner–Weyl vol-
ume of tubes expansion. For example, in R3 we have V0(T ) = ϕ(T ), V1(T ) =
2×caliper diameter(T ), V2(T )= 1/2×surface area(T), and V3(T )= volume(T ).
Remarkably, EC densities for all “Gaussian-related” processes were shown to have
a similar characterization in [31].

1.2. Computing EC densities. For a matrix A or vector a we introduce the no-
tation A|k = (Aij )1≤i,j≤k and a|k = (ai)1≤i≤k . When k = 0 this denotes, by con-
vention, an “empty” matrix or vector—that is, a term or factor which disappears
from the expression. We use Ip (or just I when the dimension is unambiguous)
to denote the p × p identity matrix. When applied to a random field, “˙” repre-
sents spatial differentiation with respect to t , and we shall refer to the individual
components of Ż and Z̈, respectively, by Zi and Zij . There are several useful for-
mulations for computing the EC densities of stationary fields [39]. In the derivation
of Theorem 4 we use

ρk(u)= E
{
Zk1[Zk≥0] det(−Z̈|k−1)|Z = u, Ż|k−1 = 0

}
f0,k−1(u,0)(1.5)

for k = 1, . . . ,N , where f0,k−1(·) denotes the joint density of (Z, Ż|′k−1). Indeed,
this was the original method used by Adler to compute the expected EC, and cor-
responds to using the N th coordinate function (t1, t2, . . . , tN ) �→ tN (instead of the
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field itself) as the function in Morse’s Theorem (see [1], Chapter 4). The zeroth

EC density is just the univariate tail probability, ρ0(u)
�= P{Z(t)≥ u}. It has a clear

interpretation as the lowest order approximation to the p-value (1.2).

1.3. A glimpse ahead. EC densities are available in diverse parameter spaces
for a number of processes [6, 7, 30, 32, 35, 38], mainly those derived from (multi-

variate) Gaussian fields via smooth functions. Let Hm(x)=m!∑�m/2�
j=0

(−1)j xm−2j

2j j !(m−2j)!
be the mth Hermite polynomial. For a mean zero Gaussian field with variance σ 2,
the densities take the form (cf. AT, Chapter 11)

ρ
γ
k (u)

�= (2π)−(k+1)/2σ−k exp
{
− u2

2σ 2

}
Hk−1

(
u

σ

)
.(1.6)

(Note that γ is used to denote the Gaussian measure, following the convention
of AT.) Our main result (Theorem 4) will be to show that for a stationary CLRF
like (1.1), and assuming that the threshold u is of the order n1/2−α for some 1/4<
α ≤ 1/2, modifying only the exponential portion of (1.6) leads to an approximation
to ρk(u) whose relative error behaves like n1/2−2α . Adding factor related to the
mixed skewness terms E[Z2Zi] can yield an additional improvement. Moreover,
we shall show that this error is asymptotically strictly better than that of (1.6),
exponentially so over the range 1/4< α ≤ 1/3.

The remainder of the paper is organized as follows. In Section 2 we use sad-
dlepoint methods to approximate the joint density of (Z, Ż′, Z̈′) (suitably trans-
formed), leading to a mixed tilted-direct Edgeworth expansion. In Section 3 we
consider the growth rate of u and compute certain moments of the tilted distribu-
tion which shall be used in subsequent derivations. We derive the approximation
to ρk(u), by methods reminiscent of [1] and [38], in Section 4. Section 5 offers an
analysis of the relative error of the tilted densities compared to that of a standard
Gaussian approximation, and we comment on the contribution of RS in Section 6.
In Section 7 we illustrate the method by treating a field—the χ2

n process—whose
densities are known exactly, and Section 8 applies the theory to the test statistic
from a bubbles experiment. We also present a simulation under the latter frame-
work which examines the accuracy of our corrected version of (1.3) as a p-value
approximation. In the interest of brevity, we have omitted several proofs and tech-
nical developments, all of which can be found in an online version of the present
article (URL), or in the doctoral thesis [9].

2. A mixed expansion. In order to avoid having EC densities which de-
pend on t in Theorem 4 below, we shall assume that Z is strictly stationary. For
practical purposes [i.e., to apply Theorem 1 in the computation of Eϕ(Au)], the
stronger requirement that Z be strictly isotropic shall be in force. In that case,
purely for convenience, Z will be assumed to have unit second spectral mo-
ment, namely E[ZiZj ] = δij . The latter assumption can easily be relaxed to al-
low Var[Ż(t)] ≡ λI , which merely modifies (1.3) by multiplying the kth term by
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λk/2. Strict isotropy can, on very simple parameter spaces, be weakened to sta-
tionarity [with a similar correction to (1.3)]; see Section 4.3 or AT, Chapter 11.
If ξ ≥ 0, the notation xn = O(n−ξ ) will indicate that for some 0 < C <∞ and
all sufficiently large n, |xn| ≤ Cn−ξ . A similar notation is used for matrices, with
the understanding that the relation holds componentwise. The notation an ∼ bn
signifies that an/bn → 1 as n→ ∞.

Fix k ≥ 2 and put

M =Mk
�= σZ̈|k−1 + Z

σ
Ik−1.(2.1)

The most important property of this shifted (k − 1)× (k − 1) Hessian is that it is

uncorrelated with the field: E{MijZ} ≡ 0. Let λijlm
�= E{ZijZlm} [a symmetric,

O(1) function] denote a fourth-order spectral moment of the process. It is easily
shown that

λMijlm
�= E{MijMlm} = σ 2λijlm − δij δlm.

We shall write M to denote both the matrix and the corresponding random vec-
tor vec(M), with the context eliminating confusion (similarly for Z̈). In view of

this, let Z = Znk
�= (Z, Ż|′k,M ′)′ have density f (z), to which we shall apply the

asymptotic expansion. Define the exponential family

fθ (z)= fθ (z, ż,m)= exp {θz −K(θ)}f (z, ż,m),(2.2)

where θ = (θ0, . . . , θdk−1) ∈ Rdk = k(k+ 1)/2 + 1. The function K(·) is of course
the cumulant generating function (cgf) of Z,

K(θ)=
∞∑
ν=1

∑
γ∈Ndk

|γ |=ν

1

γ !kν([Z]γ )θγ ,(2.3)

where if γ ∈ Nd , we define [Y ]γ = [
γ1︷ ︸︸ ︷

Y1, . . . , Y1, . . . ,

γd︷ ︸︸ ︷
Yd, . . . , Yd ], (θ1, . . . , θd)

γ =
θ
γ1
1 · · · θγdd , |γ | =∑d

i=1 γi , and γ ! =∏di=1 γi !. We have written kν for a νth order
cumulant.

Tilting in the first argument and inverting (2.2) yields

f (z, ż,m)= exp {K(θ0,0
′)− θ0z}f(θ0,0′)(z, ż,m).(2.4)

The relationship (2.4) holds for all values of θ0, in particular, that value θ0 = θ̂u,
which makes the Edgeworth expansion to f(θ0,0′)(z) most accurate at the point
z = (u,0′,0′)′—namely, that for which

u= E
(θ̂u,0′)Z = ∂K(θ0,0′)

∂θ0

∣∣∣∣
θ0=θ̂u

(2.5)
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holds. It is trivial to see that this requirement is satisfied if and only if θ̂u is the
formal maximum likelihood estimate of θ0 under the model f(θ0,0′)(z) when Z = u

is observed.
Finally, we let μ/ and �/ denote the mean and covariance matrix under the

density f
(θ̂u,0′)(z). Then (cf. [4], page 187) we have

μ/ =
(

u

∇2···dkK(θ)|θ=(θ̂u,0′)

)
and �/ = ∇∇′K(θ)|

θ=(θ̂u,0′),

where ∇2···dk has been used to denote (∂/∂θ2, . . . , ∂/∂θdk )
′. The approximation to

be exploited will eventually take the form

f (z, ż,m)= exp {K(θ̂u,0′)− θ̂uz}φdk ((z, ż′,m′)′;μ/,�/)
× {1 +Qk,3

(
(z, ż′,m′)′ −μ/

)}+ ek,n,(2.6)

�= f̂k(z, ż,m)
{
1 +Qk,3

(
(z, ż′,m′)′ −μ/

)}+ ek,n,

where Qk,3 is a degree 3 polynomial containing mixed cumulants of (Z, Ż|k,M)
of order 2 and 3, while ek,n denotes terms of smaller asymptotic order. It turns out
that Qk,3 has coefficients (including constant term) which range up to O(n−1/2).
Expansion (2.6) is called “mixed tilted-direct” because exponential tilting is ap-
plied to the first argument but not to the others.

