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1. Introduction

The bootstrap is a powerful and increasingly utilized method for obtaining conÞdence intervals and

performing statistical inference. Despite this, results validating the bootstrap for the quasi-maximum

likelihood estimator (QMLE) or generalized method of moments (GMM) estimator have previously been

available only under restrictive assumptions, such as stationarity and limited memory. A main goal

here is thus to establish the bootstrap�s Þrst order asymptotic validity in the framework of Gallant and

White (1988) and Pötscher and Prucha (1991): extremum estimators for nonlinear dynamic models of

stochastic processes near epoch dependent (NED) on an underlying mixing process. We treat primarily

QML estimators for concreteness and because there are fewer results in this area. See Corradi and

Swanson (2001) for a treatment of GMM estimation that draws on the results provided here.

We apply our results to the moving blocks bootstrap (MBB) of Künsch (1989) and Liu and Singh

(1992). Here, this involves resampling blocks of the quasi-log-likelihood values. With misspeciÞed models,

the associated scores are generally dependent, justifying our use of block bootstrap methods.

Results for bootstrapping extremum estimators are available for special cases. For example, Hahn

(1996) shows Þrst order asymptotic validity of Efron�s bootstrap for GMM with i.i.d. data. Hall and

Horowitz (1996) give asymptotic reÞnements for bootstrapped GMM estimators with stationary ergodic

data. Andrews (2001) extends their results, establishing higher-order improvements of k-step bootstrap

estimators (see Davidson and MacKinnon (1999)) for nonlinear extremum estimators, including GMM

and ML. Both Hall and Horowitz (1996) and Andrews (2001) take the moment conditions deÞning the

estimator to be uncorrelated after Þnitely many lags, obviating use of HAC covariance estimators. For

stationary mixing processes, Inoue and Shintani (2001) prove asymptotic reÞnements for GMM applied

to linear models where the deÞning moment conditions have unknown covariance.

Here, we do not attempt asymptotic reÞnements. Instead, we prove the consistency of the block

bootstrap estimator of the QMLE sampling distribution for a broad class of models and data generating

processes. SpeciÞcally, we avoid stationarity and restrictive memory conditions, and show that the block

bootstrap distribution of the QMLE converges weakly to the distribution of the QMLE. Thus, bootstrap

conÞdence intervals have correct asymptotic coverage probability.

An important bootstrap application is hypothesis testing. We show Þrst order asymptotic validity
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for new bootstrap Wald and LM tests. The asymptotic validity of the percentile-t test follows from that

of the Wald test, justifying use of MBB to construct percentile-t conÞdence intervals.

We illustrate MBB Þnite sample performance for conÞdence intervals via two Monte Carlo experi-

ments. SpeciÞcally, we compute conÞdence intervals for 1) a logit model with neglected autocorrelation,

and 2) a possibly misspeciÞed ARCH(1) model. In both cases the MBB outperforms standard asymp-

totics, especially when robustness to autocorrelated scores is needed.

2. Consistency of the Bootstrap QMLE

We adopt the framework of Gallant and White (1988) (GW). The goal is to conduct inference on a

parameter of interest θon from data Xn1, . . . ,Xnn near epoch dependent (NED) on an underlying mixing

process. Here, Xnt is a vector containing both explanatory and dependent variables. We deÞne {Xnt} to
be NED on a mixing process {Vt} if E

¡
X2
nt

¢
<∞ and vk ≡ supn,t

°°°Xnt −Et+kt−k (Xnt)
°°°
2
→ 0 as k →∞.

Here, kXntkp ≡ (E |Xnt|p)1/p is the Lp norm and Et+kt−k (·) ≡ E
³
·|F t+kt−k

´
, where F t+kt−k ≡ σ (Vt−k, . . . , Vt+k)

is the σ-Þeld generated by Vt−k, . . . , Vt+k. If vk = O
¡
k−a−δ

¢
for some δ > 0, we say {Xnt} is NED of

size −a.We assume {Vt} is strong mixing; analogous results hold for uniform mixing. The strong mixing
coefficients are αk ≡ supm sup{A∈Fm−∞,B∈F∞m+k} |P (A ∩B)− P (A)P (B)|; we require αk → 0 as k →∞
suitably fast.

Our methods involve using the MBB to resample certain functions of the data. Thus, consider a

generic array of random variables {Znt : t = 1, . . . , n}. Let ` = `n ∈ N (1 ≤ ` < n) be a block length, and
let Bt,` = {Znt, Zn,t+1, . . . , Zn,t+`−1} be the block of ` consecutive observations starting at Znt (` = 1

gives the standard bootstrap). For simplicity take n = k`. The MBB draws k = n/` blocks randomly

with replacement from the set of overlapping blocks {B1,`, . . . , Bn−`+1,`}. Letting In1, . . . , Ink be i.i.d.

random variables distributed uniformly on {0, . . . , n− `}, we have {Z∗nt = Zn,τnt , t = 1, . . . , n}, where τnt
deÞnes a random array {τnt} ≡ {In1 + 1, . . . , In1 + `, . . . , Ink+1, . . . , Ink+`}.

The QML estimator �θn solves the problem

max
Θ
Ln (θ) , n = 1, 2, . . . ,

where Ln (θ) ≡ n−1
Pn
t=1 log fnt

¡
Xt
n, θ
¢
, Xt

n ≡ (X 0
n1, . . . , X

0
nt)

0 , t = 1, 2, . . . , n, and θ belongs to Θ, a

compact subset of Rp, p ∈ N. Thus, Xt
n contains all explanatory and dependent variables entering fnt,
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the �quasi-likelihood� for observation t. The function Ln is the �quasi-log-likelihood function�. GW

study the properties of the QMLE �θn (consistency and asymptotic normality) under certain regularity

assumptions, collected in Appendix A for convenience.

Given the original sample Xn1, . . . ,Xnn, let �θ
∗
n be a bootstrap version of �θn, solving

max
Θ
L∗n (θ) , n = 1, 2, . . . ,

where L∗n (θ) ≡ n−1
Pn
t=1 log f

∗
nt (θ), and for n = 1, 2, . . . and each θ ∈ Θ, {f∗nt (θ) , t = 1, . . . , n} is

given by f∗nt (θ) = fn,τnt (Xτnt
n , θ) , with τnt chosen by the MBB. Thus, the bootstrap QMLE resamples

the contributions log fnt
¡
Xt
n, θ
¢
to Ln (θ). This is often equivalent to directly resampling the data,

for example in linear regression where fnt depends only upon Xnt = (ynt,W
0
nt)

0(ynt is the dependent

variable at time t and Wnt is a vector of explanatory variables at time t that may include lagged

dependent variables). In this case, resampling blocks of fnt
¡
Xt
n, θ
¢
is equivalent to resampling blocks of

Xnt = (ynt,W
0
nt)

0, the �blocks of blocks bootstrap� (Politis and Romano, 1992). But if fnt depends on

the entire past history Xt
n, it may not be possible to deÞne �tuples� of observables on which to apply the

MBB. This is the case for GARCH models; for these, bootstrapping the QMLE does not involve directly

bootstrapping the data.

We Þrst show that �θ
∗
n converges in probability to �θn, conditional on all samples with probability tend-

ing to one. Conventionally, P ∗ is the probability measure induced by the MBB. For a bootstrap statistic

T ∗n we write T ∗n → 0 prob−P ∗, prob−P if for any ε > 0 and any δ > 0, limn→∞ P [P ∗ [|T ∗n | > ε] > δ] = 0.

Theorem 2.1. Let Assumption A hold. Then, �θn − θon → 0 prob− P. If also `n →∞, and `n = o (n) ,
then �θ

∗
n − �θn → 0 prob− P ∗, prob− P .

Thus, �θn is asymptotically the bootstrap �pseudo-true parameter�. Nevertheless, as Andrews (2001)

notes, for given n, the MBB population Þrst-order conditions evaluated at �θn are not generally zero.

That is, E∗
h
n−1

Pn
t=1 s

∗
nt

³
�θn

´i
6= 0, where

n
s∗nt
³
�θn

´
= ∇ log fn,τnt

³
Xτnt
n , �θn

´o
. To study higher-

order properties of the bootstrap, Andrews (2001) therefore recenters the bootstrap objective function

to L∗n (θ) − n−1
Pn
t=1E

∗
³
s∗nt
³
�θn
´´0

θ. As the Þrst-order properties are unaffected, we leave this aside

here. (See also Horowitz (1996) for a similar recentering of the criterion function in the GMM context.)

