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Abstract

We provide a unified framework for analyzing bootstrapped extremum estimators of nonlinear dy-
namic models for heterogeneous dependent stochastic processes. We apply our results to the moving
blocks bootstrap of Kiinsch (1989) and Liu and Singh (1992) and prove the first order asymptotic
validity of the bootstrap approximation to the true distribution of quasi-maximum likelihood estima-
tors. We also consider bootstrap testing. In particular, we prove the first order asymptotic validity
of the bootstrap distribution of suitable bootstrap analogs of Wald and Lagrange Multiplier statistics
for testing hypotheses.
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1. Introduction

The bootstrap is a powerful and increasingly utilized method for obtaining confidence intervals and
performing statistical inference. Despite this, results validating the bootstrap for the quasi-maximum
likelihood estimator (QMLE) or generalized method of moments (GMM) estimator have previously been
available only under restrictive assumptions, such as stationarity and limited memory. A main goal
here is thus to establish the bootstrap’s first order asymptotic validity in the framework of Gallant and
White (1988) and Potscher and Prucha (1991): extremum estimators for nonlinear dynamic models of
stochastic processes near epoch dependent (NED) on an underlying mixing process. We treat primarily
QML estimators for concreteness and because there are fewer results in this area. See Corradi and
Swanson (2001) for a treatment of GMM estimation that draws on the results provided here.

We apply our results to the moving blocks bootstrap (MBB) of Kiinsch (1989) and Liu and Singh
(1992). Here, this involves resampling blocks of the quasi-log-likelihood values. With misspecified models,
the associated scores are generally dependent, justifying our use of block bootstrap methods.

Results for bootstrapping extremum estimators are available for special cases. For example, Hahn
(1996) shows first order asymptotic validity of Efron’s bootstrap for GMM with i.i.d. data. Hall and
Horowitz (1996) give asymptotic refinements for bootstrapped GMM estimators with stationary ergodic
data. Andrews (2001) extends their results, establishing higher-order improvements of k-step bootstrap
estimators (see Davidson and MacKinnon (1999)) for nonlinear extremum estimators, including GMM
and ML. Both Hall and Horowitz (1996) and Andrews (2001) take the moment conditions defining the
estimator to be uncorrelated after finitely many lags, obviating use of HAC covariance estimators. For
stationary mixing processes, Inoue and Shintani (2001) prove asymptotic refinements for GMM applied
to linear models where the defining moment conditions have unknown covariance.

Here, we do not attempt asymptotic refinements. Instead, we prove the consistency of the block
bootstrap estimator of the QMLE sampling distribution for a broad class of models and data generating
processes. Specifically, we avoid stationarity and restrictive memory conditions, and show that the block
bootstrap distribution of the QMLE converges weakly to the distribution of the QMLE. Thus, bootstrap
confidence intervals have correct asymptotic coverage probability.

An important bootstrap application is hypothesis testing. We show first order asymptotic validity



for new bootstrap Wald and LM tests. The asymptotic validity of the percentile-t test follows from that
of the Wald test, justifying use of MBB to construct percentile-t¢ confidence intervals.

We illustrate MBB finite sample performance for confidence intervals via two Monte Carlo experi-
ments. Specifically, we compute confidence intervals for 1) a logit model with neglected autocorrelation,
and 2) a possibly misspecified ARCH(1) model. In both cases the MBB outperforms standard asymp-

totics, especially when robustness to autocorrelated scores is needed.
2. Consistency of the Bootstrap QMLE
We adopt the framework of Gallant and White (1988) (GW). The goal is to conduct inference on a

parameter of interest 69 from data X1, ..., Xy, near epoch dependent (NED) on an underlying mixing

process. Here, X, is a vector containing both explanatory and dependent variables. We define {X,,+} to

be NED on a mixing process {V;} if E (X2;) < oo and vy = sup,, ; ‘Xnt — Eitk (X"t)Hz — 0 as k — oo.
Here, || Xpu,, = (E |Xnt|p)1/p is the L, norm and Eff,’j ()=E <|,7:ff,f> , where fﬁ,’f =0 Vickye-o, Vidk)
is the o-field generated by Vi _k,...,Viig. If vp = O (kf‘“’s) for some 6 > 0, we say {X,;} is NED of
size —a. We assume {V}} is strong mixing; analogous results hold for uniform mixing. The strong mixing
coefficients are oy = sup,, SUD{AcFm_ BeF®,,} |P(ANB)— P(A)P(B)|; we require oy — 0 as k — oo
suitably fast.

Our methods involve using the MBB to resample certain functions of the data. Thus, consider a
generic array of random variables {Z,; : t = 1,...,n}. Let £ = ¢, € N (1 < ¢ < n) be a block length, and
let Biy = {Znt; Znt+1,- -+ Zntte—1} be the block of ¢ consecutive observations starting at Z,; (¢ =1
gives the standard bootstrap). For simplicity take n = kf. The MBB draws k = n/{¢ blocks randomly
with replacement from the set of overlapping blocks {Bi,..., Bp_ry14}. Letting Ip1,..., Iy, be iid.
random variables distributed uniformly on {0, ...,n — ¢}, we have {Z}}, = Z,, ,,,t = 1,...,n}, where 7
defines a random array {7p:} ={lu +1,..., In1 + 4, .., Lokr1, - - oy Inkte )

The QML estimator 9n solves the problem
mgXLn(Q), n=12 ...,

where Ly, (0) = n=' Y0 log frr (X£,0), XE = (X}, ... X)), t=1,2,...,n, and 6 belongs to O, a

compact subset of R, p € N. Thus, X! contains all explanatory and dependent variables entering f,



the “quasi-likelihood” for observation ¢. The function L, is the “quasi-log-likelihood function”. GW
study the properties of the QMLE 0, (consistency and asymptotic normality) under certain regularity
assumptions, collected in Appendix A for convenience.

Given the original sample X1, ..., Xun, let 9; be a bootstrap version of @n, solving
mngZ(@), n=12,...,

where L} (0) = n=1>° 1 log f#,(0), and for n = 1,2,... and each € O, {f5 (0),t=1,...,n} is
given by fr, (0) = fnr.. (X7, 0), with 7,,; chosen by the MBB. Thus, the bootstrap QMLE resamples
the contributions log fy+ (Xfl,Q) to Ly, (6). This is often equivalent to directly resampling the data,
for example in linear regression where f,; depends only upon X,; = (yYns, W,{bt)'(ynt is the dependent
variable at time ¢t and W,; is a vector of explanatory variables at time ¢ that may include lagged
dependent variables). In this case, resampling blocks of fp; (Xf“ 0) is equivalent to resampling blocks of
Xnt = (Ynt, W,{bt)'7 the “blocks of blocks bootstrap” (Politis and Romano, 1992). But if f,; depends on
the entire past history X!, it may not be possible to define “tuples” of observables on which to apply the
MBB. This is the case for GARCH models; for these, bootstrapping the QMLE does not involve directly
bootstrapping the data.