3. Preliminary calculations. We argued heuristically that the expected EC
will provide a good approximation to the p-value (1.2) for large thresholds u; we
therefore allow the possibility that u = un → ∞ as n→ ∞. Let u = O(n1/2−α)
for some 0 ≤ α ≤ 1/2. From (2.5) we have

un =K ′
Z(θ̂u)

(3.1)

= σ 2θ̂u + 1

2
k3(Z)θ̂

2
u + 1

3!k4(Z)θ̂
3
u + · · · ,

where KZ( · ) denotes the marginal cgf of Z. When θ is a univariate argument,
we shall use “′” or a superscript [e.g., “(3)”] to denote (multiple) differentiation
with respect to θ . Under some additional assumptions, (3.1) is a proper asymptotic
expansion, in the sense that the error in the remainder is of smaller order than the
previous term. We shall use the following lemma repeatedly, and often implicitly,
in proving our main results.

LEMMA 2. LetZ = n−1/2∑
i Wi withWi centred, i.i.d. random variables with

variance σ 2 such that E|Wi |s+1 <∞ for some s ≥ 1. Suppose that K(s+1)
W is con-

tinuous on a closed interval [−εs, εs] with εs > 0. Let |θ | ≤ cn1/2−β for some finite
c and β > 0. Then there exists a constant c(s) depending only on s such that, for
all large n,∣∣∣∣K ′

Z(θ)− σ 2θ − k3(Z)
θ2

2
− · · · − ks(Z)

θs−1

(s − 1)!
∣∣∣∣≤ c(s)n1/2−sβ .(3.2)
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In particular, if u∼ cn1/2−α for some 0< α ≤ 1/2 and c > 0, with Z as described
above and s = 2, then

θ̂u = θ̂u,n = u

σ 2 [1 +O(n−α)](3.3)

as n → ∞. If α = 1/2, then u is (asymptotically) constant and θ̂u = u/σ 2 +
O(n−1/2).

3.1. The tilted moments. Let us now be more explicit about the “tilted” para-
meters μ/ and �/, computed by differentiating (2.3) with respect to the appropri-
ate argument(s) and then setting θ = (θ̂u,0′). To simplify notation, we partition as
follows:

μ/ = (u, μ̇′, μ̈′)′; �/ =
⎛⎝ τ 2 σ̇ ′ σ̈ ′
σ̇ �̇

...
�

′

σ̈
...
� �̈

⎞⎠ .
We alert the reader that the dot notation in the above parameters does not indicate
differentiation, but was designed to emphasize that portion of the process Y(t)with
which a particular mean or covariance is associated. In �/, the diagonal entries
in the partition are just the tilted variances, respectively, of Z, Ż|k and M . The
off-diagonal entries are the corresponding covariances, and so σ̇ is k × 1, σ̈ is
k(k − 1)/2 × 1, and

...
� is k(k − 1)/2 × k. We have, for example,

μ̇i =
∞∑
ν=3

1

(ν − 1)!kν(Z, . . . ,Z,Zi)θ̂
ν−1
u ,

(3.4)
...
�i,jl =

∞∑
ν=3

1

(ν − 2)!kν(Z, . . . ,Z,Zi,Mjl)θ̂
ν−2
u ,

and many more such expressions. When α > 1/4 it is easily deduced that

μ̇i =O(n1/2−2α), μ̈ij =O(n1/2−2α);
τ 2
u
�= τ 2 = σ 2 +O(n−α), σ̇i =O(n−α), σ̈ij =O(n−α);(3.5)

�̇ij = δij +O(n−α), �̈ij,lm = λMijlm +O(n−α),
...
�i,jl =O(n−α).

3.2. Some tilted conditional moments. We shall also need the following con-

ditional moments (assuming α > 1/4) under the tilted Normal density φk(·) �=
φdk (·;μ/,�/), the proofs of which are straightforward:

ν
�= Eφk {Zk|Z = u, Ż|k−1 = 0} =O(n1/2−2α);(3.6)

η2 �= Varφk {Zk|Z = u, Ż|k−1 = 0} = 1 +O(n−α);(3.7)
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Eφk {Mij |Z = u, Ż|k−1 = 0,Zk = x}
(3.8)

= μ̈ij + cij x +O(n1/2−3α);
Eφk {MijMlm|Z = u, Ż|k−1 = 0,Zk = x}

(3.9)
= λMijlm + c0

ij lm + c1
ij lmx + c2

ij lmx
2;

where cij =O(n−α) and

c0
ij lm =O

(
nmax(−α,1−4α)),

c1
ij lm =O(n1/2−3α),(3.10)

c2
ij lm =O(n−2α).

The punchline to (3.8) and (3.9) is that under the Gaussian approximation to the
conjugate density f

(θ̂u,0′), and conditional on the event {Z = u, Ż|k−1 = 0,Zk =
x}, we have M D=�+�x , where � is a centred Gaussian matrix with covariances
satisfying (4.1) below, and �x is a small, nonrandom (given x) perturbation.

4. Euler characteristic densities. We shall now proceed to use the character-
ization (1.5) in order to derive our corrected EC density.

4.1. The case α > 1
4 . The following analogue of AT’s Lemma 11.5.2 can be

proved in a similar fashion if one is mindful of the various error terms. In what
follows, | · | is the determinant. We also add a subscript n to all EC density expres-
sions, since we are interested in their asymptotic behavior.

LEMMA 3. Let 1
4 < α ≤ 1

2 , let 0 ≤ x be a O(1) nonrandom scalar and ε a
O(1) symmetric function from {1, . . . , k}4 into R. Suppose that � is a centered,
(jointly) Gaussian k × k matrix whose covariances satisfy

E(�ij�lm)= ε(i, j, l,m)− δij δlm + sij lm(x),(4.1)

where sij lm(x) is a quadratic polynomial with coefficients as in (3.10). Let b =
O(n1/2−α) be a nonrandom scalar, and let �0 =O(n1/2−2α), �1 =O(n−α), and
�x =�0 + x�1 be nonrandom matrices. Then

E|�− bI +�x | = (−1)kHk(b){1 + rk(x)},(4.2)

where rk is a degree k polynomial whose largest (constant) coefficient is a0 =
O(n−α) as n→ ∞.

THEOREM 4. Let Z be a strictly stationary CLRF as in (1.1), with covariance
function belonging to C4(RN) and E[ŻŻ′] = I . Let u ∼ cn1/2−α as n→ ∞ for
some constants 0< c <∞ and 1

4 < α ≤ 1
2 , and suppose that θ̂u is a solution to

K ′
Z(θ)= u,(4.3)
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whereKZ(·) is the cgf ofZ(t). Let τ 2
u =K ′′

Z(θ̂u) be the tilted variance ofZ(t) at θ̂u,
and Iu(θ)= uθ −KZ(θ). Then subject to regularity conditions, the EC densities
of Z for k ≥ 1 are given by

ρk,n(u)= ρ̂k,n(u)× {1 + εn},(4.4)

where

ρ̂k,n(u)= (2π)−(k+1)/2τ−k
u exp{−Iu(θ̂u)}Hk−1(τuθ̂u)(4.5)

and as n→ ∞ the relative error satisfies εn =O(n1/2−2α).
Moreover, an approximation with relative error O(nmax(−α,1−4α)) is given by

ρ̂k,n(u)×
(

1 + E[Z2Zk]
√
π

2

θ̂2
u

2

)
,(4.6)

and (if k ≥ 2) one with relative error O(nmax{−α,3/2−6α}) by

ρ̂k,n(u)×
(

1 + E[Z2Zk]
√
π

2

θ̂2
u

2

)
exp

{
− θ̂

4
u

8

k−1∑
i=1

E[Z2Zi]2

}
.(4.7)

REMARK. The “regularity conditions” mentioned above are just those on the
random field (Z, Ż|′k, Z̈|′k−1) required to apply the Expectation Meta-Theorem
(Theorem 11.1.1 in AT), those on the density f (z, ż,m) assuring the correct-
ness of the Edgeworth expansion, plus a mild assumption about the moments of
(W, Ẇ , Ẅ ). These conditions are academic in that they can rarely be checked in
practice, but are considerably weaker than the Gaussian assumption, which is cur-
rently the only alternative. See the Appendix for further details.