Next we show that the sampling distribution of
√
n
³
�θn − θon

´
is well-approximated by the distribution
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of
√
n
³
�θ
∗
n − �θn

´
, conditional on Xn1, . . . ,Xnn. For this, we strengthen Assumption A as follows:

Assumption 2.1

2.1.a)
©
snt
¡
Xt
n, θ
¢ ≡ ∇ log fnt ¡Xt

n, θ
¢ª
is 3r-dominated on Θ uniformly in n, t = 1, 2, . . . , r > 2.

2.1.b) For some small δ > 0 and some r > 2, the elements of
©
snt
¡
Xt
n, θ
¢ª
are L2+δ −NED on {Vt} of

size −2(r−1)
r−2 uniformly on (Θ, ρ); {Vt} is α−mixing with αk of size − (2+δ)r

r−2 .

Assumption 2.2 n−1
Pn
t=1E (s

o
nt)E (s

o
nt)

0 = o
¡
`−1n
¢
, where `n = o (n) and `n →∞.

The consistency of the MBB distribution depends crucially on the consistency of the MBB covari-

ance matrix of the scaled average of the MBB-resampled scores {s∗ont}. With misspeciÞcation, {sont} is
dependent and possibly heterogeneous. Accordingly, Assumption 3.1.b) takes {sont} to be L2+δ-NED on

a mixing process (see Andrews (1988)), for small δ > 0. Application of Gonçalves and White (2001)

Theorem 2.1 shows the MBB covariance matrix of the scaled average of {s∗ont} is consistent under this
NED condition for Bon + U

o
n, where B

o
n = var

¡
n−1/2

Pn
t=1 s

o
nt

¢
, and Uon = var

∗ ¡n−1/2Pn
t=1 [E (s

o
nt)]

∗¢ ,
with {[E (sont)]∗} a MBB resample of {E (sont)}. Assumption 2.2 eliminates the bias Uon asymptotically,

ensuring that �θ
∗
n converges to a normal with the correct covariance (cf. GW, p. 102).

Theorem 2.2. Let Assumption A as strengthened by Assumptions 2.1 and 2.2 hold. If `n →∞ and `n =

o
¡
n1/2

¢
, then for any ε > 0, P

n
supx∈Rp

¯̄̄
P ∗
h√
n
³
�θ
∗
n − �θn

´
≤ x

i
− P

h√
n
³
�θn − θon

´
≤ x

i¯̄̄
> ε
o
→ 0.

Theorem 2.2 justiÞes using order statistics of the bootstrap distribution to form percentile conÞdence

intervals for θon with asymptotically correct coverage probabilities. Note that this does not justify using

the variance of the bootstrap distribution to consistently estimate the QMLE asymptotic variance without

further conditions, e.g. that
½
n
³
�θ
∗
n − �θn

´³
�θ
∗
n − �θn

´0¾
is uniformly integrable (e.g. Billingsley, 1995, p.

338). This has been sometimes overlooked in the literature. Counterexamples to the consistency of the

bootstrap variance of smooth functions of sample means in the i.i.d. context can be found in Ghosh et.

al. (1984) and Shao (1992). See also Gonçalves and White (2000).

Bootstrapping the QMLE may be computationally costly as it requires an optimization for each

resample. Davidson and MacKinnon (1999) have proposed approximate bootstrap methods based on

a few iterations starting from the original QMLE, achieving the same accuracy as the fully-optimized
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bootstrap. Let A∗n
³
�θn
´
= n−1

Pn
t=1∇2 log f∗nt

³
�θn
´
be the MBB resampled estimated Hessian, and letn

s∗nt
³
�θn
´o

be the MBB resampled estimated scores. The one-step MBB QMLE is:

�θ
∗
1n =

�θn −A∗n
³
�θn
´−1

n−1
nX
t=1

s∗nt
³
�θn
´
.

Corollary 2.1. Let Assumption A as strengthened by Assumptions 2.1 and 2.2 hold. If `n = o
¡
n1/2

¢
,

then for any ε > 0, P
h
supx∈Rp

¯̄̄
P ∗
h√
n
³
�θ
∗
n − �θn

´
≤ x

i
− P ∗

h√
n
³
�θ
∗
1n − �θn

´
≤ x

i¯̄̄
> ε
i
→ 0.

Analogous results hold for the multi-step estimators under the same conditions.

3. Hypothesis Testing

The results of Section 2 do not immediately justify testing hypotheses about θon based on studentized

statistics such as t- or Wald statistics. Nevertheless, they are the key to proving the ability of the

bootstrap to approximate the distribution of studentized statistics, as we now show.

Let {rn : Θ→ Rq}, with Θ ⊂ Rp, q ≤ p, be a sequence of functions that have elements continuously
differentiable on Θ uniformly in n such that {Ron ≡ ∇0rn (θon)} is O (1) with full row rank q, uniformly
in n. The Wald statistic for testing Ho :

√
nrn (θ

o
n) → 0 is Wn = n�r0n

³
�Rn �Cn �R

0
n

´−1
�rn, where �rn =

rn
³
�θn
´
, �Rn = ∇0rn

³
�θn
´
and �Cn = �A−1n �Bn �A

−1
n is consistent for Con = Ao−1n BonA

o−1
n . In particular,

�An = n−1
Pn
t=1∇2 log fnt

³
Xt
n,
�θn
´
is an estimator of Aon ≡ E

¡
n−1

Pn
t=1∇2 log fnt

¡
Xt
n, θ

o
n

¢¢
and �Bn

is such that �Bn − Bon P→ 0. For our context, �Bn is a kernel-type variance estimator, e.g. a Bartlett

(Newey-West, 1987) or a Quadratic Spectral (Andrews, 1991) estimator. For Þrst order properties, we

just need �Bn to be consistent for Bon. Our bootstrap Wald statistic is

W∗
n = n (�r

∗
n − �rn)0

³
�R∗n �C

∗
n
�R∗0n
´−1

(�r∗n − �rn) ,

where we set �r∗n = rn
³
�θ
∗
n

´
, �R∗n = ∇0rn

³
�θ
∗
n

´
and �C∗n = �A∗−1n

�B∗n �A∗−1n . Here,

�A∗n = n−1
Pn
t=1∇2 log fn,τnt

³
Xτnt
n , �θ

∗
n

´
and �B∗n is

(3.1) �B∗n = k
−1

kX
i=1

Ã
`−1/2

X̀
t=1

sn,Ini+t

³
XIni+t
n , �θ

∗
n

´!Ã
`−1/2

X̀
t=1

sn,Ini+t

³
XIni+t
n , �θ

∗
n

´!0
.

�B∗n is the multivariate QMLE analog of the MBB variance estimator of Davison and Hall (1993) and

Götze and Künsch (1996). To motivate this, recall that �B∗n is the bootstrap analog of �Bn, which estimates
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Bon, the covariance of the scaled average of the scores at θ
o
n. Analogously, �B

∗
n estimates the bootstrap

covariance of the scaled average of the resampled scores at �θn, i.e. �B∗n is an estimator of

(3.2) var∗
Ã
n−1/2

nX
t=1

s∗nt
³
�θn

´!
= var∗

Ã
k−1/2

kX
i=1

Ã
`−1/2

X̀
t=1

sn,Ini+t

³
XIni+t
n , �θn

´!!
.

Because the block bootstrap means `−1
P`
t=1 sn,Ini+t

³
XIni+t
n , �θn

´
are (conditionally) i.i.d., the estimator

(3.1) of the (bootstrap population) variance (3.2) is just the sample variance of these means, with �θn

replaced by �θ
∗
n to mimic the replacement of θ

o
n with �θn when computing �Bn. Note that in (3.1) we use

the bootstrap optimization Þrst order conditions to set �s
∗
n ≡ n−1

Pn
t=1 s

∗
nt

³
�θ
∗
n

´
= 0.

Götze and Künsch (1996) note that one must carefully choose the studentizing kernel variance es-

timator. Instead of triangular weights, rectangular or quadratic weights should be used in estimating

Bon. Further, �θ
∗
n should be recentered, as in Hall and Horowitz (1996) and Andrews (2001). These

considerations do not affect our Þrst order results, but are important in applications.

To analyze the bootstrap Wald statistic W∗
n we strengthen Assumption 2.2:

Assumption 2.20 n−1
Pn
t=1 |E (sonti)|2+δ = o

³
`
−1−δ/2
n

´
for i = 1, . . . , p.

Theorem 3.1. Let the assumptions of Theorem 2.2 hold as strengthened by Assumption 2.2 0. Then,

under Ho, for all ε > 0, if ` = o
¡
n1/2

¢
, P [supx∈Rq |P ∗ (W∗

n ≤ x)− P (Wn ≤ x)| > ε]→ 0.

This proves the Þrst order asymptotic equivalence under the null of the bootstrap Wald and the

original Wald statistic. Consistency of a bootstrap t-statistic studentized with �C∗n follows by almost

identical arguments, justifying the construction of MBB percentile-t conÞdence intervals.