We first show that 9:1 converges in probability to 9n, conditional on all samples with probability tend-

ing to one. Conventionally, P* is the probability measure induced by the MBB. For a bootstrap statistic

T, we write T, — 0 prob— P*, prob— P if for any ¢ > 0 and any ¢ > 0, lim,,_,oc P [P*[|T}| > €] > 6] = 0.

Theorem 2.1. Let Assumption A hold. Then, 0,, — 09 — 0 prob — P. If also ¢, — oo, and ¢, = o(n),

then @Z —0,—0 prob — P*, prob — P.

Thus, 0, is asymptotically the bootstrap “pseudo-true parameter”. Nevertheless, as Andrews (2001)
notes, for given n, the MBB population first-order conditions evaluated at 0,, are not generally zero.
That is, E* [nil D Sk (%H # 0, where {s:‘Lt (9n) = Vlog fnr, (Xgnt,%)}. To study higher-

order properties of the bootstrap, Andrews (2001) therefore recenters the bootstrap objective function

nt

R /
to L (0) —n 1Y} | E* <s* (9n>> 0. As the first-order properties are unaffected, we leave this aside
here. (See also Horowitz (1996) for a similar recentering of the criterion function in the GMM context.)

Next we show that the sampling distribution of y/n (én — 9%) is well-approximated by the distribution
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of \/n <9Z — 9n> , conditional on X,1,..., X,,. For this, we strengthen Assumption A as follows:

Assumption 2.1
2.1.a) {sy (X5,0) = Vliog frs (X5,6)} is 3r-dominated on © uniformly in n,t =1,2,...,r > 2.

2.1.b) For some small § > 0 and some r > 2, the elements of {sn (X%,0)} are Loys — NED on {V;} of

2(r—1)
r—2

size — uniformly on (0, p); {V;} is a—mixing with «y, of size —%.

Assumption 2.2 n 'Y} | E(s9,) E(s5,) = o (¢;1), where £, = 0(n) and £, — oo.

nt

The consistency of the MBB distribution depends crucially on the consistency of the MBB covari-
ance matrix of the scaled average of the MBB-resampled scores {s?}. With misspecification, {s2,} is
dependent and possibly heterogeneous. Accordingly, Assumption 3.1.b) takes {s2,} to be Lays-NED on
a mixing process (see Andrews (1988)), for small 6 > 0. Application of Gongalves and White (2001)
Theorem 2.1 shows the MBB covariance matrix of the scaled average of {s}?} is consistent under this

NED condition for BY + US

no

where BS = var (n*1/2 Sy sflt), and U? = var* (n*1/2 Sy [E (sflt)]*) ,
with {[E (s2,)]"} a MBB resample of {E (s%,)}. Assumption 2.2 eliminates the bias U2 asymptotically,

ensuring that 92 converges to a normal with the correct covariance (cf. GW, p. 102).

Theorem 2.2. Let Assumption A as strengthened by Assumptions 2.1 and 2.2 hold. If¢,, — oo and {,, =

P (i (8- 0) <] - P [V (8- 02) <] | > €} 0.

0 (n1/2) , then for any ¢ > 0, P {SUPxERP

Theorem 2.2 justifies using order statistics of the bootstrap distribution to form percentile confidence
intervals for 67 with asymptotically correct coverage probabilities. Note that this does not justify using
the variance of the bootstrap distribution to consistently estimate the QMLE asymptotic variance without
further conditions, e.g. that {n <9Z — 9n> (é; — §n>/} is uniformly integrable (e.g. Billingsley, 1995, p.
338). This has been sometimes overlooked in the literature. Counterexamples to the consistency of the
bootstrap variance of smooth functions of sample means in the i.i.d. context can be found in Ghosh et.
al. (1984) and Shao (1992). See also Gongalves and White (2000).

Bootstrapping the QMLE may be computationally costly as it requires an optimization for each

resample. Davidson and MacKinnon (1999) have proposed approximate bootstrap methods based on

a few iterations starting from the original QMLE, achieving the same accuracy as the fully-optimized



bootstrap. Let A} (én> =n"130 V2 log fr, <9n> be the MBB resampled estimated Hessian, and let

{sjibt <én)} be the MBB resampled estimated scores. The one-step MBB QMLE is:

- R .\ —1 n R
0 =0, A (en) Y st <9n) .
t=1
Corollary 2.1. Let Assumption A as strengthened by Assumptions 2.1 and 2.2 hold. If {,, = o (n1/2) ,

P [V (8- 0) <] — P [ (81— 8) <] 5 <] —o.

then for any € > 0, P [supxe]gp

Analogous results hold for the multi-step estimators under the same conditions.

3. Hypothesis Testing

The results of Section 2 do not immediately justify testing hypotheses about 6; based on studentized
statistics such as ¢- or Wald statistics. Nevertheless, they are the key to proving the ability of the
bootstrap to approximate the distribution of studentized statistics, as we now show.

Let {r, : ® — R?}, with © C RP, ¢ < p, be a sequence of functions that have elements continuously
differentiable on © uniformly in n such that {R% = V'r,, (62)} is O (1) with full row rank ¢, uniformly
in n. The Wald statistic for testing H, : /nr, (05) — 0 is W, = n#, <]A%nénf?;l)_l 7n, Where 7, =
n <9n) , Rn = V'r, <9n) and C’n = A; 15%21; 1 is consistent for co = A%‘lBgAfl_l. In particular,
A, = n1 S V21og far <Xfl,9n> is an estimator of A = F (n" 'Y}, V2log fut (X1,63)) and B,
is such that E’n - B £0. For our context, En is a kernel-type variance estimator, e.g. a Bartlett
(Newey-West, 1987) or a Quadratic Spectral (Andrews, 1991) estimator. For first order properties, we

just need B, to be consistent for B?. Our bootstrap Wald statistic is
* A A\ [ D* vk k! -1 Ak N
Wn =n (Irn - Tn) <RnCan> (Irn - Tn) ’

where we set 7% = 1, <9Z>, R* =V'r, (92) and C* = A*~1B* A*~1. Here,

A~

A = n! Z?:l \V& log fr r e (Xg"tﬁ;) and E; is

k ¢ ¢ !