PROOF OF THEOREM 4 (LEADING TERM). For extra details the reader is
referred to the online version of this article, where we rigorously bound the error
terms and consider the contribution to the integral (1.5) of the polynomial Qk,3(·).
It is seen there that the additional terms are of relative size at most O(n−α), and
are therefore negligible. The crux of the derivation, however, is in working out the
leading term, which we do now. Plugging the saddlepoint approximation into (1.5)
yields

ρk,n(u)
.=
∫ ∞
x=0

∫
m∈RDk−1

x det
(
−m− u/σI

σ

)
f̂k(u,0

′, x,m)dmdx(4.8)

= exp{−Iu(θ̂u)}
(−1

σ

)k−1

×
∫ ∞
x=0

xφk(x|u,0′)
(4.9)

×
∫

RDk−1
det(m− u/σI)φk(m|u,0′, x) dmdx

× φ0,k−1(u,0
′),
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whereDj = j (j + 1)/2 and the various φ’s denote the obvious Gaussian densities
derived from φdk (·;μ/,�/) by conditioning or marginalizing. Evaluating the inner
expectation via (3.8)–(3.9) and Lemma 3, after noting that τuθ̂u − u/σ =O(n−α)
has smaller order than �0, gives

exp{−Iu(θ̂u)}σ−(k−1)Hk−1(τuθ̂u)
(4.10)

× E
{
Y
(
1 + rk−1(Y )

)
1[Y>0]

}
φ0,k−1(u,0

′),
where Y ∼ N (ν, η2) as in (3.6) and (3.7). Recall that σ = τu(1 +O(n−α)), and
consider the last factor in (4.10). We have

φ0,k−1(u,0
′)= (2π)−k/2 det(Vk)

−1/2 exp
{−1

2 μ̇|′k−1�̇|−1
k−1μ̇|k−1

}
,(4.11)

where

Vk
�=
(

τ 2
u σ̇ |′k−1

σ̇ |k−1 �̇|k−1

)
.(4.12)

So det(Vk)= τ 2
u (1 +O(n−α)), and the exponential portion of (4.11) behaves like

exp{O(n1/2−2α)′[I +O(n−α)]O(n1/2−2α)} = exp{O(n1−4α)}
= 1 +O(n1−4α).

It is also standard fare (e.g. [1], Lemma 5.3.3) that

E
{
Y1[Y>0]

}= η√
2π

exp
(
− ν2

2η2

)
+ ν�

(
ν

η

)

= η√
2π

[
1 − ν2

2η2 +O(n2−8α)

]
+ ν

2
+ ν2

√
2πη

+O(n3/2−6α)

= 1√
2π

+ ν

2
+O

(
nmax(−α,3/2−6α))(4.13)

= (2π)−1/2 +O(n1/2−2α).(4.14)

Let pk(y)= yrk−1(y) and Y0 = (Y − ν)/η. Write pk(y)=∑k
l=1 al−1y

l , with the
ai ’s at most O(n−α). Then

pk(Y )=
k∑
l=1

al−1(ηY0 + ν)l

=
k∑
j=0

[
k∑

l=max(1,j)

al−1

(
l

j

)
ηjνl−j

]
Y
j
0(4.15)

=
k∑
j=0

cjY
j
0 ,
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where the largest coefficient cj in (4.15) can be loosely bounded by O(n−α).
The absolute moments of Y0 are all finite, so that

∣∣Epk(Y )1[Y>0]
∣∣≤ k∑

j=0

|cj |E|Y0|j =O(n−α),

whereby

E
{
Y
(
1 + rk−1(Y )

)
1[Y>0]

}= (2π)−1/2 +O(n1/2−2α).

Putting the pieces together, (4.10) simplifies to

e−Iu(θ̂u)τ−k
u (2π)−(k+1)/2Hk−1(τuθ̂u)

× (1 +O(n1/2−2α)
)(

1 +O(n−α)
)(

1 +O(n1−4α)
)

= ρ̂k,n(u)× (1 +O(n1/2−2α)
)
.

Toward (4.6), consider one additional term in (4.13)–(4.14):

(2π)−1/2 + ν/2 +O
(
nmax{−α,3/2−6α})

= (2π)−1/2 + μ̇k/2 +O
(
nmax{−α,3/2−6α})

= (2π)−1/2 + k3(Z,Z,Zk)θ̂
2
u/4 +O

(
nmax{−α,3/2−6α})

= (2π)−1/2
{

1 + E[Z2Zk]
√
π

2

θ̂2
u

2

}(
1 +O

(
nmax{−α,3/2−6α})).

As for (4.7), we have

−1

2
μ̇|′k−1�̇|−1

k−1μ̇|k−1 = −1

2
μ̇|′k−1

(
I +O(n−α)

)
μ̇|k−1

= −1

2

∑
i≤k−1

(
E[Z2Zi]θ̂2

u/2 +O(n1/2−3α)
)2

+ μ̇|′k−1O(n
−α)μ̇|k−1

= − θ̂
4
u

8

∑
i≤k−1

E[Z2Zi]2 +O(n1−5α).

Finally, note that

max{1/2 − 3α,1 − 5α}<−α ≤ max{−α,3/2 − 6α}
≤ max{−α,1 − 4α}. �

It is worth emphasizing that if the mixed (third-order) cumulants E[Z2Zi] of Z
with its first derivatives vanish, then the approximation is improved regardless of
the behavior of the marginal cumulants ofZ. Note that if 1/3 ≤ α ≤ 1/2, then (4.7)
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is no better than (4.6), since −α ≥ 1−4α. An important special case of Theorem 4
is when α = 1/2, so that u is a constant. In that “small-threshold” setting each of
the approximations (4.5)–(4.7) admits a relative error of the order n−1/2.

4.2. What about α ≤ 1
4 ? Consider the case α ≤ 1

4 , in which the threshold u
grows somewhat more quickly relative to n. Here we expect the EC heuristic to
perform well, and the Gaussian approximation to perform poorly. But what of the
tilting procedure? From (3.5) we have that when α < 1/4, the tilted mean deriv-
atives also grow with n: μ̇i, μ̈ij → ∞. Lemma 3 no longer holds in this scenario
since the “remainder” terms now dominate (4.1) and, thus, the special covariance
structure which leads to Hermite polynomials is lost (the problem is exacerbated
if α < 0).

A reasonable conjecture in this setting is that the tilted EC densities will pro-
vide a much better approximation to the true ones than will those derived from a
Gaussian assumption (see the next section). Less obvious is whether the tilted den-
sities themselves have an acceptable relative error—indeed, Theorem 4 seems to
suggest the contrary. While we have yet to work out the details in general, empir-
ical evidence in at least two cases (see Sections 6 and 7) supports using the tilted
densities.

4.3. Brief comment on Rabinowitz and Siegmund. In the language and nota-
tion used here, the Rabinowitz–Siegmund heuristic can be phrased

P

{
sup
t
Z(t)≥ u

}
≈ 1 − exp{−E{Mu(Z)}} ≈ E{Mu(Z)},(4.16)

where Mu(Z) is the number of local maxima of the field Z above u. In RS, the
authors approximated this expectation by

E{Mu(Z)} .= exp{−Iu(θ̂u)} |T ||�̂|
(2π)(k+1)/2τu

θ̂N−1
u ,(4.17)

where �̂= Var
θ̂u

[Ż] is the tilted variance of the full derivative process (matrix of
second spectral moments), having removed the local isotropy condition. Note that
θ̂N−1
u /τu is the leading term in the polynomial τ−N

u HN−1(τuθ̂u), so that (modulo
the spectral determinant) (4.17) is equivalent to the leading term of our approxi-
mation. Naïvely extending (4.17) for, say, a stationary process on a rectangle, one
might obtain

Eϕ(Au)
.=

N∑
k=0

∑
J∈Ok

|J |k|�̂J |1/2ρ̂k,n(u),(4.18)

where now �̂J denotes the tilted variance of the derivatives restricted to facet J
of the rectangle, Ok is the set of k -dimensional facets touching the origin (cf. AT,
Chapter 11), and | · |k is a k-dimensional Lebesgue measure. (See Section 5.2 for
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a definition of ρ̂0,n.) For a general isotropic process, where �̂= λ̂I , (4.18) would
become

Eϕ(Au)
.=

N∑
k=0

λ̂k/2Vk(T )ρ̂k,n(u).(4.19)

It is readily seen that the relative error between the approximations (4.18)–(4.19)
and our own versions (with the untilted λ or �J replacing λ̂ or �̂J ) is of order
O(n−α). Indeed, λjl = E{Zj(t)Zl(t)} =O(1), and

λ̂j l =
∞∑
ν=2

kν(Z, . . . ,Z,Zj ,Zl)
θ̂ ν−2
u

(ν − 2)! = λjl
(
1 +O(n−α)

)
.(4.20)

Hence, |�̂|1/2 = |�|1/2(1+O(n−α)), and similarly for �̂J . This implies aO(n−α)
discrepancy for each k ≥ 1 term in (4.18) and (4.19). Since −α ≤ 1/2 − 2α, it
is unclear from the theory whether one should use the tilted or untilted second
spectral moment(s) in computing Eϕ(Au). Similarly, it is seen in Section 5 and the
proof of Theorem 4 that using the Gaussian argument u/σ in the place of τuθ̂u in
the Hermite polynomials leaves the relative error unchanged from (4.4). Intuition
suggests that τuθ̂u may give more accurate results in finite samples. A geometric
argument also supports its use; see [11]. The k = 0 term is unaffected by these
changes, and can be improved by the methods to be discussed in Section 5.2.