The bootstrap also works for the Lagrange Multiplier (LM) statistic. Using notation analogous to

GW, the LM statistic is Ln and its bootstrap analog is

L∗n = n∇0L∗n
³
�θ
∗
n

´
�A∗−1n

�R∗0n
³
�R∗n �C

∗
n
�R∗0n
´−1

�R∗n �A
∗−1
n ∇L∗n

³
�θ
∗
n

´
,

where, with �θ
∗
n the constrained bootstrap QMLE, ∇L∗n

³
�θ
∗
n

´
≡ n−1

Pn
t=1 s

∗
nt

³
�θ
∗
n

´
, �R∗n ≡ ∇0rn

³
�θ
∗
n

´
,

�C∗n ≡ �A∗−1n
�B∗n �A∗−1n , and �A∗n ≡ n−1

Pn
t=1∇2 log fn,τnt

³
Xτnt
n , �θ

∗
n

´
. Similarly, �B∗n is as in (3.1) using

�θ
∗
n instead of �θ

∗
n, with `

1/2∇L∗n
³
�θ
∗
n

´
subtracted off each term `−1/2

P`
t=1 sn,Ini+t

³
XIni+t
n , �θ

∗
n

´
because

∇L∗n
³
�θ
∗
n

´
is not generally zero.
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Theorem 3.2. Let the assumptions of Theorem 2.2 hold as strengthened by Assumption 2.2 0. Then,

under Ho, for all ε > 0, if ` = o
¡
n1/2

¢
, P [supx∈Rq |P ∗ (L∗n ≤ x)− P (Ln ≤ x)| > ε]→ 0.

4. Monte Carlo Results

This section provides Monte Carlo evidence on the relative Þnite sample performance of the MBB and

the asymptotic normal approximation for conÞdence intervals. We consider two practical examples of

nonlinear models that are typically estimated by QML. The Þrst examines the MBB percentile-t and

asymptotic normal coverage probabilities of conÞdence intervals in the context of logit models with

neglected autocorrelation. Next we compare the MBB to asymptotic normal conÞdence intervals for

possibly misspeciÞed ARCH models.

ConÞdence Intervals for Logit models

Let a dependent variable yt take the value 0 or 1, whenever the unobserved y∗t =W 0
tβ+ εt is positive

or negative, respectively. Wt is a k× 1vector of explanatory variables and β a vector of parameters. We
generate εt as AR(1):

εt = ρεt−1 +
p
1− ρ2vt

with Prob(vt ≤ a) = exp(a)
1+exp(a) for any a ∈ R. Thus, the DGP is logit with autocorrelated errors whenever

ρ 6= 0. We estimate an ordinary logit model by QMLE ignoring the autocorrelation. The QMLE �βn

remains consistent for β and asymptotically normal (cf. Gourieroux, Monfort and Trognon (1984) for

the related probit model). Nevertheless, conÞdence intervals for β require an HAC covariance estimator

using asymptotic normality, or a bootstrap conÞdence interval (e.g. a MBB with ` > 1).

Asymptotic normal intervals rely on t�βi =
√
n(�βni−βi)√

�Cni,i
, where �Cn = �A−1n �Bn �A

−1
n . We consider three

choices for �Bn: the outer product of the gradient (OP), �Bn = n−1
Pn
t=1 �snt�s

0
nt, and two HAC estimators,

using either the Bartlett (BT) or the Quadratic Spectral (QS) kernel. The MBB intervals are based on

t�β∗ni
=

√
n(�β

∗
ni−�βni)q
�C∗ni,i

, where �C∗n = �A∗−1n
�B∗n �A∗−1n , with �B∗n as in (3.1). The BT, QS, and MBB intervals are

robust to neglected autocorrelation, whereas the OP intervals are not.

Choice of the block size/bandwidth is critical. We use Andrews� (1991) procedure to compute a

data-driven block length for BT, QS, and MBB, ensuring meaningful comparisons of our methods.

In the experiments, W contains a constant, and either one, two, three, or four random regressors,

independently generated as AR(1) with autocorrelation coefficient equal to 0.5. The intercept is always
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0, so on average half the yt�s are 0 and half are 1. The slope parameters are all set to 0.25. For each

experiment we let ρ ∈ {0, 0.5, 0.9}, and use 10,000 Monte Carlo trials with 999 bootstrap replications.
We discarded 27 out of the 10,000 trials due to nonconvergence of the logit routine with k = 5, n = 50,

ρ = 0.9. Nonconvergence in the bootstrap resamples occurred on average less than 0.08% per Monte

Carlo trial, for all experiments, except when k = 5, n = 50, ρ = 0.9, in which case this rate was 1.07%.

When bootstrap optimization failed, we redrew new bootstrap indices. Table 1 reports coverage rates

for the Þrst slope parameter.

Table 1. Coverage Rates of Nominal 95% symmetric Percentile-t Intervals: Logita

k n ρ OP BT QS MBB
Avg. Band.
/Block size

2 50 0.0 95.3 94.4 94.4 94.9 1.7
0.5 90.2 91.5 91.9 92.5 2.0
0.9 80.7 85.2 85.7 90.8 3.0

100 0.0 95.2 94.6 94.6 94.9 1.7
0.5 89.6 92.0 92.5 92.6 2.4
0.9 82.0 89.0 90.0 91.9 4.1

3 50 0.0 94.7 93.9 93.9 94.7 1.8
0.5 90.4 91.4 91.4 92.8 2.2
0.9 81.1 84.8 84.8 91.8 3.3

100 0.0 95.2 94.8 94.7 95.1 1.8
0.5 90.2 92.0 92.4 93.2 2.7
0.9 81.5 88.6 89.5 92.1 4.4

4 50 0.0 94.9 94.1 94.0 95.0 1.8
0.5 90.2 90.6 90.4 92.8 2.3
0.9 81.3 83.6 83.2 92.2 3.3

100 0.0 95.3 94.8 94.6 95.2 1.9
0.5 90.1 92.2 92.4 93.3 2.8
0.9 82.1 88.2 88.8 92.3 4.4

5 50 0.0 94.2 93.5 93.1 94.4 1.8
0.5 89.2 89.6 89.2 92.6 2.4
0.9 80.8 82.7 82.3 94.2 3.2

100 0.0 94.7 94.3 94.2 95.0 1.9
0.5 89.7 91.5 91.8 93.0 2.8
0.9 81.3 86.9 87.5 91.8 4.4

a10,000 Monte Carlo trials with 999 bootstrap replications each.

The main results are: a) when ρ = 0 all methods work well, even for n = 50; b) when ρ 6= 0 all

intervals undercover, but the robust methods (BT, QS and MBB) outperform OP, as expected. The

undercoverage is worse the larger is k and the smaller is n (an exception is MBB when k = 5, ρ = 0.9,

perhaps due to the larger rate of non-convergence); c) the MBB always outperforms BT or QS, especially

for small n and large k, and d) the average bandwidth/block size is larger for larger ρ and n, as expected.
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ConÞdence Intervals for ARCH models

We assume the following DGP:

(4.1) yt = γ̄ + εt, εt = vth
1/2
t , ht = ω̄ + ᾱε

2
t−1.

A bar denotes true parameters and a superscript o denotes pseudo-true parameters throughout. Usually

{vt} is assumed i.i.d. Here, we generate vt as AR(1):

(4.2) vt = ρ̄vt−1 + ut, |ρ̄| < 1, ut ∼ i.i.d. N
¡
0,σ2u

¢
, σ2u = 1− ρ̄2.

We can write (4.1)-(4.2) as yt = γ̄ + ρ̄h
1/2
t h

−1/2
t−1 (yt−1 − γ̄) + h1/2t ut, with ut ∼ i.i.d. N

¡
0,σ2u

¢
. For

ρ̄ = 0, this is the usual ARCH(1). For ρ̄ 6= 0 an extra term appears. Letting F t−1 = σ (. . . yt−2, yt−1)
and using vt−1 = εt−1/h

1/2
t−1, we have E

¡
εt|F t−1

¢
= ρ̄h

1/2
t vt−1 and E

¡
ε2t |F t−1

¢
= ht

¡
1− ρ̄2 + ρ̄2v2t−1

¢
, so

E
¡
yt|F t−1

¢
= γ̄+ρ̄h

1/2
t h

−1/2
t−1 (yt−1 − γ̄) and var

¡
yt|F t−1

¢
= σ2uht.We (mis)specify a Gaussian ARCH(1)

model parameterized by θ = (γ,ω,α)0:

yt = γ + et, et|F t−1 ∼ N (0, ht (θ)) , t = 1, . . . , n,

with ht (θ) = ω + αe2t−1. The QMLE �θn maximizes the log-likelihood

(4.3) Ln (θ) =
1

2n

nX
t=1

log ft (θ) , where log ft (θ) = −
µ
lnht (θ) +

e2t
ht (θ)

¶
.