By B=i'Y (wmzsn,w (Xgmaé:;)) (el/zzsn,fn,.+t (Xgmt,é;)) |
i=1 t=1 t=1

B* is the multivariate QMLE analog of the MBB variance estimator of Davison and Hall (1993) and

Gotze and Kiinsch (1996). To motivate this, recall that E; is the bootstrap analog of B,,, which estimates



B¢, the covariance of the scaled average of the scores at 6. Analogously, BZ estimates the bootstrap
covariance of the scaled average of the resampled scores at 9n, ie. B;‘; is an estimator of

n k ¢
(3.2) var® <n1/2 Z Shy <9n>) = var® <k1/2 Z <€1/2 Z Sp L+t <X7{m+t, 9n>)) :

t=1 i=1 t=1
Because the block bootstrap means ¢~1 Zle SnLitt <X7{ni+t, 9n> are (conditionally) i.i.d., the estimator
(3.1) of the (bootstrap population) variance (3.2) is just the sample variance of these means, with 6,
replaced by 9:; to mimic the replacement of 2 with 0,, when computing B,. Note that in (3.1) we use
the bootstrap optimization first order conditions to set EZ =ntY 0 sk, (92) =0.

Gotze and Kiinsch (1996) note that one must carefully choose the studentizing kernel variance es-
timator. Instead of triangular weights, rectangular or quadratic weights should be used in estimating
BC. Further, 6, should be recentered, as in Hall and Horowitz (1996) and Andrews (2001). These
considerations do not affect our first order results, but are important in applications.

To analyze the bootstrap Wald statistic YW} we strengthen Assumption 2.2:

Assumption 2.2' n ! S" |E(s2,)]* 0 =0 <€,§1_6/2) fori=1,...,p.

Theorem 3.1. Let the assumptions of Theorem 2.2 hold as strengthened by Assumption 2.2’. Then,

under H,, for alle >0, if { = o (nl/z) , Plsupyepa |P* Wy <) — P (W, <z)| >¢ —0.

This proves the first order asymptotic equivalence under the null of the bootstrap Wald and the
original Wald statistic. Consistency of a bootstrap t-statistic studentized with C’; follows by almost
identical arguments, justifying the construction of MBB percentile-t confidence intervals.

The bootstrap also works for the Lagrange Multiplier (LM) statistic. Using notation analogous to

GW, the LM statistic is £,, and its bootstrap analog is
kN e e fe e N—=1 L .
Lr=nV'L: (en) ALRY (R:;c;;R:;') REAIVLE (en) ,

*

where, with é; the constrained bootstrap QMLE, VL (én) =n 130 sk, (é;) , R;“L = V'r, (é;),

n

Cr = A 'BE A and AX = n' 00, V2 og for, <X7"t,§:1). Similarly, B is as in (3.1) using

é; instead of 6, with ¢Y/2VL* <é;> subtracted off each term ¢~1/2 Zle S, I+t (Xé’“'*t, é;;) because

VL (é;) is not generally zero.



Theorem 3.2. Let the assumptions of Theorem 2.2 hold as strengthened by Assumption 2.2’. Then,

under H,, for alle > 0, if { = o (nl/z) , Plsupgere |P* (L) <x)— P (L, <x)|>e] —0.

4. Monte Carlo Results

This section provides Monte Carlo evidence on the relative finite sample performance of the MBB and
the asymptotic normal approximation for confidence intervals. We consider two practical examples of
nonlinear models that are typically estimated by QML. The first examines the MBB percentile-t and
asymptotic normal coverage probabilities of confidence intervals in the context of logit models with
neglected autocorrelation. Next we compare the MBB to asymptotic normal confidence intervals for
possibly misspecified ARCH models.
Confidence Intervals for Logit models

Let a dependent variable y; take the value 0 or 1, whenever the unobserved y; = W/ + ¢, is positive
or negative, respectively. W; is a k x 1vector of explanatory variables and (3 a vector of parameters. We
generate ; as AR(1):

et = per—1 + V1 — pPuy

with Prob(v; < a) = 1?2’((;()(1) for any a € R. Thus, the DGP is logit with autocorrelated errors whenever

p # 0. We estimate an ordinary logit model by QMLE ignoring the autocorrelation. The QMLE Bn
remains consistent for § and asymptotically normal (cf. Gourieroux, Monfort and Trognon (1984) for
the related probit model). Nevertheless, confidence intervals for 3 require an HAC covariance estimator
using asymptotic normality, or a bootstrap confidence interval (e.g. a MBB with ¢ > 1).
A i | intervals rel = VluB) here €, = A7 B, ALY, We consider th
symptotic normal intervals rely on tBi = f, where C, = A, "B, A, ". e consider three
choices for B,,: the outer product of the gradient (OP), B,, = n~! 37| 4,4:4,,, and two HAC estimators,

using either the Bartlett (BT) or the Quadratic Spectral (QS) kernel. The MBB intervals are based on

ty = ﬂ\%z, where C* = A*~1B*A*~1 with B* as in (3.1). The BT, QS, and MBB intervals are
robust to neglzcted autocorrelation, whereas the OP intervals are not.

Choice of the block size/bandwidth is critical. We use Andrews’ (1991) procedure to compute a
data-driven block length for BT, QS, and MBB, ensuring meaningful comparisons of our methods.

In the experiments, W contains a constant, and either one, two, three, or four random regressors,

independently generated as AR(1) with autocorrelation coefficient equal to 0.5. The intercept is always



0, so on average half the y;’s are 0 and half are 1. The slope parameters are all set to 0.25. For each
experiment we let p € {0,0.5,0.9}, and use 10,000 Monte Carlo trials with 999 bootstrap replications.
We discarded 27 out of the 10,000 trials due to nonconvergence of the logit routine with k£ = 5, n = 50,
p = 0.9. Nonconvergence in the bootstrap resamples occurred on average less than 0.08% per Monte
Carlo trial, for all experiments, except when k& = 5, n = 50, p = 0.9, in which case this rate was 1.07%.
When bootstrap optimization failed, we redrew new bootstrap indices. Table 1 reports coverage rates
for the first slope parameter.

Table 1. Coverage Rates of Nominal 95% symmetric Percentile-t Intervals: Logit”

k n p OP BT QS MBB %iii‘i
2 50 00 953 944 944 949 1.7
0.5 90.2 91.5 91.9 92.5 2.0
0.9 80.7 85.2 857 90.8 3.0
100 0.0 952 946 946 949 1.7
0.5 89.6 92.0 925 926 2.4
0.9 820 89.0 90.0 91.9 4.1
3 50 00 947 939 93.9 047 1.8
05 904 914 914 928 2.2
09 81.1 848 848 91.8 3.3
100 0.0 952 948 947 951 1.8
05 90.2 920 924 93.2 2.7
0.9 8L5 88.6 895 92.1 4.4
4 50 00 949 941 940 950 1.8
0.5 90.2 90.6 90.4 928 2.3
0.9 813 83.6 832 922 3.3
100 0.0 953 948 946 952 1.9
05 90.1 922 924 93.3 2.8
0.9 821 832 888 923 4.4
5 50 00 942 035 93.1 944 1.8
0.5 89.2 89.6 89.2 926 2.4
0.9 80.8 82.7 82.3 942 3.2
100 0.0 947 943 942 95.0 1.9
0.5 89.7 915 91.8 93.0 2.8
0.9 8L3 869 87.5 918 4.4

©10,000 Monte Carlo trials with 999 bootstrap replications each.