4.4. Some remarks about validity. It has been shown that for a Gaussian
process the relative error of the expected EC as an approximation to the p-value
is exponential as u→ ∞, in the sense that the first term of their difference is ex-
ponentially smaller than the zeroth term in expansion (1.3), which behaves like
u−1e−u2/(2σ 2) [33]. The authors of [34] (and an anonymous reviewer) rightly
pointed out that this result is, for the time being, a purely Gaussian one: the ex-
ponential error likely does not hold even for a t random field. Nevertheless, much
of the development in [33] makes no use of Gaussianity. We argue here that for
CLRF’s, the expected EC is exponentially close to the expected number of local
maxima above u, which is obviously an upper bound for the p-value.

Assuming that the parameter space is a manifold without boundary, one can
write the difference (before taking expectations) as

|ϕ(Au)−Mu| ≤ #{t ∈ T :Z(t)≥ u, Ż(t)= 0, Z̈(t)≮ 0}(4.21)

= #
{
t ∈ T :Z(t)≥ u, Ż(t)= 0,

(
Z̈(t)+Z(t)I

)
≮Z(t)I

}
(4.22)

≤ #
{
t ∈ T :Z(t)≥ u, Ż(t)= 0, ζ1

(
Z̈(t)+Z(t)I

)
> u

}
,(4.23)

where ζ1(·) extracts the largest eigenvalue. We have again assumed VarŻ(t)= I ,
purely for convenience. It is not hard to argue (e.g., using AT’s Expectation Meta-
Theorem in combination with an Edgeworth expansion) that for a stationary CLRF
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the expectation of (4.23) behaves to first order like

|T |e−u2/(2σ 2)e−u2/(2σ 2
c ),

where σ 2
c
�= sup‖v‖=1 Var[v′(Z̈ +ZI)v] is the so-called critical variance. The key

fact is that Z̈ + ZI , Ż and Z are uncorrelated, and indeed almost independent.
When T has a boundary, (4.21) must account for points where Au intersects ∂T ;
the argument is more finicky but not fundamentally different. In the interest of
brevity, we leave the details to a future article.

Since p ≤ EMu ≈ Eϕ(Au), clearly using the expected EC is conservative (at
least asymptotically). Determining conditions under which the p-value approxi-
mation is sharp will require modification of the purely Gaussian portions of [33].
Numerical evidence from a simulation (see Section 7) is reassuring.

5. Comparison with the Gaussian approximation. We shall use the nota-
tion

εn[cn, dn] = β ⇔ cn = dn × (1 +O(nβ)
)

(5.1)

as n→ ∞ to describe relative error for β ≤ 0. We say that the error is sharp, and
write εn[cn, dn] s= β , if (5.1) holds, but fails if β is replaced by β−ε for any ε > 0.
It is important to determine whether there are values of α for which our derived
expression provides a better approximation to ρk,n(u) than does the Gaussian EC
density. We examine only the approximation ρ̂k,n(u); similar considerations for
the refined formulae (4.6) and (4.7) are straightforward and left to the reader.

5.1. EC densities with k ≥ 1. In Theorem 4 we derived a “tilted” order
O(n1/2−2α) (in relative error) approximation to ρk,n(u) for k ≥ 1, denoted by
ρ̂k,n(u) and given in (4.5). Comparing this approximation to the Gaussian EC den-
sity ργk = ρ

γ
k,n from (1.6), we have (under the regularity conditions of Theorem 4)

the following:

COROLLARY 5. Let u ∼ cn1/2−α for some 0 < c < ∞. If 1
3 ≤ α ≤ 1

2 and
k3(Z) �= 0, then for all k ≥ 1,

εn[ργk,n(u), ρk,n(u)] s= 1 − 3α.(5.2)

In particular,

εn[ργk,n(u), ρk,n(u)] − εn[ρ̂k,n(u), ρk,n(u)] ≥ 1
2 − α ≥ 0.(5.3)

Moreover, if 1
4 < α <

1
3 and k3(Z) �= 0, then the error of the Gaussian densities is

exponential, in the sense that

ρ
γ
k,n(u)= ρk,n(u)× exp(bn)(5.4)

for k ≥ 1 and some sequence bn with |bn| → ∞.
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REMARK. In the proof of Corollary 5, it is easily seen that the sequence re-
ferred to in (5.4) can be written bn = k3(Z)θ̂

3
u/6 +O(n1−4α), where the skewness

may be positive or negative.

5.2. The k = 0 case. Until now we have only considered EC densities for
k ≥ 1. The zeroth density is generally defined by

ρ0,n(u)
�= P{Z(t)≥ u},(5.5)

the univariate tail probability above the level u. Since nothing in the derivations
of Theorem 4 or Corollary 5 explicitly requires u > 0, the results mentioned thus
far are valid if we weaken the threshold condition to u∼ cn1/2−α , |c|<∞. [Their
use is limited, however, by the facts that (a) when |u| is small the Gaussian ap-
proximation is adequate and (b) when u is large and negative the zeroth density
dwarfs the others.] With the exception of the Lugananni–Rice formula (5.9), the
discussion in this subsection does assume u ≥ 0, since it pertains to saddlepoint-
type approximations to (5.5). If one wishes to approximate ρ0,n(u) for u < 0 (as
is the case in Figure 1), then the expressions can be modified by making use of
the symmetry in their derivations and of the fact that ρ0,n(u)= 1 − P{Z(t) < u}.
Such generalizations are left to the reader. It should be noted that when a p-value
approximation is sought and hence u is large, the error in ρ0,n(u) typically has a
negligible impact compared to those in the higher EC densities. Approximating
tail probabilities via saddlepoint methods is far from a new problem; the principal
purpose of this subsection is merely to enumerate some useful formulae.

Let �(·) �= 1 −�(·) denote the standard Normal survival function. Given The-
orem 4, one who is inspired by AT’s definition H−1(x) = √

2π�(x)ex
2/2 might

naïvely estimate (5.5) by

ρ̂0,n(u)
�= exp{−Iu(θ̂u)}(2π)−1/2H−1(τuθ̂u)

= exp{τ 2
u θ̂

2
u/2 − Iu(θ̂u)}�(τuθ̂u).

Perhaps surprisingly, this is what Robinson [26] called the “first” saddlepoint
approximation, and turns out to be a reasonable estimate if u > 0. The zeroth
Gaussian density is

ρ
γ
0,n(u)=�

(
u

σ

)
= σe−u2/(2σ 2)

u
√

2π

(
1 +O(n2α−1)

)
.

Under typical Central Limit Theorem conditions (e.g., [15], Theorem 2.3), one has
to first order

ρ0,n(u)
.= ρ

γ
0,n(u)+

k3(Z)

6σ 3

(
u2

σ 2 − 1
)
φ(u/σ),(5.6)

which implies (sharply, assuming nonzero skewness) that

ρ0,n(u)= ρ
γ
0,n(u)

(
1 +O(n1−3α)

)
.
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Daniels [14] gave two differently-derived formulae. The first can be written

ρ0,n(u)
.= exp{τ 2

u θ̂
2
u/2 − Iu(θ̂u)}

×
[
�(τuθ̂u)

(
1 − K

(3)
Z (θ̂u)τ

3
u θ̂

3
u

6

)
(5.7)

+ φ(τuθ̂u)
K
(3)
Z (θ̂u)

6
(τ 2
u θ̂

2
u − 1)

]
and corresponds to the so-called “second” saddlepoint approximation [26]. Let
fZ(·) denote the marginal density of Z(t). Upon using the large x estimate�(x)=
φ(x)/x × (1 +O(x−2)), and under the regularity condition (cf. [26]),

sup
z

∣∣∣∣�(z− u

τu

)
−
∫ z

−∞
eθ̂uy−KZ(θ̂u)fZ(y) dy

∣∣∣∣=O(n−1/2),(5.8)

(5.7) leads to

ρ0,n(u)= ρ̂0,n(u)
(
1 +O(n−α)

)
.

The second approach is the Lugannani–Rice formula [20]

ρ0,n(u)=�(ωu)+ φ(ωu)

[(
1

ζu
− 1

ωu

)
+ 1

ζu

(
K
(4)
Z (θ̂u)

8
− 5K(3)

Z (θ̂u)
2

24

)
(5.9)

− K
(3)
Z (θ̂u)

2ζ 2
u

+
(

1

ω3
u

− 1

ζ 3
u

)
+ · · ·

]
,

where ωu = sgn[θ̂u]
√

2Iu(θ̂u) and ζu = τuθ̂u. Note that this approximation is valid
for large negative as well as positive u, and consequently, the first two terms
in (5.9) were used in the astrophysics example of Figure 1. One can reduce (5.9)
to

ρ0,n(u)=�(ωu)
(
1 +O(n−α)

)
=�

(
sgn[θ̂u]

√
2Iu(θ̂u)

)(
1 +O(n−α)

)
(5.10)

�= ρ0,n(u)
(
1 +O(n−α)

)
.