The model is correctly speciÞed if and only if ρ̄ = 0. With misspeciÞcation the QMLE is generally

inconsistent for θ̄ = (γ̄, ω̄, ᾱ) ; instead conÞdence intervals for pseudo-true parameters θo = (γo,ωo,αo)

pertain. We evaluate θo by simulation, as the value maximizing the expectation of (4.3), computed using

50,000 simulations. Considering the expected score corresponding to γ, we have

(4.4) E
¡
s1t
¡
θ̄
o¢¢

= E

µ
αoεt−1
ht (θ

o)
− ε2t
h2t (θ

o)
(αoεt−1) +

εt
ht (θ

o)

¶
= 0,

where θ̄o = (γ̄,ωo,αo)0, ht
¡
θ̄
o¢
= ωo+αoε2t−1 and εt = yt− γ̄. For suitably symmetric joint distributions

of (εt, εt−1) centered at zero, it is plausible that this expectation equals zero, implying that γo = γ̄,

despite the misspeciÞcation. Proving this conjecture would distract us from our purpose here, but our

simulations (with normal errors) always delivered γo = γ̄. Accordingly we set γo = γ̄ in what follows.

With misspeciÞcation, the scores are generally not a martingale difference sequence, justifying the

use of robust inference on θo. As before, we consider OP, BT, QS and MBB. All but OP are robust to
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Table 2. Coverage Rates of Nominal 95% symmetric Percentile-t Intervals: ARCHa

n ᾱ ρ̄ C.I. for θ OP BT QS MBB
Avg. Band.
/Block size

200 0.5 0.0 γ̄ 94.4 94.4 94.4 95.0 1.37
ω̄ 93.6 93.5 93.6 95.4
ᾱ 91.8 91.5 91.4 94.9

0.5 γ̄ 83.8 90.9 91.7 93.0 4.50
ωo 93.8 93.2 93.2 95.6
αo 92.6 92.6 92.6 95.4

0.9 γ̄ 60.3 76.0 77.0 86.4 6.49
ωo 91.6 91.9 91.9 95.7
αo 82.4 92.4 93.0 94.6

500 0.5 0.0 γ̄ 94.8 94.8 94.8 95.0 1.35
ω̄ 94.5 94.6 94.6 95.5
ᾱ 93.6 93.5 93.4 94.7

0.5 γ̄ 85.0 92.6 93.0 93.5 6.11
ωo 94.9 94.3 94.3 95.4
αo 93.3 94.0 94.1 95.4

0.9 γ̄ 62.9 83.2 83.7 87.6 9.16
ωo 94.0 94.0 94.0 95.5
αo 80.0 93.5 94.1 94.7

200 0.9 0.0 γ̄ 94.5 94.4 94.4 95.1 1.34
ω̄ 93.2 93.2 93.2 95.3
ᾱ 92.3 92.2 92.2 94.9

0.5 γ̄ 86.7 91.3 92.0 93.2 3.54
ωo 93.1 92.9 92.9 95.4
αo 92.0 93.0 93.2 95.4

0.9 γ̄ 65.1 77.0 78.0 88.3 5.39
ωo 90.3 90.6 90.6 95.4
αo 69.6 86.6 88.0 89.6

500 0.9 0.0 γ̄ 94.8 94.8 94.9 95.1 1.32
ω̄ 94.3 94.3 94.3 95.4
ᾱ 93.4 93.4 93.4 94.3

0.5 γ̄ 88.0 92.6 93.0 93.5 4.82
ωo 94.4 94.0 94.0 95.2
αo 92.4 94.6 94.9 95.8

0.9 γ̄ 69.2 84.4 84.8 88.8 7.66
ωo 93.6 93.8 93.8 95.5
αo 68.7 90.4 91.1 92.2

a10,000 Monte Carlo trials with 999 bootstrap replications each. Pseudo-true parameters were calculated
by 50,000 simulations: for ᾱ = 0.5, (ωo,αo)= (0.07, 0.798) when ρ̄ = 0.5 and (ωo,αo)= (0.017, 1.130) when ρ̄ = 0.9;
for ᾱ = 0.9, (ωo,αo)= (0.069, 1.192) when ρ̄ = 0.5 and (ωo,αo) = (0.015, 1.480) when ρ̄ = 0.9. γ̄ = 1.0 and ω̄ = 0.1
were set throughout.

misspeciÞcation. The OP interval is valid if the Þrst two conditional moments of yt are not misspeciÞed.

Data on {yt} were generated by (4.1)-(4.2) with γ̄ = 1.0, ω̄ = 0.1 and six combinations of ᾱ and ρ̄
taken from ᾱ ∈ {0.5, 0.9} and ρ̄ ∈ {0.0, 0.5, 0.9}. Table 2 contains results. We summarize as follows.
When ρ̄ = 0 all methods tend to perform well, though the coverage of the BT and QS intervals tends
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to slightly understate the true levels for ω̄ and ᾱ. In contrast, the MBB intervals achieve almost correct

coverage for θ̄, with slight overstatement for ω̄. When ρ̄ = 0, the scores are a martingale difference

sequence, and this is reßected in the bandwidth/block size parameter. When ρ̄ 6= 0, major Þndings

are: (i) the OP intervals fail dramatically for γ̄, exhibiting severe undercoverage which worsens as ρ̄

increases; (ii) the coverages of BT and QS for γ̄ are also well below the 95% nominal level, but we see

clear improvement as n increases; (iii) the MBB outperforms the HAC methods; and (iv) the average

chosen bandwidth/block size exceeds one, and tends to increase with n, as we expect.

5. Conclusion

The results presented here justify routine use of MBB methods for the QMLE in a general context.

Further results in our setting establishing higher order improvements for the MBB (with recentering)

are a logical next step and a promising subject for future work.

Appendix A: Assumptions and Proofs for Section 2

Throughout Appendix A, P is the probability measure governing the behavior of the original time series

while P ∗n,ω denotes the probability measure induced by the bootstrap. For any bootstrap statistic T ∗n (·,ω)
we write T ∗n (·,ω)→ 0 prob−P ∗n,ω, a.s.−P if for any ε > 0 there exists F ∈ F with P (F ) = 1 such that
for all ω in F, limn→∞ P ∗n,ω [λ : |T ∗n (λ,ω)| > ε] = 0.We write T ∗n (·,ω)→ 0 prob−P ∗n,ω, prob−P if for any
ε > 0 and for any δ > 0, limn→∞ P

£
ω : P ∗n,ω [λ : |T ∗n (λ,ω)| > ε] > δ

¤
= 0. Using a subsequence argument

(e.g. Billingsley, 1995, Theorem 20.5), T ∗n (·,ω) → 0 prob − P ∗n,ω, prob − P is equivalent to having that
for any subsequence {n0} there exists a further subsequence {n00} such that T ∗n00 (·,ω)→ 0 prob− P ∗n00,ω,
a.s.−P. For any distribution D we write T ∗n (·,ω)⇒dP∗n,ω D prob−P when for every subsequence there
exists a further subsequence for which weak convergence under P ∗n,ω takes place almost surely −P .

Assumption A is the doubly indexed counterpart of the regularity conditions used by GW.

Assumption A

A.1: Let (Ω,F , P ) be a complete probability space. The observed data are a realization of a stochastic
process

©
Xnt : Ω→ Rl, l ∈ N, n, t ∈ Nª , with Xnt (ω) = Wnt (. . . , Vt−1 (ω) , Vt (ω) , Vt+1 (ω) , . . .) ,

Vt : Ω→ Rv, v ∈ N, and Wnt : ×∞τ=−∞Rv → Rl such that Xnt is measurable for all n, t.

A.2: The functions fnt : Rlt ×Θ→ R+ are such that fnt (·, θ) is measurable for each θ ∈ Θ, a compact
subset of Rp, p ∈ N, and fnt

¡
Xt
n, ·
¢
: Θ→ R+ is continuous on Θ a.s.− P , n, t = 1, 2, . . . .

A.3: (i) θon is identiÞably unique with respect to E (Ln (Xn
n , θ)) . (ii) θ

o
n is interior to Θ uniformly in n.
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A.5: (i)
©
log fnt

¡
Xt
n, θ
¢ª

is Lipschitz continuous on Θ, i.e.
¯̄
log fnt

¡
Xt
n, θ
¢− log fnt ¡Xt

n, θ
o
¢¯̄ ≤ Lnt

|θ − θo| a.s. − P , ∀θ, θo ∈ Θ, where supn
©
n−1

Pn
t=1E (Lnt)

ª
= O (1) . (ii)

©∇2 log fnt ¡Xt
n, θ
¢ª
is

Lipschitz continuous on Θ.

