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Abstract

We prove the first order asymptotic validity of the stationary bootstrap of Politis and Romano
(1994) under the existence of only slightly more than second moments. Our results improve upon
previous results in the literature, which assumed finite sixth moments.
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1. Introduction

The consistency of the stationary bootstrap (SB) of Politis and Romano (1994) under general depen-
dence conditions has recently been established by Gongalves and White (GW) (2002). Nevertheless,
current results require the restrictive assumption of finite sixth moments, thus limiting the applicability
of this bootstrap method.

The main purpose of this note is to establish the first-order asymptotic validity of the SB under
the existence of only slightly more than second moments. As in GW (2002), the data are assumed
to satisfy a NED condition, which includes the more restrictive mixing assumption as a special case.
We consider bootstrap variance estimation as well as bootstrap distribution estimation. Our results
broaden considerably the scope for application of the SB in economics and finance, where the existence
of higher order moments is often a concern.

Although we focus on the SB, similar results hold for the moving blocks bootstrap (MBB) of Kiinsch
(1989) and Liu and Singh (1992). Lahiri (1999) shows that the MBB variance estimator has a smaller
asymptotic mean squared error than the SB variance estimator, which may favour the use of the MBB
in applications. Nevertheless, as remarked by Politis and Romano (1994), the SB may be less sensitive
to the choice of the (average) block length than the MBB is to the choice of the (fixed) block length.

For variance estimation, the consistency of the MBB under weak moment conditions follows straigth-
forwardly by an application of De Jong and Davidson’s (2000a) consistency results for kernel variance
estimators under minimal conditions. This is a consequence of the fact that the MBB variance estimator
for the sample mean is equal to a Bartlett kernel variance estimator, up to terms of order Op (@2 / n)7

where / is the block length. These terms vanish in probability under the condition that % — 0. In this
case, the consistency of the MBB variance estimator holds even under minimal dependence conditions
(cf. De Jong and Davidson, 2000a). The consistency of the MBB distribution estimator follows as a
corollary, under the same weak moment conditions but stronger size conditions on the NED coefficients.
To conserve space and because the SB is harder to analyse, in this note we will only provide formal
results for the SB.

2. Main Results
The SB variance estimator is given by

n n—1 n—r
6721 = TL71 Z (Xmg — Xn)Z + 2 Z b’n, (7') n_l Z (Xnt - X*n) (Xn,t—H' - Xn) s
t=1 =1 t=1

where b, (1) = (1 - Z) (1 —p,)" + Z(1 —pp)"" ", with p, a positive sequence such that p, — 0 and
2
np2 — oo.

. . P )
Our first goal is to show that 62 —o2 = 0, where 02 = Var (n 125~ Xyt) , under weaker moment

conditions than previously considered in the literature, but otherwise general dependence conditions.
In particular, we assume that { X, n,t = 1,2,...} is Ly—near epoch dependent (Ly—NED) on a mixing
Xot = BLF (Xaa)

process {V;}, i.e. || Xpell, < 0o and vy = supn,t‘ tends to zero as k — oo at an

appropriate rate. Here and in what follows, || X||, = (E |Xz-|q)1/ 7 for ¢ > 1 denotes the L, -norm of a
random variable X. Similarly, we let Eﬁ,’: ()= E (|.7-"ff,’:) , where fgj,f =0 (Vieg,..., Viak) is the
o-field generated by Vi_g,...,Vieg. In particular, if vy = O (k7%7¢) for some ¢ > 0 we say {Xp:} is
Ly—NED (on {V;} ) of size —a. The sequence {V;} is assumed to be strong mixing, where we define the
strong or a-mixing coefficients as usual, i.c. oy = sup,, supyeFm BEFX, .} |P(ANB)—P(A)P(B)|,
and we require o, — 0 as k — oo at an appropriate rate.



We make the following assumption:

Assumption 1
a) For some r > 2 and some 0 > 0, || Xp4l|, 5 < A < oo foralln,t=12,....

b) {Xn:} is Ly—NED on {V;} with NED coefficients vy, of size —1; {V;} is an a—mixing sequence with

e T
ay, of size —-15.

¢) {py: = E (X)) satisfies Assumption 2.2 of GW (2002).