Filling in a few details gives the following:

PROPOSITION 6. Let 1
4 < α ≤ 1

2 and suppose that (5.8) holds. Then

εn[ρ̂0,n(u), ρ0,n(u)] = εn[ρ0,n(u), ρ0,n(u)] = −α.
Also, if the field Z is as in (1.1), k3(Z) �= 0 and 1

3 ≤ α ≤ 1
2 , then

εn[ργ0,n(u), ρ0,n(u)] s= 1 − 3α.



EULER CHARACTERISTICS OF CENTRAL LIMIT FIELDS 2489

In particular,

εn[ργ0,n(u), ρ0,n(u)]> εn[ρ̂0,n(u), ρ0,n(u)] ∀α ∈ [1/3,1/2).
When α < 1/3 the error in the zeroth Gaussian density diverges to infinity.

So once again the tilted densities perform better than the Gaussian one. How-
ever, ρ0,n and ρ̂0,n can both be improved upon if one is prepared to numerically
integrate the pointwise saddlepoint expansion of the density of z,

f (z)= 1√
2πτz

exp{−Iz(θ̂z)}
{

1 +
[

1

8
μ4(z)− 5

24
μ3(z)

2
]

+ εn(z)

}
.(5.11)

In (5.11) εn(x) is a O(n−2) (for fixed z) function of z, and

μ3(z)= τ−3
z K

(3)
Z (θ̂z); μ4(z)= τ−4

z K
(4)
Z (θ̂z)

are the standardized skewness and kurtosis of Z under the tilted (conjugate) den-
sity. The square-bracketed term in (5.11) is of order O(n−1) for each fixed z.
Hence,

ρ0,n(u)= P{Z(t)≥ u}
(5.12)

.=
∫ ∞
z=u

f̂n(z) dx +
∫ ∞
z=u

f̂n(z)
(1

8μ4(z)− 5
24μ3(z)

2)dz,
where f̂n(z)

�= exp{−Iz(θ̂z)}/[
√

2πτz] is assumed integrable. So provided

sup
z≥u
∣∣1

8μ4(z)− 5
24μ3(z)

2 + εn(z)
∣∣= o(n−α)(5.13)

as n→ ∞, the first term in (5.12) will give an approximation with smaller relative
error than ρ̂k,n(u) or ρk,n(u) (assuming numerical integration does not compound
the error). The tradeoff is an increase in computation, although solving the saddle-
point equation everywhere can be avoided by a judicious change of variables ([15],
Section 6.2). It is well known (e.g., [15], Remark 3.2) that gains can be achieved

when f̂n(z) is normalized to become a density. Let
�
f n (z)= f̂n(z)/‖f̂n‖1; a good

approximation to ρ0,n(u) is given by

�
ρ0,n (u)

�=
∫ ∞
z=u

�
f n (z) dz.

For p-value calculation the order O(n−α) approximations ρ̂0,n and ρ0,n will
often be sufficiently accurate. If the field is not too smooth and/or the search region
is large in volume, higher terms begin to dominate (1.3) and the Gaussian density
ρ
γ
0,n may in fact be adequate. For a more complete account of tail probability

approximations, see the references already mentioned in this subsection.
Corollary 5 and Proposition 6 suggest that, asymptotically, tilting the EC den-

sities is worthwhile provided u grows with n. In statistical applications, “u→ ∞”
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corresponds to “large u,” which is a crucial if unstated assumption when threshold-
ing random field data via the expected EC heuristic. However, the tilted densities
are not guaranteed to be any more accurate than the Gaussian ones in the small
threshold scenario α = 1/2, at least as n→ ∞. The performance of the approxi-
mation in finite samples is another matter altogether. These issues and others will
be addressed in Sections 6 and 7.

6. Example: A scaled χ2
n random field. It is instructive to consider a random

field for which both the tilted and exact EC densities are available explicitly; the χ2
n

random field is one such case. Let X1,X2, . . . ,Xn be i.i.d. centred, unit variance
Gaussian random fields on T and put Y(t)=∑n

i=1Xi(t)
2. It has been established

(by two distinct techniques [31, 38]) that the EC densities of Y are given by

ρ
χ
k,n(u)=

(k − 1)!u(n−k)/2e−u/2
(2π)k/2�(n/2)2n/2−1

×
�(k−1)/2�∑
j=0

k−1−2j∑
l=0

(
n− 1

k− 1 − 2j − l

)
(6.1)

× (−1)k−1(−u)j+l
l!j !2j 1{n≥k−2j−l}

for k ≥ 1.
We normalize by forming Z(t) = n−1/2(Y (t) − n), so that Z is centered, ap-

proximately Gaussian, and σ 2 = Var[Z(t)] = 2. Note that the χ2 field is “twice
as rough” as each Xi ; if the component Gaussian fields are isotropic with second
spectral moment λx , then (see [1], Chapter 7) Var(Ż) = n−1Var(Ẏ ) = 4λxIN . To
insure that λ = 1 for the normalized process, we therefore assume that the Xi’s

are isotropic with �X
�= Var(Ẋi)= IN/4. With that covariance structure and for a

square parameter space T , we have

Eϕ
({t :Z(t)≥ u})= Eϕ

({
t :Y(t)≥ √

nu+ n
})

=∑
k

|Ik/4|1/2ρχk,n
(√
nu+ n

)
Vk(T ),

=∑
k

2−kρχk,n
(√
nu+ n

)
Vk(T ).

Thus, the proper comparison is between ρ̂k,n(u) and 2−kρχk,n(
√
nu+ n) for k =

0, . . . ,N [this is a minor notational discrepancy; (6.1) is in fact 2kρχk,n(u) by the
conventions of this article]. We have

KZ(θ)= −√
nθ − n

2
log
(

1 − 2
θ√
n

)
;
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K ′
Z(θ)=

2θ

1 − 2θ/
√
n
;

K ′′
Z(θ)= 2

(
1 − 2

θ√
n

)−2

.

It follows that

θ̂u =
√
nu

2(u+ √
n)

; Iu(θ̂u)=
√
nu

2
− n

2
log
(

1 + u√
n

)
;

τ 2
u = 2

(
1 + u√

n

)2

; τuθ̂u = u√
2
.

Note that the Hermite portion of the tilted density is identical to that of the
Gaussian density in this case. Plugging these into (4.5), we have, for k ≥ 1,

ρ̂k,n(u)= e−u
√
n/2(1 + u/

√
n)n/2−k

(2π)(k+1)/22k/2
Hk−1

(
u/

√
2
)
.(6.2)

Collecting all of the constants in (6.1), again for k ≥ 1,

ρk,n(u)= 2−kρχk,n
(√
nu+ n

)
(6.3)

= e−u
√
n/2(1 + u/

√
n)n/2−k

(2π)(k+1)/22k/2
Rk−1,n(u),

where (assuming n≥N ) Rk,n is the following degree k polynomial:

Rk,n(x)= 2−(k−2)/2k!
√

2πe−n/2

�(n/2)

(
n

2

)(n+1)/2

×
�k/2�∑
j=0

k−2j∑
l=0

(
n− 1

k− 2j − l

)
(−1)k+j+lnj+l−k/2−1

l!j !2j

×
(

1 + x√
n

)j+l+(k+1)/2

.

Also, note that √
2πe−n/2

�(n/2)

(
n

2

)(n+1)/2

∼ �(n/2 + 1)

�(n/2)
= n

2

as n→ ∞. The corresponding Gaussian densities are

ρ
γ
k,n(u)=

e−u2/4

(2π)(k+1)/22k/2
Hk−1

(
u/

√
2
)
, k ≥ 1.(6.4)

For the k = 0 EC density, we have

ρ0,n(u)= ρ
χ
0,n

(√
nu+ n

)= P
{
Y ≥ √

nu+ n
}=

∫ ∞
√
nu+n

gn(y) dy,
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where Y D= Y(t) ∼ χ2
n and gn(y) = �(n/2)−12−n/2yn/2−1e−y/2 is the density

of Y . It is a well-known fact [13] that the first-order saddlepoint approximation
ĝn to gn is exact up to a constant, so that

gn(y)≡
�
gn (y).(6.5)

To obtain a similar result for ρ0,n(u) and
�
ρ0,n (u), we shall use the following

lemma, which is easily proved.

LEMMA 7. Let Z = σ−1
n (Y −μn) be a random variable with density fn(z)=

σngn(σnz+μn), where gn(y) is the density of Y . Then ∀z ∈ R,
�
f n (z)= σn

�
gn (σnz+μn).

Let fn(z) denote the density of Z(t). Putting σn = √
n and μn = n in the lemma

and using (6.5), we have

ρ
χ
0,n

(√
nu+ n

)= ∫ ∞
√
nu+n

�
gn (y) dy

= n−1/2
∫ ∞
√
nu+n

�
f n
(
n−1/2(y − n)

)
dy

=
∫ ∞
u

�
f n (z) dz

= �
ρ0,n (u).