A.6: For some r > 2: (i)
©
log fnt

¡
Xt
n, θ
¢ª
is r−dominated on Θ uniformly in n, t, i.e. there exists

Dnt : Rlt → R such that
¯̄
log fnt

¡
Xt
n, θ
¢¯̄ ≤ Dnt for all θ in Θ and Dnt is measurable such that

kDntkr ≤ ∆ < ∞ for all n, t. (ii)
©∇ log fnt ¡Xt

n, θ
¢ª
is r-dominated on Θ uniformly in n, t. (iii)©∇2 log fnt ¡Xt

n, θ
¢ª
is r-dominated on Θ uniformly in n, t.

A.7: {Vt} is an α-mixing sequence of size − 2r
r−2 , with r > 2.

A.8: The elements of (i)
©
log fnt

¡
Xt
n, θ
¢ª
are NED on {Vt} of size −1

2 ; (ii)
©∇ log fnt ¡Xt

n, θ
¢ª
are

NED on {Vt} of size −1 uniformly on (Θ, ρ) , where ρ is any convenient norm on Rp, and (iii)©∇2 log fnt ¡Xt
n, θ
¢ª
are NED on {Vt} of size −1

2 uniformly on (Θ, ρ) .

A.9: (i)
n
Bon ≡ var

³
n−

1
2
Pn
t=1∇ log fnt

¡
Xt
n, θ

o
n

¢´o
is uniformly positive deÞnite.

(ii)
©
Aon ≡ E

¡
n−1

Pn
t=1∇2 log fnt

¡
Xt
n, θ

o
n

¢¢ª
is uniformly nonsingular.

The usefulness of the following lemmas extends beyond the QMLE as they apply to prove the validity

of bootstrap methods for other extremum estimators, such as GMM.

Lemma A.1 (IdentiÞable uniqueness of �θn). Let (Ω,F , P ) be a complete probability space and let
Θ be a compact subset of Rp, p ∈ N. Let

©
Qn : Ω×Θ→ R

ª
be a sequence of random functions

continuous on Θ a.s. − P, and let �θn = argmaxΘQn (·, θ) a.s. − P . If supθ∈Θ
¯̄
Qn (·, θ)−Qn (θ)

¯̄ → 0

a.s.-P and if
©
Qn : Θ→ R

ª
has identiÞably unique maximizers {θon} on Θ, then

n
�θn
o
is identiÞably

unique on Θ with respect to {Qn} a.s.−P, i.e. there exists F ∈ F , P (F ) = 1, such that given any ε > 0
and some δ (ε) > 0, for each ω ∈ F, there exists N (ω, ε) <∞ such that

sup
n≥N(ω,ε)

"
max
ηc(�θn,ε)

Qn (ω, θ)−Qn
³
ω, �θn

´#
≤ −δ (ε) < 0,

where ηcn
³
�θn, ε

´
is the compact complement of η

³
�θn, ε

´
≡

n
θ ∈ Θ :

¯̄̄
θ − �θn

¯̄̄
< ε
o
. If instead

supθ∈Θ
¯̄
Qn (·, θ)−Qn (θ)

¯̄→ 0 prob−P then for any subsequence
n
�θn0
o
of
n
�θn
o
, there exists a further

subsequence
n
�θn00
o
such that

n
�θn00
o
is identiÞably unique with respect to {Qn00} a.s.− P .

Lemma A.2 (Consistency of �θ
∗
n). Let (Ω,F , P ) be a complete probability space and let Θ be a com-

pact subset of Rp, p ∈ N. Let ©Qn : Ω×Θ→ R
ª
be such that (a1) Qn (·, θ) : Ω→ R is measurable-F for

each θ ∈ Θ; (a2) Qn (ω, ·) : Θ→ R is continuous on Θ a.s.− P . Let �θn = argmaxΘQn (., θ) a.s.− P be
measurable and assume there exists

©
Qn : Θ→ R

ª
with identiÞably unique maximizers {θon} such that

(a3) supθ∈Θ
¯̄
Qn (·, θ)−Qn (θ)

¯̄→ 0 prob− P . Then,
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(A) �θn − θon → 0 prob− P.

Let (Λ,G) be a measurable space, and for each ω ∈ Ω and n ∈ N let
¡
Λ,G, P ∗n,ω

¢
be a complete

probability space. Let
©
Q∗n : Λ×Ω×Θ→ R

ª
be such that (b1) Q∗n (·,ω, θ) : Λ → R is measurable-G

for each (ω, θ) in Ω×Θ; (b2) Q∗n (λ,ω, ·) : Θ→ R is continuous on Θ a.s.− P (i.e. for all λ and almost
all ω). Let

n
�θ
∗
n : Λ×Ω→ Θ

o
be such that for each ω ∈ Ω, �θ∗n (·,ω) : Λ → Θ is measurable-G and

�θ
∗
n (·,ω) = argmaxΘQ∗n (·,ω, θ) a.s.− P . Assume further that (b3) supθ∈Θ |Q∗n (·,ω, θ)−Qn (ω, θ)|→ 0

prob− P ∗n,ω, prob− P . Then,
(B) �θ

∗
n (·,ω)− �θn (ω)→ 0, prob− P ∗n,ω, prob− P.

Lemma A.3 (Asymptotic Normality of �θ
∗
n). Let (Ω,F , P ) be a complete probability space and let

Θ be a compact subset of Rp, p ∈ N. Let ©Qn : Ω×Θ→ R
ª
be such that (a1) Qn (·, θ) : Ω → R is

measurable-F for each θ ∈ Θ; (a2) Qn (ω, ·) : Θ → R is continuously differentiable of order 2 on Θ

a.s.−P . Let �θn = argmaxΘQn (·, θ) a.s.−P be measurable such that �θn−θon → 0 prob−P, where {θon}
is interior to Θ uniformly in n. Suppose there exists a nonstochastic sequence of p × p matrices {Bon}
that is O (1) and uniformly positive deÞnite such that (a3) Bo−1/2n

√
n∇Qn (·, θon) ⇒ N (0, Ip). Suppose

further that there exists a sequence {An : Θ→ Rp×p} such that {An} is continuous on Θ uniformly in

n, and (a4) supθ∈Θ
¯̄∇2Qn (·, θ)−An (θ)¯̄ → 0 prob − P, where {Aon ≡ An (θon)} is O (1) and uniformly

nonsingular. Then

(A) Bo−1/2n Aon
√
n
³
�θn − θon

´
⇒ N (0, Ip) .

Let (Λ,G) be a measurable space, and for each ω ∈ Ω and n ∈ N, let ¡Λ,G, P ∗n,ω¢ be a complete
probability space. Let

©
Q∗n : Λ×Ω×Θ→ R

ª
be such that (b1) Q∗n (·,ω, θ) : Λ → R is measurable-

G for each (ω, θ) in Ω × Θ; (b2) Q∗n (λ,ω, ·) : Θ → R is continuously differentiable of order 2 on Θ

a.s. − P . For each n = 1, 2, . . . , let �θ
∗
n (·,ω) = argmaxΘQ

∗
n (·,ω, θ) a.s. − P be measurable such that

�θ
∗
n (·,ω)−�θn (ω)→ 0, prob−P ∗n,ω, prob−P. Assume further that (b3) Bo−1/2n

√
n∇Q∗n

³
·,ω, �θn (ω)

´
⇒dP∗n,ω

N (0, Ip) in prob− P ; (b4) supθ∈Θ
¯̄∇2Q∗n (·,ω, θ)−∇2Qn (ω, θ)¯̄→ 0 prob− P ∗n,ω, prob− P . Then

(B) Bo−1/2n Aon
√
n
³
�θ
∗
n (·,ω)− �θn (ω)

´
⇒dP∗n,ω N (0, Ip) prob− P.