The main results are: a) when p = 0 all methods work well, even for n = 50; b) when p # 0 all
intervals undercover, but the robust methods (BT, QS and MBB) outperform OP, as expected. The
undercoverage is worse the larger is k£ and the smaller is n (an exception is MBB when k =5, p = 0.9,
perhaps due to the larger rate of non-convergence); c) the MBB always outperforms BT or QS, especially

for small n and large k, and d) the average bandwidth/block size is larger for larger p and n, as expected.



Confidence Intervals for ARCH models

We assume the following DGP:

(41) Yt :’7+8t, Et :’Uthz/z, ht :(D+6é€?71.

A bar denotes true parameters and a superscript o denotes pseudo-true parameters throughout. Usually

{v¢} is assumed i.i.d. Here, we generate v; as AR(1):

(4.2) vy =pui—1 +w, |pl <1, w~iid. N(0,02), oo =1-p%

We can write (4.1)-(4.2) as y; = 7 + pht/*h > (g1 — 7) + hy/*us, with w, ~ iid. N (0,02). For
p = 0, this is the usual ARCH(1). For p # 0 an extra term appears. Letting 71 = o (... 92, 9:1)
and using v;_1 = st,l/hiﬁ, we have E (g, F1) = phiﬂvt,l and E (7| F*71) = hy (1 - p* + p*0f,), so

E (y| 771 = 7+,th/2h;11/2 (y4—1 —7) and var (y¢| F*~1) = 0% hy. We (mis)specify a Gaussian ARCH(1)

/-

model parameterized by 0 = (v, w, @)

y=7+e, elFP~N(0R (@), t=1,...,n,

with h¢ () = w + ae? ;. The QMLE 6,, maximizes the log-likelihood

n 62
(4.3) Ly (0) = % > log fi(0), where log f, (0) = — (ln he (0) + 7 Ee)) '
t=1

The model is correctly specified if and only if p = 0. With misspecification the QMLE is generally
inconsistent for § = (3, , @) ; instead confidence intervals for pseudo-true parameters 6° = (7°,w°, a°)
pertain. We evaluate 6° by simulation, as the value maximizing the expectation of (4.3), computed using

50,000 simulations. Considering the expected score corresponding to =y, we have

0 %t P o ¢
(44) B (Slt (90)) =FE (ht 2—90; - hgg(eo) (Oé 6tfl) + %) =0,

where §° = (3,u°,a°), hy (0°) = w®+a}_; and &, = y; — 7. For suitably symmetric joint distributions
of (et,e1-1) centered at zero, it is plausible that this expectation equals zero, implying that v° = 7,
despite the misspecification. Proving this conjecture would distract us from our purpose here, but our
simulations (with normal errors) always delivered v° = 7. Accordingly we set v = 7 in what follows.

With misspecification, the scores are generally not a martingale difference sequence, justifying the

use of robust inference on 6°. As before, we consider OP, BT, QS and MBB. All but OP are robust to
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Table 2. Coverage Rates of Nominal 95% symmetric Percentile-¢ Intervals: ARCH*

_ _ Avg. Band.
n o] p C.I for 6 op BT QS MBB /Block size
200 0.5 0.0 ~ 94.4 944 944 95.0 1.37
w 93.6 93.5 93.6 95.4
Q 91.8 91.5 914 94.9
0.5 ~ 83.8 90.9 91.7 93.0 4.50
w?® 93.8 93.2  93.2 95.6
a’ 92.6 92.6  92.6 95.4
0.9 ~ 60.3 76.0 77.0 86.4 6.49
w?® 91.6 91.9 91.9 95.7
a’ 82.4 924  93.0 94.6
500 0.5 0.0 ~ 94.8 94.8 948 95.0 1.35
@ 94.5 94.6  94.6 95.5
Q@ 93.6 93.5 934 94.7
0.5 ~ 85.0 92.6  93.0 93.5 6.11
w® 94.9 94.3 94.3 95.4
a’ 93.3 94.0 94.1 95.4
0.9 ~ 62.9 83.2  83.7 87.6 9.16
w?® 94.0 94.0 94.0 95.5
a’ 80.0 93.5 94.1 94.7
200 0.9 0.0 ~ 94.5 944 944 95.1 1.34
@ 93.2 93.2  93.2 95.3
a 92.3 92.2  92.2 94.9
0.5 ~ 86.7 91.3  92.0 93.2 3.54
w® 93.1 92.9 929 95.4
a’ 92.0 93.0 93.2 95.4
0.9 ~ 65.1 77.0 78.0 88.3 5.39
w?® 90.3 90.6  90.6 95.4
a’ 69.6 86.6  88.0 89.6
500 0.9 0.0 ~ 94.8 94.8  94.9 95.1 1.32
@ 94.3 94.3 943 95.4
a 93.4 93.4 934 94.3
0.5 ~ 88.0 92.6  93.0 93.5 4.82
w® 94.4 94.0 94.0 95.2
o’ 92.4 94.6  94.9 95.8
0.9 ~ 69.2 84.4  84.8 88.8 7.66

Q

93.6 93.8 93.8 95.5
68.7 904 91.1 92.2

(SRS
o

“10,000 Monte Carlo trials with 999 bootstrap replications each. Pseudo-true parameters were calculated
by 50,000 simulations: for & = 0.5, (w’,a®)=(0.07,0.798) when p = 0.5 and (w°,a°)=(0.017,1.130) when p = 0.9;
for &= 0.9, (w° a°)=(0.069,1.192) when p = 0.5 and (w°,a®) = (0.015,1.480) when p=0.9. 57 =1.0 and @ = 0.1
were set throughout.

misspecification. The OP interval is valid if the first two conditional moments of y; are not misspecified.
Data on {y:} were generated by (4.1)-(4.2) with ¥ = 1.0, @ = 0.1 and six combinations of & and p
taken from & € {0.5,0.9} and p € {0.0,0.5,0.9}. Table 2 contains results. We summarize as follows.

When p = 0 all methods tend to perform well, though the coverage of the BT and QS intervals tends
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to slightly understate the true levels for @ and @. In contrast, the MBB intervals achieve almost correct
coverage for 0, with slight overstatement for @. When p = 0, the scores are a martingale difference
sequence, and this is reflected in the bandwidth/block size parameter. When p # 0, major findings
are: (i) the OP intervals fail dramatically for 7, exhibiting severe undercoverage which worsens as p
increases; (ii) the coverages of BT and QS for 7 are also well below the 95% nominal level, but we see
clear improvement as n increases; (iii) the MBB outperforms the HAC methods; and (iv) the average

chosen bandwidth/block size exceeds one, and tends to increase with n, as we expect.