Assumption 1 generalizes Assumption 2.1 of GW (2002) in two dimensions. First, Assumption
1.a) requires slightly more than two finite moments whereas Assumption 2.1.a) of GW (2002) requires

slightly more than six moments. Second, Assumption 1.b) allows for more dependence as it requires
2(r—1)

v, =0 (k_l_s) and o = O (k_ﬁﬂj , as opposed to vy, = O <k_ T—2 ) and o, = O (k_r%) in

GW (2002). While our size conditions on v; do not match the best possible dependence conditions
for consistency of kernel variance estimators (cf. De Jong and Davidson (2000a)), they are not too
much stronger. Indeed, De Jong and Davidson (2000a) require that v be of size —1/2 as opposed to
vy of size —1, with the same mixing size conditions as Assumption 1.b). As remarked by GW (2002),
Assumption 1.c) is satisfied if p,,, = p for all ¢, n.

Our main result is as follows:

Theorem 1. Assume {X,;} satisfies Assumption 1. Then, if p,, — 0 and np2 — oo,

We can use Theorem 1 to show the consistency of the stationary bootstrap distribution of \/n (X ,— X'n)
for the distribution of v/n (X, — fi,,). As in GW (2002), we require {Xp;} to satisfy a slightly stronger
dependence condition than Assumption 1.b), namely we impose:

Assumption 1.b’) For ¢ > 0 chosen as in Assumption 1.a), {X,;} is Lo s—NED on {V;} with NED
(246)(r+9)
r—2 :

coefficients vy of size —1; {V;} is an a—mixing sequence with oy, of size —
Theorem 2. Assume {X,,,} satisfies Assumption 1 strengthened by Assumption 1.b'). Then, if p, — 0
and np2 — oo, for any ¢ > 0,

P{i‘gg\f’* Vi (X2 = %) <] = P [Vt (R - i) < 2| >s}—>0,

where ji,, =n~' Y7 | ju,, and P* is the probability measure induced by the bootstrap, conditional on
{Xnt}?:l :

Theorem 2 justifies using the SB distribution to build asymptotically valid confidence intervals
for (or test hypotheses about) f,, under the existence of only slightly more than two finite moments.
Possible applications of this result include White (2000) and Hansen (2003), where the SB is used to
compute p-values.



A. Appendix
For the proof of Theorem 1, we will use the following lemmas.
Lemma A.l. Let {Znt,]:t} be an Lo—mixingale of size —1/2 with mixingale constants c,,. Then,
E <manSn (Zgzl Znt>2> =0 (X i) -
Proof. See McLeish (1975), Theorem 1.6. =

Lemma A.2. Let Z,; be such that E (Z,;) = 0 and |Z,:| < C, for all t,n, for some C < oo. If Z,; is
Lo—NED on Vi, an q—mixing process, then for fixed 7 > 0 and all t < s <t+ T,

2
|Cov (Znt Zin 17y Zins Znsir)| < K1 ( Os=t] + I/[%]) + Ky (o ja) + vir ) s
for some finite constants K; and Ky depending on C, but not on n,t,s or 7.

Proof. The proof of this result follows closely that of Lemma A.4 of GW (2002). In particular, their
proof relies on using the Cauchy-Schwartz inequality in several instances as a way to bound moments
of NED arrays. Here, the boundedness of Z,,; allows using Hélder’s inequality with ¢ = co and p = 1
instead of ¢ = p = 2, which explains the improvements on the size conditions on « (-) and v (). Consider
bounding |E ( nth t+7)|- As in Gallant and White (1988, pp. 109-110), we have

T/2 t+[7/2
|E (Znth,t+7')| < ‘E (Zn,H-TE +[[T//Q]]Z )‘ + ‘E (Zn,t+'r (Znt - Et—_’—[[T;Q%ZTLt>> ‘ .
Now, by Holder’s inequality with ¢ = oo and p = 1, we have that

nt — Et+[ 7/2 ]Znt

| Zn t~[r/2]

B (Zuir (Zu— B Z0) )| < 120 si s | ]

t+[7/2
Znt - Et [r/2

<c‘

<
, < Oy,
whereas we can show that
o (Guane B 3)| = [B (a0 ()| < ] i)

< C HE ( n,l/+7|]?ll+[7/2}) Hl < C (6apr /g |1 Znarll o + Vr 1) -

1

Thus, we have that |E (Z,:Z,, +4,)| < C (604[7/4] + 1/[7/4]) Similarly, to bound |E (Zpt Zy t+7 ZnsZn, s4+)]
when t < s <t+ 7, we follow GW’s (2002) argument. For instance, consider bounding the second term
in their expression (Al). By Holder’s inequality with ¢ = oo and p = 1, we have that