Lemma A.4 (Bootstrap Uniform WLLN). Let {q∗nt (·,ω, θ)} be a MBB resample of {qnt (ω, θ)} and
assume: (a) For each θ ∈ Θ ⊂ Rp, Θ a compact set, n−1

Pn
t=1 (q

∗
nt (·,ω, θ)− qnt (ω, θ)) → 0, prob −

P ∗n,ω, prob− P ; and (b) ∀θ, θo ∈ Θ, |qnt (·, θ)− qnt (·, θo)| ≤ Lnt |θ − θo| a.s.− P, where
supn

©
n−1

Pn
t=1E (Lnt)

ª
= O (1) . Then, if `n = o (n) , for any δ > 0 and ξ > 0,

lim
n→∞P

"
P ∗n,ω

Ã
sup
θ∈Θ

n−1
¯̄̄̄
¯
nX
t=1

(q∗nt (·,ω, θ)− qnt (ω, θ))
¯̄̄̄
¯ > δ

!
> ξ

#
= 0.
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Lemma A.5 (Bootstrap Pointwise WLLN). For some r > 2, let {qnt : Ω×Θ→ R} be such that
for all n, t, there exists Dnt : Ω→ R with |qnt (·, θ)| ≤ Dnt for all θ ∈ Θ and kDntkr ≤ ∆ <∞. For each
θ ∈ Θ let {q∗nt (·,ω, θ)} be a MBB resample of {qnt (ω, θ)}. If `n = o (n) , then for any δ > 0, ξ > 0, and
for each θ ∈ Θ,

lim
n→∞P

"
P ∗n,ω

Ã
n−1

¯̄̄̄
¯
nX
t=1

(q∗nt (·,ω, θ)− qnt (ω, θ))
¯̄̄̄
¯ > δ

!
> ξ

#
= 0.

Lemma A.6. Let {Qn : Ω×Θ→ R} be a sequence of functions continuous on Θ a.s. − P and letn
�θn : Ω→ Θ

o
be such that �θn − θon → 0 prob − P . Suppose supθ∈Θ

¯̄
Qn (·, θ)−Qn (θ)

¯̄ → 0 prob − P
where

©
Qn : Θ→ R

ª
is continuous on Θ uniformly in n. Then,

(A) Qn

³
·, �θn (·)

´
−Qn (θon)→ 0 prob− P.

For each ω ∈ Ω, let ¡Λ,G, P ∗n,ω¢ be a complete probability space. If �θ∗n (·,ω) − �θn (ω) → 0 prob − P ∗ω,n,
prob− P and supθ∈Θ |Q∗n (·,ω, θ)−Qn (ω, θ)|→ 0 prob− P ∗n,ω, prob− P, then
(B) Q∗n

³
·,ω, �θ∗n (·,ω)

´
−Qn

³
ω, �θn (ω)

´
→ 0 prob− P ∗n,ω, prob− P.

Proof of Theorem 2.1. We apply Lemma A.2 with Qn (·, θ) = n−1
Pn
t=1 qnt (·, θ) and Q∗n (·,ω, θ) =

n−1
Pn
t=1 q

∗
nt (·,ω, θ) , where qnt (·, θ) ≡ log fnt

¡
Xt
n (·) , θ

¢
, and {q∗nt (·,ω, θ)} is the MBB resample. Con-

ditions (a1)-(a3) are readily veriÞed under Assumption A. Assumption A.2. implies (b1) and (b2). To

verify (b3) apply Lemmas A.4 and A.5, noting that `n = o (n). ¥
Proof of Theorem 2.2. We apply Lemma A.3 with the same choices of Qn (·, θ) and Q∗n (·,ω, θ)
as in Theorem 2.1. The result follows then by Polya�s theorem (e.g. Serßing, 1980, p. 20) since

Con = Ao−1n BonA
o−1
n is O (1) and the normal distribution is everywhere continuous. (a1)-(a4) can be

veriÞed as in Theorem 5.7 of GW. (b1) and (b2) follow from A.2. Lemmas A.4 and A.5 imply (b4) given

A.5(ii) and A.6(iii) and the conditions on `n. Lastly, we verify (b3). We have that (for any n and any ω)

n−1/2
nX
t=1

s∗nt
³
·,ω, �θn

´
− n−1/2

nX
t=1

snt

³
ω, �θn

´
= ξ1n + ξ2n + ξ3n,

where ξ1n (·,ω) ≡ n−1/2
Pn
t=1 (s

∗
nt (·,ω, θon)− snt (ω, θon)) ; ξ2n (ω) ≡ −n−1/2

Pn
t=1

³
snt

³
ω, �θn

´
− snt (ω, θon)

´
;

and ξ3n (·,ω) ≡ n−1/2
Pn
t=1

³
s∗nt
³
·,ω, �θn

´
− s∗nt (·,ω, θon)

´
. It suffices to show that for any subsequence

n0 there exists a further subsequence n00 such that a.s. − P (i) Bo−1/2n00 ξ1n00 (·,ω) ⇒
dP∗

n00,ω N (0, Ip), and

(ii) ξ2n00 (ω)+ ξ3n00 (·,ω)→ 0 prob−P ∗n00,ω. The result then follows by Lemma 4.7 of White (2000), since
n00−1

Pn00
t=1 sn00t

³
ω, �θn00

´
= 0 for all n00 sufficiently large, a.s. − P , by A.3(ii) and the F.O.C. for �θn00 .

Theorem 2.2 of Gonçalves and White (2001) implies (i) under Assumption A strengthened by 2.1 and

2.2. To prove (ii), let F ≡ F1 ∩ F2, with F1 the set of ω on which (i) holds, and F2 the set on which
the remaining conditions of Lemma A.3 hold. Note that P (F ) = 1. For Þxed ω in F, two mean value

expansions yield
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ξ2n00 (ω) + ξ3n00 (·,ω) = ζn00 (·,ω)
√
n00
³
�θn00 (ω)− θon00

´
,

ζn00 (·,ω) = n00−1
Pn00
t=1

¡∇0s∗n00t ¡·,ω, θ̄∗n00¢−∇0sn00t ¡ω, θ̄n00¢¢, with θ̄n00 and θ̄∗n00 (possibly different) mean
values lying between �θn00 and θon00 . Lemma A.6 implies ζn00 (·,ω) → 0 prob − P ∗n00,ω for all ω ∈ F ,

given the uniform convergence of
©∇2Q∗n00 (·,ω, θ)−∇2Qn00 (ω, θ)ª and ©∇2Qn00 (ω, θ)−An00 (θ)ª , and

the convergences of θ̄n00 − θon00 and θ̄∗n00 − θon00 to zero. Since
√
n00
³
�θn00 (ω)− θon00

´
= O (1) on F , it follows

that ξ2n00 (ω) + ξ3n00 (·,ω)→ 0 prob− P ∗n00,ω for ω ∈ F , P (F ) = 1. ¥
Proof of Corollary 2.1. We can show

√
n
³
�θ
∗
1n − �θn

´
−√n

³
�θ
∗
n − �θn

´
→ 0 prob−P ∗n,ω, prob−P , given

the deÞnition of �θ
∗
1n and the fact that �A

∗
n − �An → 0 prob− P ∗n,ω, prob− P, by Lemma A.6. ¥

Proof of Lemma A.1. Let F ≡
n
ω : �θn (ω)− θon → 0

o
∩©ω : supΘ ¯̄Qn (ω, θ)−Qn (θ)¯̄→ 0

ª
. By The-

orem 3.4 of White (1994), P (F ) = 1. Fix ε0 > 0 and ω in F . Then, there exists N0 (ω, ε0) <∞ such that

for all n > N0 (ω, ε0) ,
¯̄̄
�θn (ω)− θon

¯̄̄
< ε0. Because {θon} is identiÞably unique on Θ, given ε0 > 0 there ex-

istsN1 (ε0) <∞ and δ0 (ε0) > 0 such that supn≥N1(ε0)
£
maxηc(θon,ε0)Qn (θ)−Qn (θon)

¤ ≡ −δ0 (ε0) < 0,where
η (θon, ε

0) ≡ {θ ∈ Θ : |θ − θon| < ε0}. By Corollary 3.8 of White (1994), there exists N2
¡
ω, δ0 (ε0)

¢
< ∞

such that for all n > N2
¡
ω, δ0 (ε0)

¢
,
¯̄̄
Qn

³
ω, �θn (ω)

´
−Qn (θon)

¯̄̄
< δ0(ε0)

4 . Also, for all n > N2
¡
ω, δ0 (ε0)

¢
,

maxηc(θon,ε0)Qn (ω, θ) ≤ maxηc(θon,ε0)Qn (θ)+
δ0(ε0)
4 . LetN (ω, ε0) = max

©
N0 (ω, ε

0) ,N1 (ε0) , N2
¡
ω, δ0 (ε0)

¢ª
.

Hence

sup
n≥N(ω,ε0)

"
max

ηc(�θn(ω),2ε0)
Qn (ω, θ)−Qn

³
ω, �θn (ω)

´#
≤ sup
n≥N(ω,ε0)

·
max

ηc(θon,ε0)
Qn (ω, θ)−Qn (θon) +

δ0 (ε0)
4

¸
≤ sup
n≥N(ω,ε0)

·
max

ηc(θon,ε
0)
Qn (θ)−Qn (θon) +

2δ0 (ε0)
4

¸
≤ −δ

0 (ε0)
2

.