5. Conclusion

The results presented here justify routine use of MBB methods for the QMLE in a general context.
Further results in our setting establishing higher order improvements for the MBB (with recentering)

are a logical next step and a promising subject for future work.
Appendix A: Assumptions and Proofs for Section 2

Throughout Appendix A, P is the probability measure governing the behavior of the original time series
while P , denotes the probability measure induced by the bootstrap. For any bootstrap statistic Ty, (-, w)
we write T,y (-,w) — 0 prob— P, ,, a.s. — P if for any € > 0 there exists ' € F with P (F') = 1 such that
for all w in F), limy, oo Py, [N 2 [Ty (A, w)| > €] = 0. We write Ty (-,w) — 0 prob— Py ,, prob— P if for any
e > 0 and for any § > 0, limy, o0 P [w : Py, [X: [Ty (A, w)| > €] > 6] = 0. Using a subsequence argument
(e.g. Billingsley, 1995, Theorem 20.5), T}y (-,w) — 0 prob — P, ,, prob — P is equivalent to having that
for any subsequence {n'} there exists a further subsequence {n"} such that T}, (-,w) — 0 prob — Py, ,
a.s. — P. For any distribution D we write 7% (-, w) =% D prob — P when for every subsequence there
exists a further subsequence for which weak convergence under P , takes place almost surely —P.

Assumption A is the doubly indexed counterpart of the regularity conditions used by GW.

Assumption A

A.1: Let (2, F, P) be a complete probability space. The observed data are a realization of a stochastic
process {Xm Q0 —RL1eN,nte N} , with Xy (w) = Wi (0., Vi (0), Vi (W), Vi1 (w) .. 0),
Vi: Q=R veN, and Wy : x2___RY — R such that X,,; is measurable for all n, t.

T=—00

A.2: The functions f,; : R¥ x © — RT are such that f,; (-, 0) is measurable for each § € ©, a compact
subset of RP, p € N, and fn¢ (X%,") : © — R is continuous on © a.s. — P, n,t =1,2,... .

A.3: (i) 0y is identifiably unique with respect to E (Ly (X}, 6)). (ii) 07, is interior to © uniformly in n.
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A.5: (i){log ft (Xﬁ,@)} is Lipschitz continuous on ©, i.e. ‘log Tt (Xﬁ,@) — log fnt (Xfl,ﬁo)’ < Ly
0 — 6°] a.s. — P, V6,6° € ©, where sup,, {n"' Y1 E (L)} = O(1). (ii) {V>log fne (X}, 0)} is

Lipschitz continuous on ©.

A.6: For some r > 2: (i){log fut (X%,0)} is r—dominated on © uniformly in n,t, ie. there exists
Dy : R® — R such that ’10g fnt (Xfw 9)’ < Dy; for all 6 in © and D,; is measurable such that
| Dpel, < A < oo for all n,t. (i) {Vlog fne (X£,0)} is r-dominated on © uniformly in n,¢. (iii)
{V2 log fnt (Xf“ 0)} is r-dominated on © uniformly in n, t.

A.7: {V;} is an a-mixing sequence of size —-2, with r > 2.

A.8: The elements of (i) {log fnt (X%,0)} are NED on {V;} of size —3; (ii) {Vlog fn: (X!,0)} are
NED on {V;} of size —1 uniformly on (O, p), where p is any convenient norm on RP, and (iii)

{V?log fn: (X%,0)} are NED on {V;} of size —% uniformly on (0, p).

A.9: (i) {B,‘; = var (n_% Sy Vog fre (XE, 92)) } is uniformly positive definite.
(i) {49 =E (nt >0, V210g fui (X},67))} is uniformly nonsingular.

n»'n

The usefulness of the following lemmas extends beyond the QMLE as they apply to prove the validity

of bootstrap methods for other extremum estimators, such as GMM.

Lemma A.1 (Identifiable uniqueness of 0,,). Let (Q, F, P) be a complete probability space and let
© be a compact subset of RP, p € N. Let {Qn X0 — @} be a sequence of random functions
continuous on © a.s. — P, and let 0, = argmaxe Qn (-,0) a.s. — P. If supgee |Qn (-, 0) -Q, @) —0
a.s.-P and if {Q, : © — R} has identifiably unique maximizers {63} on ©, then {9n} is identifiably
unique on © with respect to {Qn} a.s. — P, i.e. there exists F' € F, P (F) = 1, such that given any ¢ > 0

and some 6 (¢) > 0, for each w € F, there exists N (w,e) < oo such that

sup max Qp (w,0) —Qy <w, 9n> < =6(e) <0,
n>N(w,e) 'r)C(Gn,s
where 75, <9n,5> is the compact complement of 7 (9n,5> = {9 €0: }9—% < 5}. If instead

SUPgco }Qn (,0) - Q, (9)‘ — 0 prob — P then for any subsequence {9n/} of {9n}, there exists a further
subsequence {én”} such that {énu} is identifiably unique with respect to {Qn»} a.s. — P.

Lemma A.2 (Consistency of 92) Let (Q,F, P) be a complete probability space and let © be a com-
pact subset of RP, p € N. Let {Qn %0 — @} be such that (al) Q, (-,0) : @ — R is measurable-F for
each 0 € ©; (a2) Qy, (w,) : © — R is continuous on © a.s. — P. Let ,, = argmaxe Q (*,0) a.s. — P be
measurable and assume there exists {@n 10 — R} with identifiably unique maximizers {69} such that

(a3) supgeg |@n (+,0) — Q,, (§)| — 0 prob — P. Then,
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(A) 0, — 0, — 0 prob — P.

Let (A,G) be a measurable space, and for each w € Q and n € N let (A,Q,P;L"’w) be a complete
probability space. Let {Q} : A x @ x © — R} be such that (b1) Q}, (-,w,0) : A — R is measurable-G
for each (w,0) in Q x ©; (b2) Q% (\,w,-) : © — R is continuous on O a.s. — P (i.e. for all X and almost
all w). Let {92 A XQ— @} be such that for each w € €, 9;(,w) : A — O is measurable-G and

0, (-,w) = argmaxe @}, (-,w,0) a.s. — P. Assume further that (b3) supgeg |@5, (+;w,0) — Qn (w,0)] — 0
prob— Py ,, prob — P. Then,

(B) 92 (,w)— 0, (w) — 0, prob— P;jw, prob — P.