. S C‘ ZnthsZn,t—l—T - Ynml,T 9

‘E (Zn,s+'r (ZnthsZn,t—H' - ffnmt‘r)) ‘ S ||Zn,t—|—7'||oo ‘ ZnthsZn,t—l—T - i/nml,T

To bound the last expression, we follow the same argument as in GW (2002) and use the fact that
|Znt| < C for all ¢,n to show that their function B (%, L%) is bounded by 3C?. This implies that

‘ ZnthsZn,t—H' - Ynmtr ) < 3C? (61/[@]) . n

4

Proof of Theorem 1. We show that 52 — o £ 0, where

n n—1 n—r
52 =022 423 b ()Y ZuiZyi, (A1)



with Z,; = X,y — pt,,; @ mean zero triangular array. This implies the result since, under Assumption 1,
we can show that 62 — 52 = op (1), if np, — 0o (see GW’s (2002) proof of their Theorem 2.1. cf. step
2).
For the proof, the following expression for &2 is more convenient than (A.1); it follows by the
properties of b, (-):
n n
Gr=n"" Y Tt Znsbn (It — 5)), (A.2)
t=1 s=1
where b, () can be written as

bo () = fu (5) + 1 (1-2) (A.3)

with
fo(x) = (1= |2|) I (2] <1)exp (=n|z|(~log (1 —pa))) - (A.4)
Following De Jong and Davidson (2000b), we introduce the following functions:
hla,z) = zI(|z|<a)+al(x>a)—al(r<-—a),
gla,z) = (—a)l(z>a)+(x+a)l(z< —a),

and note that © = g (a,z) + h (a,z) . For some K to be defined later, we let
Znt = g (K, Znt) — BEg (K, Zyy), and Zny = b (K, Znt) — Eh (K, Znt)
and note that Z,: = Znt + Znt, since EZy; = 0 by construction. Thus, from (A.2) it follows that

5,21 = _1 ZZ( nt+Z7Lt> (Zns +7ns> bn (\t—s])

t=1 s=1
n n

= 03N ZoiZasba (1t — sl) + 1222 tZnsbn (|t — s))
t=1 s=1 t=1 s=1
AT D Zshu (|t — s)) + IZZZthSb (It = s))
t=1 s=1 t=1 s=1

~2
= A+ Ag + Az + Op-
The proof will proceed in three steps.
In Step 1, we will show that limK_mo limsup,, o E|Apm| =0, for i =1,2,3.

In Step 2, we will show that a — 52 —0in probanlhty7 where 72 = Var ( —1/2 S Zm) .
In Step 3, we will show that limK_mo lim ‘0 —0 ‘ — 0.
Proof of Step 1. First, given (A.3) and (A.4), note that we can write each A;,, 1 =1,2,3, as

3 n n t_ s B
n! ; Z:] Xnthsfn <| n |) ! Z Z Xnthsfn ( | |) = a1y + Aon,

t=1 s=1

where X,r, Wy correspond to different choices of Znt aNnd Jor Z ¢ depending on the particular term A;,.
In particular, X,,; = Wy = Z,: for Ay, while Xy = Z,,; and Wy, = Z,,, for As, and Asy,.
Second, notice that we can write

Alp = nt Z Z XeatWhs fn <|t ; g') (A.5)

t=1 s=1

. +oo o0 n n
= (27T)‘z / / [n_1/2 Z Xnt'wlnt (51752)] [n_1/2 Z Wnsw2ns (fl ) 52)] ¢1 (61) 1/)2 (52) d§1d€27
o0 00 t=1

s=1

5



where 1, (+) and 1, (-) are real-valued, nonnegative absolutely integrable functions given by

Py (&) =267 (1 —cos (&), o (&) =2 (1+ 5%)_1 )

and wipg (-, -) and wape (-, ) are complex-valued nonrandom functions defined as

Wint (&1,&5) = exp (—it (n71¢ + gu&y)) and wons (&1,&,) = exp (it (n7¢ + an8y)) s

with ¢, = —log (1 — p,). Note that |wi,: (£1,&5)| =1 for all n,¢,&; and &, for i = 1,2.

A representation similar to (A.5) holds for ag,, with a choice of different functions Wiy (+,-) and
Wapt (-, -), which nonetheless share the same properties as wipg (-, ) and wapg (-, -) .