So the integrated, scaled tilted zeroth density is exact in this case, and this is a
rare instance where normalization of the saddlepoint approximation does not in-
crease computation. The ordinary tilted and Gaussian k = 0 densities are given,
respectively, by

ρ̂0,n(u)= e(u
2−2

√
nu)/4

(
1 + u√

n

)n/2
�

(
u√
2

)
;

ρ
γ
0,n(u)=�

(
u√
2

)
.

As a term-by-term comparison of (6.2) and (6.3) is onerous, we compare
Hk(u/

√
2) and Rk,n(u) for k = 0,1,2, the cases of interest in a 2D or 3D problem.

We have

H0
(
u/

√
2
)= 1, R0,n(u)= cn

√
1 + u√

n
= 1 +O(n−α);

H1
(
u/

√
2
)= u√

2
,
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R1,n(u)= cn
u√
2

(
1 + u√

n
+ 1

u
√
n

+ 1

n

)
= u√

2

(
1 +O(n−α)

);
H2
(
u/

√
2
)= u2

2
− 1,

R2,n(u)= cn

(
u2

2
− 1 + u

2
√
n

+ 1

n

)(
1 + u√

n

)3/2

=
(
u2

2
− 1
)(

1 +O(n−α)
);

where cn = √
2πe−n/2�(n/2)−1(n/2)(n−1)/2 = 1 +O(n−1). Hence, the tilted EC

densities for k = 1,2,3 have a relative error O(n−α). Note that the Gaussianity of
the Xi’s in this example leads to E[Z2Zj ] = 0, which implies that, for all k ≥ 1,
a relative error no worse than O(nmax{−α,3/2−6α}) must be achieved by ρ̂k,n—
see (4.7). It is easily verified that Iu(θ̂u)= u2/4 − u3/(6

√
n)+O(n1−4α), so that

εn[ργk,n(u), ρk,n(u)] s= 1 − 3α when α ≥ 1/3.
The behavior of these approximations for k ≤ 3 is explored further in Figure 2.

In each column we consider a different asymptotic regime: the most general one
in which α = 1/3 and both n and u grow; the classical one in which α = 1/2
so that u is fixed while n grows; and the less common one in which n is fixed
while u grows (corresponding to α = −∞). The latter regime is meaningful for
statistical applications since the sample size (n) is large but finite and the relative
error in Eϕ(Au) as a p-value approximation is conjectured to fall off exponentially
as u→ ∞ (see Section 4.4). The theory of Sections 4.1 and 5 does not directly
apply to this scenario. A fourth regime, where k → ∞, might also be of interest;
empirical evidence for the χ2

n field suggests that the tilted densities perform poorly
under that scheme.

For k = 0,1 in this example, the tilted densities offer a clear improvement over
the Gaussian approximation even for small n and/or u. For k = 2,3, a larger sam-
ple size or threshold is needed before the difference emerges, but it is still un-
equivocal when u→ ∞. When α = 1/2 for k = 2 or 3, the tilted and Gaussian
approximations perform similarly, as predicted by Corollary 5. In the third regime
where u→ ∞ while n remains fixed, the Gaussian densities are quickly diverging
from the correct densities; however, they are more accurate than the tilted densi-
ties for k = 2,3 in the range 2 ≤ u≤ 4. Note that the chosen sample size n= 500
was quite large in that regime. When k = 0 the naïve tilted density ρ̂0,n(u) ap-
pears to outperform the Lugannani–Rice estimate’s leading term ρ0,n(u), but this
difference is small and may be specific to the χ2

n field. The Gaussian assumption
generally leads to under estimation of the expected EC in this example. In other
words, using a Gaussian assumption for statistical thresholding of χ2

n fields is anti-
conservative.
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FIG. 2. EC densities for the χ2
n random field: exact (ρk,n, “—”); tilted (ρ̂k,n, “- -”); and

Gaussian (ργk,n, “· · ·”). Ratios r of approximate to exact densities are plotted for three regimes:

u ∼ cn1/6 → ∞ (α = 1/3, 1st col.); u fixed and n→ ∞ (α = 1/2, 2nd col.); n fixed and u→ ∞
(α = −∞, 3rd col.). For k = 0, ρ0,n ≡�

ρ0,n, and “- · -” denotes ρ0,n.
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7. Application: Subtracted “bubbles” images. A moment’s thought reveals
that the form (1.1) taken for the Z process is far more restrictive than is necessary.
Indeed, the crucial property of Z = (Z, Ż′, Z̈′) appearing in the proof of Theo-
rem 4 is the rate of decay of its (joint) cumulants; namely

E[Z(t)] ≡ 0, Var[Z(t)] ≡ σ 2;(7.1)

and

kν([Z(t)]γ )=O
(
n−(ν−2)/2), γ ∈ N(N+1)(N+2)/2, |γ | = ν, ν ≥ 2.(7.2)

One might therefore expect Theorem 4 to apply to a variety of stationary ran-
dom fields satisfying (7.1) and (7.2) in addition to the regularity conditions in the
Appendix. The following is a slightly more general construction than (1.1): let
{Wi(t)}i be independent but perhaps nonidentically-distributed random fields with
finite cumulants of all orders. Assume that the random field of interest takes the
form

Z(t)= 1√
n

n∑
i=1

aiWi(t)(7.3)

for finite constants (ai)∞i=1. This framework covers the case of a two-sample prob-
lem (e.g., a difference in means between two groups), as well as the following
application.

The bubbles methodology of Gosselin and Schyns has been described in detail
elsewhere [16]. Typically, the experimenters’ goal is to determine which parts of
an image are most important in a visual discrimination task. The data analyzed
later in this section come from [3]. On each trial of the experiment, a subject was
shown a 2562 image of a face that was either fearful or happy. The images were
masked apart from a random number of localized regions or “bubbles” that re-
vealed only selected parts of the face; see Figure 3. The subject was then asked
whether the partially revealed face was fearful or happy, and the trial was repeated
about 3,000 times on each of 10 subjects.

Each masked image was generated as follows. First a range of scales was cho-
sen, σBj = 3 × 2j , j = 1, . . . ,5. Then the original image I0 [Figure 3(a) or (b)]
was smoothed by an isotropic Gaussian filter with standard deviation σBj/2 to
produce images Ij . The smoothed images were differenced to produce images
Dj = Ij−1 − Ij that reveal image features at five different scales. Differenced
image Dj was then multiplied by a mask consisting of the sum of a random num-
ber of isotropic Gaussian “bubbles,” each with standard deviation σBj . The bubble
center were chosen at random from the 2562 pixels, that is, according to a Poisson
process. The number of bubbles for each scale was a multinomial random variable
with probabilities inversely proportional to bubble area (∝ σ−2

Bj ), so that equal ar-
eas were revealed by each of the five bubble sizes, on average. The sum of all the
bubbles over all five scales is shown in Figure 3(c) for one of the trials. The sum of
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FIG. 3. Bubbles experiment. The subject is asked to discriminate between the happy (a) and fear-
ful (b) faces on presentation of the stimulus (d) which is one of the two faces, here the fearful face,
partially revealed by random “bubbles” (c). The 2272 search region T is inside the black frame in
(a) and (b).

all the bubbles times the differenced images is shown in Figure 3(d). On the basis
of Figure 3(d) the subject must decide if the face is happy or fearful (fearful is the
correct answer in this case). The total number of bubbles was chosen dynamically
to maintain a roughly 0.75 probability of correctly identifying the face.

7.1. Test statistic, cumulants and tilted densities. For the present analysis we
consider a single-subject run. We assume that the grid is square, and that the bub-
ble standard deviation σB (or equivalently, the bubble full width at half max F =√

8 log 2σB ) is fixed, as is the number m of bubbles per image. We denote by pC
and pI = 1−pC the proportions of correctly and incorrectly classified images. Let
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Yip denote the number of bubbles in image i which are centred at pixel p, with i =
1, . . . , n and p = 1, . . . ,P . Then Yip ∼ P (m/P ) is a Poisson random variable, and
the Yip are approximately independent (exactly when they come from different im-
ages). The test statistic field for detecting significant regions is formed by signing
and summing the bubbles, with sign depending on whether the image was correctly
or incorrectly classified. Thus, the unnormalized test statistic at pixel t is given by

Z̃(t)
�= n−1/2

n∑
i=1

P∑
p=1

aibp(t)Yip,(7.4)

where

ai =
{

1/pC, image i correct,
−1/pI , image i incorrect,

and

bp(t)= exp
{
−‖p− t‖2

2σ 2
B

}
.

The statistic is normalized by forming

Z(t)= Z̃(t)
/√

VarZ̃(t).

Inference can be either conditional on the observed vector a or unconditional, in
which case the ai are i.i.d. scaled Rademacher random variables and pC is taken
as the (assumed known) population proportion. One may apply the theory of the
present article under either analysis; we have chosen the conditional approach
since it simplifies cumulant calculations. Thus, pC and pI are observed propor-
tions.