Set ε = 2ε0 and δ (ε) = δ0(ε/2)
2 > 0 to obtain the result for all ω in F and P (F ) = 1. If instead

supΘ
¯̄
Qn (ω, θ)−Qn (θ)

¯̄→ 0 prob− P , then for any {n0} there exists {n00} such that
supΘ

¯̄
Qn00 (ω, θ)−Qn00 (θ)

¯̄
= o (1) and �θn00 (ω) − θon00 = o (1) a.s. − P . The result thus holds for {n00}

a.s.− P . ¥
Proof of Lemma A.2. (A) follows by Theorem 3.4 of White (1994) under (a1)-(a3). To prove (B),

note that for any subsequence {n0}, by Lemma A.1 there exists {n00} such that
n
�θn00
o
is identiÞably

unique a.s.− P , given (a1)-(a3). Now apply Theorem 3.4 of White (1994). ¥
Proof of Lemma A.3. (A) follows by White�s (1994) Theorem 6.2 under (a1)-(a4). To prove (B),

it suffices to show that for any subsequence {n0} there exists a further subsequence {n00} such that
B
∗−1/2
n00 A∗n00

√
n00
³
�θ
∗
n00 (·,ω)− �θn00 (ω)

´
⇒dP∗

n00,ω N (0, Ip) , a.s. − P . This follows by applying White�s

(1994) Theorem 6.2 to an appropriately chosen subsequence, given ω in F such that P (F) = 1. ¥
Proof of Lemma A.4. The proof closely follows that of Lemma 8 of Hall and Horowitz (1996).
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Proof of Lemma A.5. Fix θ ∈ Θ, and write n−1Pn
t=1 (q

∗
nt (θ)− qnt (θ)) = Q1n +Q2n, with

Q1n ≡ n−1
nX
t=1

(q∗nt (θ)−E∗ (q∗nt (θ))) , and Q2n ≡ E∗
Ã
n−1

nX
t=1

q∗nt (θ)

!
− n−1

nX
t=1

qnt (θ) ,

where we omit ω to conserve space. Q2n → 0 prob−P since E∗ ¡n−1Pn
t=1 q

∗
nt (θ)

¢
= n−1

Pn
t=1 qnt (θ) +

OP
¡
`
n

¢
(cf. Lemma A.1 of Fitzenberger (1997)) and `

n → 0. By Chebyshev�s inequality, for any δ > 0,

P ∗n,ω (|Q1n| > δ) ≤ 1
δ2
n−1 var∗

¡
n−1/2

Pn
t=1 q

∗
nt (θ)

¢
, where var∗

¡
n−1/2

Pn
t=1 q

∗
nt (θ)

¢
has a closed form

expression involving products of qnt (θ) and qn,t+τ (θ) (cf. Gonçalves and White (2001)). Under the

domination condition on {qnt (θ)} and the properties of the MBB, repeated application of Minkowski
and Hölder�s inequalities yields

°°var∗ ¡n−1/2Pn
t=1 q

∗
nt (θ)

¢°°
r
2
= O (`) for some r > 2. Thus, by Markov�s

inequality, P
£
P ∗n,ω (|Q1n| > δ) > ξ

¤
= O

³¡
`
n

¢r/2´→ 0 given ` = o (n). ¥
Proof of Lemma A.6. (A) holds by White (1994, Corollary 3.8). (B) By uniform continuity of Q̄n on

Θ, given ε > 0 there exists δ (ε) > 0 such that
¯̄̄
Q̄n (θ)− Q̄n

³
�θn
´¯̄̄
> ε/3 implies

¯̄̄
θ − �θn

¯̄̄
> δ (ε) . So

P
h
P ∗n,ω

³¯̄̄
Q∗n
³
·,ω, �θ∗n

´
−Qn

³
ω, �θn

´¯̄̄
> ε

´
> ε

i
≤ P

·
P ∗n,ω

µ
sup
Θ
|Q∗n (·,ω, θ)−Qn (ω, θ)| > ε/3

¶
> ε/3

¸
+P

·
P ∗n,ω

µ
2 sup

Θ

¯̄
Qn (ω, θ)− Q̄n (θ)

¯̄
> ε/3

¶
> ε/3

¸
+ P

h
P ∗n,ω

³¯̄̄
�θ
∗
n − �θn

¯̄̄
> δ (ε)

´
> ε/3

i
≡ ξ1 + ξ2 + ξ3,

with obvious deÞnitions. By uniform convergence of Q∗n (·,ω, θ)−Qn (ω, θ) to zero, ξ1 → 0. Similarly, by

uniform convergence of Qn (·, θ)−Q̄n (θ) to zero, ξ2 → 0 since ξ2 ≤ P
¡
2 supΘ

¯̄
Qn (ω, θ)− Q̄n (θ)

¯̄
> ε/3

¢
.

Finally, ξ3 → 0 because �θ
∗
n (·,ω)− �θn (ω)→ 0 prob− P ∗n,ω, prob− P. ¥

Appendix B: Proofs for Section 3

Throughout Appendix B, C denotes a generic constant. The dependence of the bootstrap variables on

ω and on n will also be omitted as it is not relevant for the arguments made here.

Lemma B.1 (Studentization of the sample mean). Let {Xnt} satisfy Assumptions 2.10 and 2.2 of
Gonçalves and White (2001), where Assumption 2.2 0 is strengthened by

A.2.2 0 n−1
Pn
t=1 |µnt − µ̄n|2+δ = o

³
`
−1−δ/2
n

´
for some δ such that 0 < δ ≤ 2.

Then, if `n →∞with `n = o
¡
n1/2

¢
we have that for any ε > 0, limn→∞ P

¡
P ∗
¡¯̄
�σ∗2n − �σ2n

¯̄
> ε
¢
> ε

¢
=

0, where �σ2n = var
∗ ¡√nX̄∗

n

¢
and �σ∗2n = k−1

Pk
i=1

³
`−1/2

P`
t=1

¡
XIi+t − X̄∗

n

¢´2
.

Lemma B.2. Let {Xnt} and {Znt} satisfy kXntk2+δ ≤ ∆ and kZntk2+δ ≤ ∆, t = 1, . . . , n, n = 1, 2, . . . ,
for any 0 < δ ≤ 2 and some ∆ < ∞. Let k = n/`. If {Ii}ki=1 are i.i.d. uniform on {0, . . . , n− `} and if
`n →∞ and `n = o

¡
n1/2

¢
, then for any ε > 0,

lim
n→∞P

Ã
P ∗
Ã¯̄̄̄
¯k−1

kX
i=1

`−1
X̀
t=1

Xn,Ii+t
X̀
t=1

Zn,Ii+t

¯̄̄̄
¯ > n1/2ε

!
> ε

!
= 0.
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Proof of Theorem 3.1. By GW�s Theorem 7.5 Wn ⇒ X 2q under Ho. Next, we prove W∗
n ⇒dP∗

X 2q prob − P . A mean value expansion of rn
³
�θ
∗
n

´
around �θn yields

√
n
³
rn
³
�θ
∗
n

´
− rn

³
�θn
´´

⇒dP∗

N (0, RonC
o
nR

o0
n ) prob−P, implying n (�r∗n − �rn)0 (RonConRo0n )−1 (�r∗n − �rn)⇒dP∗ X 2q prob−P. Thus, it suffices

to prove: (i) �R∗n − Ron → 0 prob − P ∗, prob − P ; (ii) �A∗n − Aon → 0 prob − P ∗, prob − P ; and (iii)

�B∗n − Bon → 0 prob − P ∗, prob − P. (i) follows by continuity of rn on Θ (uniformly in n) and because

�θ
∗
n − θon → 0 prob− P ∗, prob− P by Theorem 2.1; similarly, by Theorem 2.1 and Lemma A.6, we have

�A∗n− �An → 0 prob−P ∗, prob−P , which implies (ii) since �An−Aon → 0 prob−P . To prove (iii), consider

�B∗on = k−1
kX
i=1

Ã
`−1/2

X̀
t=1

¡
sn,Ii+t

¡
XIi+t
n , θon

¢− s̄∗on ¢
!Ã

`−1/2
X̀
t=1

¡
sn,Ii+t

¡
XIi+t
n , θon

¢− s̄∗on ¢
!0

= k−1
kX
i=1

`−1
X̀
t=1

sn,Ii+t
¡
XIi+t
n , θon

¢X̀
t=1

s0n,Ii+t
¡
XIi+t
n , θon

¢− `s̄∗on s̄∗o0n ,(B.1)

where s̄∗on = n−1
Pn
t=1 s

∗
nt (θ

o
n) . By Lemma B.1 �B∗on − Bon,1 → 0, prob − P ∗, prob − P , where Bon,1 =

var∗
¡
n−1/2

Pn
t=1 s

∗
nt (θ

o
n)
¢
. By Gonçalves and White�s (2001) Corollary 2.1, Bon,1 − Bon → 0, prob − P ,

implying �B∗on −Bon → 0, prob− P ∗, prob− P . Thus, it suffices that �B∗n − �B∗on → 0, prob− P ∗, prob− P .
From (3.1) and (B.1) we can write �B∗n − �B∗on = D1 +D2, where