To see why equation (A.5) holds, we note that

+o0 +00

exp (—izé,) 2672 (1 — cos (£,)) dé, = (2m) " / exp (i) s (1) dE,

-

(A=lah (sl < 1) = 20)7 [

—00

and

exp (= fal) = (2) ! [

-0

+oo +00

exp (—iz€y) 2 (1+€3) " e, = (2m) ! / exp (—iy) by (£5) déy,

—00
which implies

"+o0 00

exp (—iat,) v (gl)dfl] [(2@“1 [ exp inton (—10g (1= pu))) v €2) s

-0

futo) = |2

o =00

From (A.5), noting that 1, and 1, are absolutely integrable functions, it follows by Fatou’s Lemma,
Fubini’s theorem and the Cauchy-Schwartz inequality that

Bl < 2m)* [

|1 (§)1 42 (€2)] d€1dE».

T
n~1/2 Z Xniwint (£1,&5)
=1

n
TL_I/Z Z W7L$w27LS (617 52)
s=x1

2 2
As we will show next, under Assumption 1, when X,,; = Zm,
n
sup |In"2Y " Xy (€1,&)|| < CFYT(K), (A7)
(€1,82)ER? t=1 9

where C is some generic constant and f (K) is a function defined below such that f (K) — 0 as K — .

When Xnt = Znta

<C. (A.8)
2

sup
(&1,¢5)€ER?

n2N " X (61, €2)
t=1

Similar bounds apply to sup(¢, ¢, )er? Hn'1/2 S8 Wiswans (€1, €9) H2 when W,,;, = Zns and Wy, = Z,s,
respectively. B
For Ai,, where X = Wyt = Zyy, (A.6) and (A.7) imply that

9 +oo 00
Blow| <Cr () @n [ wi@lde [ e @)lde < o (5).

— o

for some €' < co. The second inequality holds by the absolutely integrability of the functions 1, and

1. Similarly, for Ay, and As, where X,; = Z,; and Wy, = Z,,;, we will have that

Ela,| < CfY7 (K).



It follows that for each of the terms A1, A9y, and Asy,, limsup,,_,. E|a1,| can be made arbitrarily small
by choosing K sufficiently large, since f (K) — 0 as K — co. By Markov’s inequality, it follows that,

for this choice of K, ayy, 2 0. The term a2y, can be dealt with in a similar fashion, which completes the
proof that Az, 5 0, for i = 1,2, 3.

To complete the proof of step 1, we will prove (A.7) and (A.8).

We consider first the case in which X,; = Znt and define

gnl/ (£1a£2a K) = Znt (K) Wint (61752) 5

where the dependence of Znt on K is now made explicit.

For all K, Z,; (K) is a Lipschitz function of Z,,, and for all (£,,&,), wint (£1,&,) is a non random
function bounded in absolute value by 1. Thus, we can show that for each (£, &y, K) , Znt (€1, &, K) is
mean-zero, Lo—NED on V; with the same size as Z,; (see Davidson, 1994, Theorem 17.12, p. 269).

‘gnL (fl,fg,K)H < CfYT (K) for some func-
,

tion f (K) — 0 for K — oo (see below). By Corollary 17.6 (i) of Davidson (1994, p. 265), it follows that

for each (£,,&,, K), Zot (£,,&,, K) is an Ly—mixingale of size — min {1 (- l)} = —1, with respect

1 r=2 T
NGRS

Under Assumption 1, we can show that SUP(¢, ¢,)eR?

to mixingale constants ¢, ({1, &3, K), which are uniformly bounded by sup(¢ ¢ jer2
We have that

sup gnt (€1,&9, K)

(&1,¢5)€ER?

st <]

= sup i (61,8 | Zut (K)|| <2119 (K, Zao),

r (51 a§2)€R2

where the first equality holds by definition of Z,; (-,-,-) and the non-randomness of wins (£;,&5), the
second equality holds by the fact |win (€1,85)| = 1, and the last inequality holds by an application of
the Minkowsky and the Jensen inequalities, given that Z, (K) = ¢ (K, Zy:) — E (g9 (K, Zy;)) . By the
definition of g (K, Zp:), we have that

|g (Ka Z’n,t)| S |Z7’LtI(|Znt| > K)|7

which implies that

Elg (K, Zn)|" < E(|Zn|" I(|Zn]" > K")) < sup B (1Zne|" I (| Zne|l > K)) = f (K),
n

where we can show that, under Assumption 1, f (K) can be made arbitrarily small for K sufficiently
large. The argument is the same as in Davidson (1994, p. 190):

SUp B |2y > Sup B (|Zal ™ 1 (|Zyal > K)) > K sup B (|Zl" I (1 Zoe] > K)) = K*f (K)
7 N n
and since under Assumption 1 sup, F |Zt|"™ < A < oo it must be the case that f(K) — 0 (suffi-

ciently fast) as K — oo (otherwise K?f (K) — 00). Thus, the mixingale constants of Z (¢, &y, K)
are such that

gﬂt (6176271{) < sup
(&1,82)€R?