Lemma A.3 (Asymptotic Normality of @Z) Let (Q, F, P) be a complete probability space and let
© be a compact subset of RP, p € N. Let {Qn : Q2 x © — R} be such that (al) Qn (-,0) : @ — R is
measurable-F for each 0 € ©; (a2) Q, (w,-) : © — R is continuously differentiable of order 2 on ©
a.s.— P. Let 0,, = argmaxe Qy (-,0) a.s. — P be measurable such that 0,, — 0% — 0 prob— P, where {62}
is interior to © uniformly in n. Suppose there exists a nonstochastic sequence of p x p matrices { B9}
that is O (1) and uniformly positive definite such that (a3) 33_1/2\/EVQ” (-,07) = N (0,1p). Suppose
further that there exists a sequence {Ay : © — RP*P} such that {A,} is continuous on © uniformly in
n, and (ad) supgeo ‘V2Qn (-,0) — An (0)| — 0 prob — P, where {AS = A, (69)} is O (1) and uniformly
nonsingular. Then

(A) B Y240 /n (én . 9;;) = N(0,1,).

Let (A,G) be a measurable space, and for each w € Q and n € N, let (A,Q,Pﬁ;w) be a complete
probability space. Let {Qf, : A x @ x © — R} be such that (b1) Q, (-,w,0) : A — R is measurable-
G for each (w,0) in Q x ©; (b2) Qi (\,w,) : © — R is continuously differentiable of order 2 on ©
a.s. — P. For eachn =1,2,..., let 9:; (-,w) = argmaxg Q} (-,w,0) a.s. — P be measurable such that
0, (,w) =0y (w) — 0, prob— Py ,, prob— P. Assume further that (b3) By ? NS (~, w,0, (w)) =P
N (0,1p) in prob — P; (b4) supycg ’V2Q;§ (,w,0) — V2Q, (w, 0)| — 0 prob— Py, prob— P. Then

(B) B Y240 /n (é; (,w) — On (w)) =450 N(0,1,) prob— P.

Lemma A.4 (Bootstrap Uniform WLLN). Let {q}, (-,w,0)} be a MBB resample of {qnt (w, )} and
assume: (a) For each € © C RP, © a compact set, n= 1> " | (¢, (-,w,0) — gnt (w,0)) — 0, prob —
Py, prob— P; and (b) ¥0,0° € ©, |qni (,0) — qnt (+,0°)] < Lt |0 — 0°| a.s. — P, where

sup, {n"* >0 E(Lnt)} = O(1). Then, if {, = 0 (n), for any § > 0 and £ > 0,

>6)>§]:0.

n

Z (Q:Lt ('7"‘}7 9) — Q4nt (wa 9))

t=1

lim P

n—oo

* -1
P | supn
0cO
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Lemma A.5 (Bootstrap Pointwise WLLN). For some r > 2, let {q,, : 2 x © — R} be such that
for all n,t, there exists Dy : @ — R with |gne (+,6)] < Dy for all § € © and || Dy, < A < oo. For each
0 €0 let {¢, (-,w,0)} be a MBB resample of {qnt (w,8)}. If £,, = o(n), then for any 6 > 0, £ > 0, and

for each 0 € O,
P, <n—1 > 5) > g] = 0.

Lemma A.6. Let {Q,:Q x © — R} be a sequence of functions continuous on © a.s. — P and let

0,:Q— 0O} be such that 0, —0° — 0 prob — P. Suppose supgce |Qn (,0) — Q,, (0)| — 0 prob — P
n €0

n

Z (q;t ('7("}7 0) — dnt (wv 9))

t=1

lim P

n—oo

where {@n 10— R} is continuous on © uniformly in n. Then,

(A) Qu (400 () = Qu (82) — 0 prob— P.

For each w € Q, let (A, G, Px ) be a complete probability space. If 0, (-,w) — by (w) — 0 prob— P
prob— P and supyce |Q;, (+,w,0) — Qn (w,0)| — 0 prob— Py, prob— P, then

(B) Qr <-,w, 92 (~,w)> —Qn (w, On, (w)) — 0 prob— Py, prob— P.

7”’

Proof of Theorem 2.1. We apply Lemma A.2 with Q,, (-,0) = n" 2>} 1 gnt (-,0) and Q} (-, w,0) =
nY 0 @y (+w, 8), where gt (+,0) = log frr (XL (), 0), and {g}, (-,w,6)} is the MBB resample. Con-
ditions (al)-(a3) are readily verified under Assumption A. Assumption A.2. implies (bl) and (b2). To
verify (b3) apply Lemmas A.4 and A.5, noting that ¢, = o (n). B

Proof of Theorem 2.2. We apply Lemma A.3 with the same choices of @, (-,0) and Q (-,w,0)
as in Theorem 2.1. The result follows then by Polya’s theorem (e.g. Serfling, 1980, p. 20) since
C°% = A%7'B°A° 1 is O(1) and the normal distribution is everywhere continuous. (al)-(a4) can be
verified as in Theorem 5.7 of GW. (b1l) and (b2) follow from A.2. Lemmas A.4 and A.5 imply (b4) given
A.5(ii) and A.6(iii) and the conditions on ¢,. Lastly, we verify (b3). We have that (for any n and any w)

n~1/2 Zn: sk, (~, w, 9n> — Y2 z”: Snt <w, 9n> =&in T &on + &3ns
t=1 t=1

where €1, (+,w) = 172 S0 sk (50,02) = st (€,62)) 3 €00 (@) = = Y2 50 (s (0,00) = s (0,62)) 5
and &, (w) =n V230 (s;ﬁbt <~,w, 9n> — sk (-,w,@%)) . It suffices to show that for any subsequence
n’ there exists a further subsequence n” such that a.s. — P (i) 32;1/251,”// (,w) :>dp7*l”aw N (0,1p), and
(i) Eonrr (W) + &g (-,w) — 0 prob— Py, . The result then follows by Lemma 4.7 of White (2000), since
n/—1 Zgl Spirg (w,@nu) = 0 for all n” sufficiently large, a.s. — P, by A.3(ii) and the F.O.C. for 0.
Theorem 2.2 of Gongalves and White (2001) implies (i) under Assumption A strengthened by 2.1 and
2.2. To prove (ii), let F' = Fy N Fy, with F; the set of w on which (i) holds, and F, the set on which
the remaining conditions of Lemma A.3 hold. Note that P (F') = 1. For fixed w in F, two mean value

expansions yield
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Eamr (@) + o (50) = G () VI (B (@) = 50 )

Cor (hw) =015 (V8% (- w, 000 ) — V'sport (w, 0pr) ), with 0, and 6, (possibly different) mean
values lying between 0,» and 0y,. Lemma A.6 implies (,» (-,w) — 0 prob — P%,  for all w € F,

given the uniform convergence of {V2Q%, (-,w,0) — V2Qur (w,0)} and {V2Qu (w,0) — Ay (6)}, and
the convergences of 8,,» — 6%, and 6, — 6%, to zero. Since v/n” <én” (w) — 9;%) =0 (1) on F, it follows
that &5, (W) + &3 (,w) — 0 prob— P, forwe F, P(F)=1. B