The most natural global null hypothesis is

H0 :ai is independent of (Yip)
P
p=1 ∀i ≤ n,

which implies

H ′
0 : E{Z(t)|a} = 0 ∀t ∈ T ,

since EH0{Z(t)|a} ∝ ∑
p bp(t)

∑
i aiEH0{Yip|a} = m

P
(
∑
p bp(t))(

∑
i ai) = 0. Ig-

noring mild boundary effects, note that the null distribution of Z(t) is unchanged
if we translate or rotate the coordinate system; thus, Z(t) is (strictly) isotropic.
By (7.4), Z is of the form n−1/2∑

i aiWi where the Wi’s are i.i.d. random fields.
The distribution of Wi(t)=∑p bp(t)Yip is very non-Gaussian, with a high prob-
ability of being nearly zero (if there are no bubble center near t), and a small
probability of being large. The distributions become more Gaussian as m or F
increase.

An important practical note is that most users of this methodology choose to
“clamp” the summed bubbles at a maximum height equal to the peak height of a
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single bubble. In particular, two bubbles centered at the same pixel, when added,
have the same peak height as a single bubble. This is how the mask is actually cre-
ated, and it is felt that this is how the stimulus is perceived. Clamping effectively
replaces (7.4) with n−1/2∑n

i=1 ai min{∑P
p=1 bp(t)Yip,1}. Doing so not only com-

plicates cumulant derivations, but, more importantly, degrades the “smoothness”
of the random field. When the number of bubbles is small compared to the number
of pixels and their width is not too large (as in the data analyzed below), the loss
of smoothness due to clamping is negligible. Our choice of an unclamped analysis
is always valid, but perhaps less powerful at detecting facial features if indeed the
probability of response is related to the clamped rather than the unclamped bubble
mask.

Without any extra effort we generalize the cumulant computations to N dimen-
sions, although currently in bubbles experiments N = 2. It can be shown that the
j th null conditional cumulant of Z(t) is approximately

κj =
(

2j/2

j

)N/2p1−j
C + (−1)jp1−j

I

(p−1
C + p−1

I )j/2

{(
4 log 2

π

)N/2 1

B

}j/2−1

,(7.5)

which only depends on pC and the total number B �= nm/(PF−N) of bubbles per
N -dimensional “resel” (volume element). These have been used to compute the
tilted variance of Z,

τ 2
u =

∞∑
j=0

κj+2
θ̂
j
u

j ! .

In practice (for typical values of pC and B), j ≤ 20 seems to be enough; beyond
this the cumulants are extremely close to zero. The tilting parameter θ̂u is found by
solving K ′

Z(θ)= u with a Newton–Raphson algorithm started from the Gaussian
solution θ = u; five iterations appear to suffice in most cases. An approach like
this one was advocated by RS.

One can also show that the second spectral moment of Z under H0 is given
(approximately) by

Var{Ż(t)|a} ≈ 1

2σ 2
B

IN
�= λIN .(7.6)

The p-value approximation when N = 2 is thus

P

{
sup
t
Z(t)≥ u

}
≈ Eϕ(Au)

.= ρ̂0(u)+ 2(Pλ)1/2ρ̂1(u)+ Pλρ̂2(u),(7.7)

where the EC densities are

ρ̂0(u)= exp{τ 2
u θ̂

2
u/2 − Iu(θ̂u)}�(τuθ̂u),

ρ̂1(u)= exp{−Iu(θ̂u)}(2πτu)−1,(7.8)

ρ̂2(u)= exp{−Iu(θ̂u)}(2π)−3/2τ−1
u θ̂u.
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By contrast, the Gaussian theory EC densities are

ρ
γ
0 (u)=�(u),

ρ
γ
1 (u)= exp{−u2/2}(2π)−1,(7.9)

ρ
γ
2 (u)= exp{−u2/2}(2π)−3/2u,

with p-value approximation

ρ
γ
0 (u)+ 2(Pλ)1/2ργ1 (u)+ Pλρ

γ
2 (u).(7.10)

When P is large, the third terms in (7.7) and (7.10) dominate. Typical values for
the parameters are P = 2562, m= 16.5, F = 14.1, n= 3000, pC = 0.75; setting
u= 3.965 [the p = 0.05 threshold using (7.7)] then gives

ρ̂0(u)= 1.4 × 10−5, 2(Pλ)1/2ρ̂1(u)= 0.00171, Pλρ̂2(u)= 0.0484.

In view of this, the ratio of the tilted to Gaussian p-value approximations,

r ≈ ρ̂2(u)

ρ
γ
2 (u)

= exp
{
u2

2
− Iu(θ̂u)

}
θ̂u

τuu
,(7.11)

only depends on u, B and pC . We also consider the approximation suggested by
extension (4.18) of RS, namely,

ρ̂0(u)+ 2(P λ̂u)
1/2ρ̂1(u)+ P λ̂uρ̂2(u),(7.12)

where λ̂u denotes the tilted second spectral moment of Z. It can be demonstrated
that λ̂u ≈ τ 2

uλ. To compare this approximation to the Gaussian theory, one can
again form the p-value ratio

rRS ≈ λ̂uρ̂2(u)

λρ
γ
2 (u)

≈ τ 2
u r.(7.13)

These ratios are plotted for u = 3.5 and a range of B and pC in Figure 4. Note
that in this application the approximation (7.7) deviates less extremely from the
Gaussian one than does the heuristic of RS. This can be understood by noting that,
when α = 1/2,

τ 2
u = 1 + κ3θ̂u +O(n−1),(7.14)

where θ̂u ≈ u > 0 and sgn{κ3} = sgn{1
2 − pC}. At the same time, r > 1 ⇔ pC ≤

1/2. The O(n−1) term in (7.14) can be positive or negative but is of smaller order
than the skewness term. It is also worth noting that unlike in the χ2

n example and
the fields considered by RS, the Gaussian approximation can be conservative (i.e.,
lead to larger p-values) in bubbles experiments when typical parameter values
(pC > 1/2) are used.
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FIG. 4. Ratios of tilted to Gaussian-approximated expected Euler Characteristic of the excursion of
a test statistic from a typical bubbles experiment above the threshold u= 3.5, using both the untilted
(λ) and the tilted (̂λu) second spectral moment. The ratios are plotted for a reasonable range ofB (the
total number of bubbles per resel) and for several values of pC (the proportion of correctly classified
images). When pC = 1/2 (red curve), the skewness of Z is zero, and the saddlepoint correction is less
pronounced. Assuming that the tilted expressions are closer to the true p-value, r > 1 signifies that
the Gaussian approximation is anti-conservative, while r < 1 means that the Gaussian procedure is
conservative. Note that pC ≈ 0.75 is commonly targeted by the originators of the bubbles paradigm,
making the Gaussian theory valid though less powerful than the tilted inference.

7.2. Simulation. A simulation was devised to compare (7.7), (7.10) and (7.12)
with the true tail probability (1.2) of supt Z(t) above a threshold under H0. In
each of 105 Monte Carlo iterations, we generated 3000 bubbles images on a
P = 208 × 208 square with corresponding classifications, using pC = 0.75 and
bubble width F = 24. For each iteration we then calculated a sequence of test sta-
tistic fields Zn(t) for n= 100,200, . . . ,3000. Since kernel smoothing with Fourier
methods was used to speed up computation, the data were generated first on a
larger 256 × 256 square before discarding the outer edges to eliminate periodicity.
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The number of bubbles per image was fixed so that an average of m= 20 would
fall within the search region; this has a negligible effect on the cumulants (7.5). The
mixed skewness terms E[Z(t)2Zi(t)] can be shown to be (approximately) propor-
tional to

∑
p(ti − pi)bp(t)

3, and hence, are very close to zero for pixels far from
the boundary (recall that they were exactly zero in the χ2 example). We therefore
expect the tilted approximations to be within the orderO(n−α) of the true p-value.
Figure 5 displays the simulation results under the three asymptotic regimes. In ad-
dition to using both λ and λ̂u, we also tried u/σ in the place of τuθ̂u as the argu-
ment in the Hermite polynomials. This resulted in third and fourth variations on the
tilted p-value approximation. In all instances the tilted expected EC’s were closer
to the observed p-value than the Gaussian expected EC. In particular, the expan-
sion which uses the tilted spectral moment λ̂u and the Gaussian Hermite argument
u/σ (“– –,” orange) performed best, although differences between tilted approxi-
mations were small. The observed directional trend between the four tilted expres-
sions is likely specific to this application. We note that while feasible for parameter
spaces of this size, deriving p-values by simulation for bubbles-type data is time-
consuming, and quickly becomes impracticable as the dimension N increases be-
yond 2. The benefits of having a closed-form p-value approximation are evident.