Lemma A.1 now implies that for all (£;,&,, K),

Zut (60,60, K) | <2777 (K).

2

noo 2 7 ~ n )
E <ZZnt (6176271{)) SE <I}1<a;§zznt (517627K)) SCZE;ZU (517§2aK) Scnja/r (K)a
t=1 - t=1 f=1

7



which implies

<CfUr(K),
2

sup
(51 a§2)€R2

<n—1/2 Z Zu (€162, K))

t=1

thus proving (A.7).

To prove (A.8) when &,; = Z s, note that by definition of h for all K, Z; (K ) is a Lipschitz function
of Zpt, and therefore we can show that for each (§1,82, K), Znt (£1,82, K) = Zpy (K) wine (§1,&,) is a
mean-zero, Lo—NED on V; with the same size as Z,;. As before, 2, (€, €5, K) is also an Le—mixingale
of size —1/2 with respect to mixingale constants ¢, (£;,&, K) which are uniformly bounded by
SUDP(¢, £,)cR? H§nt (51,§Q,K)||T. It follows that

nt (61,82, K) < sup Hznt(fhfwK)”,«: sup  |wint (51752)’“77“‘/ (K)Hr
(€1,82)€R? (&1,&5)ER?

2 ||h’ (K7 Znt)”’r < 2 ||Z7lt||7' < 4A1/T7

IN

where in particular the second-to-last inequality holds by the fact that |h (K, Z,:)| < Zn: for all ¢, n,
and the last inequality holds by Assumption 1 (i). Thus, by Lemma A.1,

n 2 n
E (Z Znt (51752,.!()) <C <Z 2y (51,52,1()) <C (16A2/r> n
t=1 t=1

implying that

sup
(&1,¢5)€ER?

<G,
2

<n_1/223nt (517527K)>

t=1

for some C' < oo. )

Proof of Step 2. To show that for all K > 0, 5, — 5> LA 0, note that Z,; = Z,s (K) = h (K, Zpt) —
Eh (K, Zy) is a mean-zero, Lo—NED array on Vt of size —1, where V; is a~mixing of size — T,
r > 2, hence of size —1. Because ‘Znt‘ < K for all t,n, we can rely on Lemma A.2 to show that
Var <§i> =0 ( ) following an argument similar to that of GW (2002, proof of Theorem 2.1).

- ~2
Similarly, we can show that E (Un> — &2 — 0 under Assumption 1.
Proof of Step 3. Given that Z,, = Z,; — Zm, we can write

i - o ) =t S (- 2) (1 2)

t=1 s=1

= YD Bz + iiE(mzm)wzzE(mzm) U387

t=1 s=1 t=1 s=1 t=1 s=1 t=1 s=1
2
= 0n+Bln+BQn+B3n7

where Bi,, Bo, and Bs, can all be made arbitrarily small by using an argument similar to that used in

Step 1. Consider e.g. By,. We have that
n n N
<n—1/2 Z an,> <TL_1/2 Z Zns)
=1 s=1

By, = "1 ZZE< thZTLé> =F
1S 2| =00 (17 (K)).
g=] 2

t=1 s=1

n
TL_]/Z E ng
t=1 2

IN




where the first inequality holds by an application of Cauchy-Schwartz and the last equality holds by
application of mixingale inequalities to Z,; and ng, respectively. In particular, the term O ( fur (K ))
follows by an argument similar to that used to show (A.7) in step 1. Choosing K sufficiently large will
ensure that By, can be made arbitrarily small. The same argument applies to Bg, and Bs, since each
of these contains Z,,; at least once. m

Proof of Theorem 2. The proof follows closely that of GW’s Theorem 2.2. (2002). A CLT for the

sample mean of NED arrays holds under Assumption 1, verifying their condition (C1); (C2) follows by
2446

an argument similar to the proof of Theorem 1. For (C3), it suffices that E ‘Z,ij - Znt‘ < ChHI2,

In particular, Assumption 1.b’) ensures that Z,; is an Lo s—mixingale of size —1, the size requirement

of Hansen’s maximal inequality for L,—mixingales, for p > 2 (cf. Hansen, 1991). =
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