D1 ≡ k−1
kX
i=1

`−1
"X̀
t=1

sn,Ii+t

³
XIi+t
n , �θ

∗
n

´X̀
t=1

s0n,Ii+t
³
XIi+t
n , �θ

∗
n

´
−
X̀
t=1

sn,Ii+t
¡
XIi+t
n , θon

¢X̀
t=1

s0n,Ii+t
¡
XIi+t
n , θon

¢#

and D2 ≡ `s̄∗on s̄∗o0n . Note that s̄∗on = B
o1/2
n B

o−1/2
n (s̄∗on − s̄on) + Bo1/2n B

o−1/2
n s̄on ≡ E1 + E2, with s̄on =

n−1
Pn
t=1 s

o
nt. We have E1 = OP∗

¡
n−1/2

¢
prob− P by Gonçalves and White�s (2001) Theorem 2.2, and

E2 = OP
¡
n−1/2

¢
by the CLT for {sont}. Thus, D2 → 0 prob − P ∗, prob − P. To show that D1 → 0

prob − P ∗, prob − P we take a mean value expansion about θon of a typical element of D1 and apply

Lemma B.2 twice with Xnt = supθ∈Θ
¯̄
∂
∂θ0 snt,j

¡
Xt
n, θ
¢¯̄
and Znt = supθ∈Θ

¯̄
snt,j

¡
Xt
n, θ
¢¯̄
. ¥

Proof of Theorem 3.2. The proof follows GW (Theorem 7.9, p. 128) using Lemmas B.1 and B.2.

Proof of Lemma B.1. The proof consists of two steps: (1) show �σ∗2n − �σ2n → 0 prob − P ∗, prob − P,
where �σ∗2n = k−1

Pk
i=1

³
`−1/2

P`
t=1

¡
XIi+t − X̄α,n

¢´2
, with X̄α,n = E∗

¡
X̄∗
n

¢
; (2) show �σ∗2n − �σ∗2n → 0

prob − P ∗, prob − P. Let �Ai = `−1/2
P`
t=1

¡
Xi+t − X̄∗

n

¢
and Ai = `−1/2

P`
t=1

¡
Xi+t − X̄α,n

¢
so that

�σ∗2n = k−1
Pk
i=1

�A2Ii and �σ
∗2
n,1 = k

−1Pk
i=1A

2
Ii
. (1) By two applications of Markov�s inequality it suffices

to show E
¡
E∗
¯̄
�σ∗2n − �σ2n

¯̄p¢
= o (1) for some p > 1. We take p = 1 + δ/2 with 0 < δ ≤ 2. Since

E∗
¡
�σ∗2n
¢
= E∗

¡
A2I1
¢
= (n− `+ 1)−1Pn−`

i=0 A
2
i ≡ �σ2n (cf. Künsch (1989, Theorems 3.1 and 3.4)), we have

E∗
¯̄
�σ∗2n − �σ2n

¯̄p
= E∗

¯̄̄̄
¯k−1

kX
i=1

¡
A2Ii −E∗

¡
A2I1
¢¢¯̄̄̄¯

p

≤ k−pCE∗
¯̄̄̄
¯
kX
i=1

¡
A2Ii −E∗

¡
A2I1
¢¢2 ¯̄̄̄¯

p/2

,
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by Burkholder�s inequality, because
©
A2Ii −E∗

¡
A2I1
¢ª
are (conditionally) i.i.d. zero mean. For 1 < p ≤ 2,

x ≥ 0 and y ≥ 0, the inequality (x+ y)p/2 ≤ xp/2 + yp/2 implies E∗
¯̄̄Pk

i=1

¡
A2Ii −E∗

¡
A2I1
¢¢2 ¯̄̄p/2 ≤

kE∗
¯̄
A2I1 −E∗

¡
A2I1
¢¯̄p so that E∗

¯̄
�σ∗2n − �σ2n

¯̄p ≤ 2pCk−(p−1)E∗ |AI1 |2p . Thus, it suffices that

k−(p−1)E
³
E∗ |AI1 |2p

´
= o (1) . Some algebra yields E

³
E∗ |AI1 |2p

´
≤ C (F1 + F2 + F3), where

F1 = (n− `+ 1)−1
n−X̀
i=0

`−pE

¯̄̄̄¯X̀
t=1

Zn,i+t

¯̄̄̄
¯
2p
 ;F2 = (n− `+ 1)−1 n−X̀

i=0

`−p
¯̄̄̄
¯X̀
t=1

¡
µn,i+t − µ̄α,n

¢¯̄̄̄¯
2p

,

and F3 = (n− `+ 1)−1Pn−`
i=0 `

−pE
³¯̄
`Z̄α,n

¯̄2p´
, with Znt ≡ Xnt − µnt, and for any {Ynt} Ȳα,n =

(n− `+ 1)−1Pn−`
i=0 `

−1P`
t=1Yn,i+t =

Pn
t=1 αntYnt with αnt = 1

(n−`+1)` min {t, `, n− t+ 1}. Under As-
sumption 2.10, E

¯̄̄P`
t=1Zn,i+t

¯̄̄2p
< C`p (cf. Gonçalves and White (2001), p.18 for a similar argument),

implying k−(p−1)F1 = O
³¡

`
n

¢p−1´
= o (1), and similarly for k−(p−1)F3. If µnt = µ for all t, F2 = 0

because µ̄α,n =
Pn
t=1 αntµ = µ as

Pn
t=1 αnt = 1. Otherwise, by A.2.2

0, F2 = o (1), so k−(p−1)F2 = o (1).

For (2), note �AIi =
√
`
¡
X̄Ii − X̄∗

n

¢
, where X̄Ii = `

−1P`
t=1XIi+t, and Ai =

√
`
¡
X̄Ii − X̄α,n

¢
, implying

�σ∗2n − �σ∗2n = −` ¡X̄∗
n − X̄α,n

¢2
= OP ∗

¡
`
n

¢ → 0 prob − P , since √n ¡X̄∗
n − X̄α,n

¢ ⇒dP∗ N (0, 1) prob − P
by Theorem 2.2 of Gonçalves and White (2001). ¥
Proof of Lemma B.2. Let S1n,i =

P`
t=1Xn,i+t and S

2
n,i =

P`
t=1Zn,i+t.By Markov�s inequality, for

some 1 < p ≤ 2, it suffices to show n−p/2E∗
³¯̄̄
k−1

Pk
i=1 `

−1S1n,IiS
2
n,Ii

¯̄̄p´→ 0 prob− P . Let p = 1+ δ/2,
0 < δ ≤ 2, and note E∗

³¯̄̄
k−1

Pk
i=1 `

−1S1n,IiS
2
n,Ii

¯̄̄p´ ≤ C (F1 + F2), with
F1 = E

∗
Ã¯̄̄̄
¯k−1

kX
i=1

`−1
¡
S1n,IiS

2
n,Ii −E∗

¡
S1n,IiS

2
n,Ii

¢¢¯̄̄̄¯
p!

and F2 = E∗
¯̄̄̄
¯k−1

kX
i=1

`−1E∗
¡
S1n,IiS

2
n,Ii

¢¯̄̄̄¯
p

.

By the Burkholder and cr-inequalities F1 ≤ C`−pk−(p−1)E∗
¯̄̄
S1n,I1S

2
n,I1

¯̄̄p ≤ C`−pE∗
¯̄̄
S1n,I1S

2
n,I1

¯̄̄p
, sincen

S1n,IiS
2
n,Ii

−E∗
³
S1n,IiS

2
n,Ii

´o
are i.i.d. zero mean, and k−(p−1) ≤ 1 for p > 1. Similarly, F2 ≤

C`−pE∗
¯̄̄
S1n,I1S

2
n,I1

¯̄̄p
. By the Cauchy-Schwarz and Minkowski inequalities, E

³
E∗
¯̄̄
S1n,I1S

2
n,I1

¯̄̄p´ ≤ C`2p.
Thus, F1 + F2 = OP (`p), and so n−p/2 (F1 + F2)P = O

³³
`

n1/2

´p´
= op (1) , since ` = o

¡
n1/2

¢
. ¥
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