Proof of Corollary 2.1. We can show \/n (é;n — §n> —v/n <é; — @n> — 0 prob— Py ,, prob— P, given
the definition of Qin and the fact that A* — A, — 0 prob — P}, prob— P, by Lemma A.6. B

Proof of Lemma A.1. Let ' = {w 20 (w) — 00 — O} N{w : supg |Qn (w,0) — Q, (0)| — 0} . By The-
orem 3.4 of White (1994), P (F) = 1. Fix &’ > 0 and w in F. Then, there exists Ny (w,£’) < oo such that
O, (w) — 0°
ists N1 (¢') < coand &' (¢') > 0 such that sup,,> y, &) [maxye(ge o) @y, (0) — @, (67)] = =6 (¢') < 0, where
n(05,") = {0 €©:|0—0% <c'}. By Corollary 3.8 of White (1994), there exists Ny (w, 8’ (¢)) < o0
such that for all n > Ny (w, 8 (¢')) ,|Qn <w, On, (w)) -Q, (02 < #. Also, for all n > N (w, 8 (¢)),
max,e(ge o1y Qn (w0, 0) < maxye(ge o) Qp (0)+EL. Lot N (w,¢') = max { Ny (w,) , N1 ('), Na (0,8 () }.

for all n > Ny (w,€'),

< ¢’. Because {02} is identifiably unique on ©, given &’ > 0 there ex-

Hence
. — o ()
sup max Qn (w,0) — Qn (w, 0 (w)) < sup max Qn (w,0) —Q,, (09)+
n>N(w,e’) 7°(8n (w),2¢") n>N(w,e’) nc(69,¢") 4

! / ! /
< sup { max @n(é)—an(eg)_F%_(S)} §—6 (6)
n>N(w,e’) Ln°(07,5¢") 4 9

Set ¢ = 2¢/ and 6(¢) = % > 0 to obtain the result for all w in F' and P (F) = 1. If instead
supg |Qn (w,0) — @, (A)| — 0 prob— P, then for any {n} there exists {n"} such that

supg |Qnr (w,0) — @, (0)] = o(1) and Onr (w) — 0%, = 0(1) a.s. — P. The result thus holds for {n"}
as.—P. R

Proof of Lemma A.2. (A) follows by Theorem 3.4 of White (1994) under (al)-(a3). To prove (B),
note that for any subsequence {n'}, by Lemma A.1 there exists {n”} such that {971”} is identifiably
unique a.s. — P, given (al)-(a3). Now apply Theorem 3.4 of White (1994). B

Proof of Lemma A.3. (A) follows by White’s (1994) Theorem 6.2 under (al)-(a4). To prove (B),
it suffices to show that for any subsequence {n’} there exists a further subsequence {n”} such that
BZ;l/zAZ,,\/W <é;// (-, w) — O (w)) :>dp7*l”ww N(0,1,), a.s. — P. This follows by applying White’s
(1994) Theorem 6.2 to an appropriately chosen subsequence, given w in § such that P (F)=1. B
Proof of Lemma A.4. The proof closely follows that of Lemma 8 of Hall and Horowitz (1996).
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Proof of Lemma A.5. Fix 6 € ©, and write n ™2 31, (g%, (0) — qnt (0)) = Q1n + Qan, with

n

Qun=n"3" (g% (0) — B* (34 (9))), and Qu, = E° <n S g <9>> > g (6),
t=1 t=1

t=1
where we omit w to conserve space. Qan, — 0 prob— P since E* (™1 Y"1, ¢k, (0)) =n 130 qne (0) +
Op (%) (cf. Lemma A.1 of Fitzenberger (1997)) and % — 0. By Chebyshev’s inequality, for any § > 0,
Py, (1Q,] > 0) < 6%71*1 var* (Y230 ¢, (0)) , where var* (n=Y23°1 | g%, (0)) has a closed form
expression involving products of gn (6) and ¢y 4+ (0) (cf. Gongalves and White (2001)). Under the
domination condition on {gn: (f)} and the properties of the MBB, repeated application of Minkowski
and Holder’s inequalities yields Hvar* (n_l/ 234 (0)) r = O (¢) for some r > 2. Thus, by Markov’s

inequality, P [P}, (|Qn] > 6) > &) =0 <(£)T/2> — 0 given { =o0(n). N

n

Proof of Lemma A.6. (A) holds by White (1994, Corollary 3.8). (B) By uniform continuity of @Q,, on
©, given ¢ > 0 there exists 6 (¢) > 0 such that ’Qn ) — Qn (9n) >6(e). So

plrz (05 () - 00 ()

> ¢/3 implies ’9 —0,

>) > ] <2 | B (509103 (0 0) — Qu )] > ¢/3) > /3]

+P [P;f’w (2 U [Qn (w,0) ~ Qn (0)] > 5/3) > 5/3] +P | Pry (|0~ 0

> 5(6)) >5/3} =& +8+Es,

with obvious definitions. By uniform convergence of Q. (-,w,0) — @, (w, ) to zero, & — 0. Similarly, by
uniform convergence of Qy, (-, ) —Qy (A) to zero, & — Osince &, < P (2supg |Qn (w,0) — Qn (0)] > /3) .
Finally, £3 — 0 because @Z (-,w) = O (W) — 0 prob — Py, prob—P. 1R

Appendix B: Proofs for Section 3

Throughout Appendix B, C denotes a generic constant. The dependence of the bootstrap variables on

w and on n will also be omitted as it is not relevant for the arguments made here.

Lemma B.1 (Studentization of the sample mean). Let {X,;} satisfy Assumptions 2.1" and 2.2 of
Gongalves and White (2001), where Assumption 2.2' is strengthened by
A2.2" Sy — P =0 <€;1_6/2) for some 6 such that 0 < 6§ < 2.