7.3. Data analysis. We analyzed a portion of the data from [3] described at
the beginning of this section (control group). One subject (#9) was presented with
n= 3072 images of size 256 × 256 pixels, which he/she classified as either happy
or fearful, at a rate of pC = 0.76. The search region was trimmed to the inner
P = 2272 pixels to avoid Fourier edge effects. In agreement with the theory in
this article, we have limited our analysis to a single bubble width, F = 18.8 pixels
or σB = 8 (the subject was in fact shown bubbles of width F = 28.3, i.e., j = 2,
σBj = 12; but we chose a narrower filter when smoothing the test statistic in order
to totally eliminate the “clamping” issue). The mean number of bubbles per image
at this scale and within the search region was m= 3.0. Our chosen single bubble
width was the second-narrowest class (j = 2); an example of the three bubbles is
clearly visible in Figure 3(c). These parameter values correspond to B = 63.6 bub-
bles/resel. Thresholded images are displayed in Figure 6. There is strong signal in
the right eye region for this subject. The global maximum of Z(t) exceeded 5.8,
and hence, all thresholding methods identified that peak. At the p = 0.05 level the
Gaussian threshold picked up only the right eye, while the tilted threshold found
additional activation in the upper lip. At p = 0.1 significance the tilted expected
EC identified a third signal in the left eye which went undetected by the Gaussian
theory. Note that the Gaussian approximation is conservative in this case since
Z(t) exhibits negative skewness (pC > 1/2).

8. Discussion and future work. We have provided a rigorous theoretical
justification for the use of saddlepoint methods in thresholding asymptotically-
Gaussian random fields, first proposed by Rabinowitz and Siegmund [25]. In par-
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FIG. 5. Ratios of expected EC approximations to true (empirical) p-values for simulated bub-
bles data, under the three asymptotic regimes of Section 7. Bubbles parameter values were
P = 2082,F = 24,m= 20,pC = 0.75, and n ranging from 100 to 3000. The ratio scale was chosen
so that absolute deviations from the line r = 1 correspond to relative error. The Gaussian expected
EC is given by (7.10). The tilted approximations use either the untilted (λ) or tilted (̂λu) second spec-
tral moment, and either the tilted (τuθ̂u) or untilted (u/σ ) Hermite argument. Monte Carlo error
bars (±1 standard deviation) are for the Gaussian curve (“· · ·”), but are attached to the line r = 1 to
aid interpretation. They are computed pointwise, using Var(p̂/pemp) ≈ 10−5p̂2(1 − pemp)/p

3
emp ,

where pemp is an empirical p-value and p̂ one of the EC approximations. Error bars for the other
curves are slightly narrower. The threshold u = 3.5 was chosen in (b) in order to have empirical
probabilities near 0.05. The sample size n = 300 was chosen in (c) in order to have the total bub-
bles/resel close to the value B = 63.6 observed in the data. In all cases the tilted approximations
outperform the Gaussian one, including in (c) where n is fixed, u grows and all curves appear to
diverge from unity.
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FIG. 6. Thresholded bubbles data for subject #9, with the search region framed. Test statistic
(a), with excursions above: (b) u = 2 (Gaussian uncorrected p ≈ 0.05); (c) u = 3.92 (Gaussian
p ≈ 0.05); (d) u = 3.76 (tilted p ≈ 0.05); (e) u = 3.72 (Gaussian p ≈ 0.1); (f) u = 3.58 (tilted
p ≈ 0.1). P -values approximated by EEC under the Gaussian (7.10) and tilted theory with argu-
ment τuθ̂u and spectral moment λ̂u; see (7.12). Inference using (7.7) is similar and omitted. There is
strong signal in the right eye region. At p = 0.05, the Gaussian theory identifies only the right eye
(c); tilting finds activation on the upper lip (d). At p = 0.1, tilting detects signal above the left eye
(f); the Gaussian approximation does not (e). Tilting reduces thresholds because pC > 1/2, so Z(t)
exhibits negative skewness.
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ticular, we have extended their “expected number of maxima” heuristic to an ex-
pected Euler Characteristic approximation for locally isotropic Central Limit-type
fields, and derived relative errors for the EC densities when the threshold is allowed
to grow. We have also compared these formulae to a Gaussian approximation, both
analytically and in numerical and real data examples involving a χ2

n field and a lin-
ear combination of Poisson fields.

As did RS (who only considered a Poisson process) vis-à-vis expected local
maxima, we found substantial differences between the Gaussian and the vari-
ous tilted approximations (which were uniformly more accurate in a particular
case—see Figure 2) to the expected EC. It was shown in Section 5 that in a large-
threshold setting the saddlepoint correction reduces asymptotic relative error. In
contrast to the examples chosen by RS, we have demonstrated via simulation that
the Gaussian approximation can be conservative in some instances rather than al-
ways underestimating the p-value; see Section 8 and Figures 4–5. We have shown
that the important correction for non-Gaussianity occurs in the exponential portion
of the EC densities. Additional corrections to the variance of the first derivative
field and to the argument of the Hermite polynomial are of smaller order and may
not be needed unless the expected EC over the full range of u is required. The
examples considered indicate that tilting the spectral moment has a greater impact
than tilting the Hermite argument. Our results support RS’s recommendation to
employ a tilted expansion when the additional computation is feasible; we add that
the benefit is greatest if the field has nonzero skewness and/or if u→ ∞ (is large)
along with n.

In addition to the bubbles test statistic field presented above, we have begun
to apply the theory of this article to lesion density maps from neuroimaging [10],
which can be non-Gaussian in a similar fashion. Handling this and further applica-
tions will require generalizing these results to certain nonisotropic and nonstation-
ary CLRF’s; this work is already underway. As discussed in Section 4.4, it would
also be desirable to rigorously extend the proof in [33] of the EC heuristic to the
asymptotically Gaussian case. In a forthcoming paper we shall explore a geometric
interpretation to the tilted EC densities in the spirit of [31]. This will tie into simi-
lar investigations of “CL-related” processes, including asymptotically χ2, t and F
random fields.

APPENDIX: REGULARITY CONDITIONS FOR THEOREM 4

We assume that the random vectors Wi = (Wi, Ẇ i |′k,vec[σẄ i |k−1+WiI/σ ]′)′
are nonlattice. (While saddlepoint expansions have been established for lattice dis-
tributions, the resulting random fields could scarcely be imagined to be regular in
the manner described below.) There are simple conditions which validate the tilted
expansion (2.6) of the joint density f (z, ż,m) of (Z(t), Ż|k(t)′,M(t)′) [which
exists, and is bounded and continuous, under said conditions]. For example, it is
sufficient that: (i) Wi come from an exponential family indexed by θ ∈� an open,
convex subset of Rdk [which appears tacitly in (2.2)]; and (ii) Wi have charac-
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teristic function ψθ for which |ψθ(s)|ν is integrable for some ν = ν(θ) ≥ 1. For
the latter, compare [4], Theorem 6.5, and their condition (c′). An extension of
Theorem 4 to the case where the Wi ’s are nonidentically distributed could also be
conceived; for regularity conditions the reader is referred to Theorem 6.6 of the
same monograph.

The exponential family assumption guarantees that the Wi have finite joint cu-
mulants of all orders, but to bound the error we shall assume, in particular, that for
every ν ≤ 4 the cgf of Wi belongs to Cν(V ) for some neighborhood V contain-
ing 0. We shall also require that for some finite constants H > 0, (bi)i≥2 and all
s ≥ 2,

E‖Wi‖s ≤ s!
2
b2
i H

s−2.(A.1)

As for the validity of (1.5), conditions are laid out in [1] and AT as follows:

A T ∈ RN is compact and ∂T has zero Lebesgue measure.
B Z is almost surely suitably regular on T at the level u, namely:

1. Z has continuous partial derivatives up to second order in an open neighbor-
hood of T ;

2. there is no t ∈ T such that Z(t)− u= Z1(t)= · · · = Zk(t)= 0;
3. there is no t ∈ ∂T and permutation ρ of {1, . . . , k} such that

Z(t)− u= Zρ1(t)= · · · =Zρk−1(t)= 0;
4. there is no t ∈ T and permutation ρ of {1, . . . , k} such that

Z(t)− u=Zρ1(t)= · · · =Zρk−1(t)= det(Zρiρj (t))i,j≤k−1 = 0.

C The second-order derivatives of Z have finite variances.
D The joint density of (Z, Ż|′k, Z̈|′k−1) is continuous in each argument.
E The conditional density of (Z, Ż|′k−1) given (Zk, Z̈|′k−1) is bounded above.
F The moduli of continuity ωi and ωij of the various derivatives satisfy

P

{
max
i,j≤k[ωi(η),ωij (η)]> ε

}
= o(ηk)

as η→ 0 for every ε > 0.

Note that under the oft-made Gaussian assumption, many of these conditions are
trivially satisfied.
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