A %2

Then, if¢,, — oo with{,, = o (n1/2) we have that for any e > 0, lim, o P (P* (|65, —

0, where 62 = var* (/nX};) and 672 =k~ 35, <€_1/2 S (X — X,’fb)>2.

n —

62| >e) >e) =

Lemma B.2. Let { Xy} and {Z} satisty || Xnillo,s < A and [ Zntlly s <A t=1,...,n,n=1,2,...,
for any 0 < 6 <2 and some A < co. Let k =n/l. If {Ii}i-“:l are 1.i.d. uniform on {0,...,n — ¢} and if

> nl/za) > E) =0.

b, — oo and £, = o (nl/z), then for any € > 0,

k ¢ ¢
JLIEOP (P* ( kL Zfl ZXn,Ii—i-t Z Zn, I+t
-1 t=1 =1
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Proof of Theorem 3.1. By GW’s Theorem 7.5 W, = Xq2 under H,. Next, we prove W =dp
X 2 prob — P. A mean value expansion of 7, (92) around 9n yields /n <rn <92) — Ty (9n>> =dp+

N (0, R2C°R®") prob— P, implying n (7% — #,,)' (ROCOR?) ™! (7% — #,,) =P+ X2 prob— P. Thus, it suffices
to prove: (i) R — R% — 0 prob — P*, prob — P ; (ii) A* — A% — 0 prob — P*, prob — P ; and (iii)
B* — B% — 0 prob — P*, prob — P. (i) follows by continuity of 7, on © (uniformly in n) and because
9:; — 07 — 0 prob — P*, prob — P by Theorem 2.1; similarly, by Theorem 2.1 and Lemma A.6, we have

A;“L — A,, — 0 prob— P*, prob— P, which implies (i) since A, — A2 — 0 prob— P. To prove (iii), consider

k ¢ ¢ !
Br=k"Y <£—1/2 S (smgie (X57,09) — s;;”)> (ﬂ‘” 2y (snee (Xp1,05) - 8;2”))
=1 t=1 t=1

k ¢ J4
(Bl) = k_l Z g—l Z Sn,I;+t (X£i+t7 9(7)1,) Z 8;7,711-—&-26 (XTILi+t7 00) (3 :LO :Lo,a
; = t=1
where 57° = n 1Zt 1 Sne (07). By Lemma B.1 B*O By, — 0, prob — P*,prob — P, where By, =

var* (n=Y2 30 sk ( ) By Gongalves and White’s (2001) Corollary 2.1, BS ; — By — 0, prob — P
implying B;;O — B2 — 0, prob — P*,prob — P. Thus, it suffices that B;"L — B;;O — O, prob — P* prob — P.
From (3.1) and (B.1) we can Write B* — B*° = Dy 4 Dy, where

= 125_ [Z%IH( RN A*)anl-‘rt( ,9;)
—~ Z S 1t (X5, 07) Z Smore (Xn T, 92)]
t=1 t=1

and Dy = (5%°5*. Note that 5% = BSY/2By Y2 (5% — 59) + BSY2BY %50 = By + E», with 52 =
n~tS0 82, We have Fy = Op» (nfl/z) prob — P by Gongalves and White’s (2001) Theorem 2.2, and
Ey, = Op (nil/z) by the CLT for {s2,}. Thus, Dy — 0 prob — P*,prob — P. To show that D; — 0
prob — P*,prob — P we take a mean value expansion about 07 of a typical element of D; and apply
Lemma B.2 twice with X,,; = supgeg }%sntﬂ (Xfl, 9)’ and Z,; = supgcg ’snt,j (Xfl, 0) } |

Proof of Theorem 3.2. The proof follows GW (Theorem 7.9, p. 128) using Lemmas B.1 and B.2.
Proof of Lemma B.1. The proof consists of two steps: (1) show 572 — &i — 0 prob — P*,prob — P,
where 532 = k=132 | <£*1/2 S (X — X n))2, with X, = B* (X3); (2) show 672 — 572 — 0
prob — P* prob — P. Let A; = (~1/2 Zt 1( it — X;"L) and A; = ¢~1/2 thl( it —Xa,n) so that
62 = |t Zi_l A2 and 632 = k™ Zi:l A% . (1) By two applications of Markov’s inequality it suffices
to show E (E*|6;2 — 62 p) = o(1) for some p > 1. We take p = 1+ 6/2 with 0 < 6 < 2. Since

E* (632) = E* (A7) = (n—(+ )7ty OZA2 62 (cf. Kiinsch (1989, Theorems 3.1 and 3.4)), we have

k p/2
k! Z (Ai - E" (A%l))
=1

k
. 2
Z (Ai - K (A%l)) ’
=1

p

E* |53 — 62" = E <k PCE*
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by Burkholder’s inequality, because { A7 — E* (A7 )} are (conditionally) i.i.d. zero mean. For 1 <p <2,
x>0 and y > 0, the inequality (z +y)"/? < 2?/? + y?/? implies E* |S°F (A7 — E* (A%l))2’p/2
kE*|A? — E* (A3)" so that E*|6;2—62|" < 2PCk~~DE*|A;*P. Thus, it suffices that
k~r-DE <E* ]A11|2p) =o0(1). Some algebra yields E <E* ]A[1|2p) < C(F1 + F» + F3), where

<

n—t 2p n—_{ L 2p
Fi=(m—(+1)"' S (7E nivt| | F=0— L+ D)7 Py (i — Fan)|
=0 =0 t=1

and F3 = (n— €+ 1) 'Sl PE (‘EZCW}%), with Zp = Xpt — fiyy, and for any {Vni} Van =
(n—0+ 1)71 Z?’;OZ 1 Zle Vijitt = 9 pq OVt With apy = m min {¢,¢,n —t+ 1}. Under As-
sumption 2.1, E ’Zle Zn’i+t’2p < CrP (cf. Gongalves and White (2001), p.18 for a similar argument),
implying k=~ ®-VF, = O ((ﬁ)p_1> = 0(1), and similarly for k=D Fy. If p,, = p for all t, Fy = 0
because fi,, = Y 41 Qnept = fr as Y~ e = 1. Otherwise, by A.2.2', F> = 0(1), so k=D =0(1).
For (2), note Aj, = /¢ (X1, — X)), where X7, = ¢! S Xi4e, and A; = V1 (X1, — Xan), implying
62— =—L (X — Xa,n)z = Op+ (£) — 0 prob — P, since v/n (X} — Xan) =% N (0,1) prob— P
by Theorem 2.2 of Gongalves and White (2001). W

Proof of Lemma B.2. Let Sl = Zf 1 Xn,i+t and 21- = Zle Zn,i+t-By Markov’s inequality, for
some 1 < p < 2, it suffices to show n P/2E* (‘k 1 Z 1 1S}L’Ii512l’]i‘p> —0prob— P. Let p=1+46/2,
0 < 6 <2, and note E* (’k’ ISk IS%JJZ,SZ’IZ,’IJ) < C(Fy + F), with

p
= E* ( k_l Zg_l (S}L,Iis’?b,[i - E* (571%11'57%711')) ) and F2
=1
571,”1152

By the Burkholder and c.-inequalities F1 < CrrE—(p=1) p* S}L’hSﬁ’h ‘p < CUPE* il
{Sh},ﬁ,SfLJ — E* <S%,Iisi,li>} are i.i.d.zero mean, and k~®~1 <1 for p > 1. Similarly, F, <
Cl PR ’Sl Sn I ‘p. By the Cauchy-Schwarz and Minkowski inequalities, F (E* st N S2 I p) <Cer.

Thus, Fy + Fy = Op (f7), and so n P2 (F} + Fy)p = O ((L>p> =0, (1), since £ = o (n¥/2). M

ni/2

p

1Z€ lE* Sl nI)

, since
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