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Abstract

We prove the first order asymptotic validity of the stationary bootstrap of Politis and Romano
(1994) under the existence of only slightly more than second moments. Our results improve upon
previous results in the literature, which assumed finite sixth moments.
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1. Introduction

The consistency of the stationary bootstrap (SB) of Politis and Romano (1994) under general depen-
dence conditions has recently been established by Gongalves and White (GW) (2002). Nevertheless,
current results require the restrictive assumption of finite sixth moments. In this note, we establish
the first-order asymptotic validity of the SB under the existence of only slightly more than second
moments. As in GW (2002), the data are assumed to satisfy a NED condition, which includes the more
restrictive mixing assumption as a special case. We consider bootstrap variance estimation as well as
bootstrap distribution estimation. Our results broaden considerably the scope for application of the SB
in economics and finance, where the existence of higher order moments is often a concern.

Although we focus on the SB, similar results hold for the moving blocks bootstrap (MBB) of Kiinsch
(1989) and Liu and Singh (1992). Lahiri (1999) shows that the MBB variance estimator has a smaller
asymptotic mean squared error than the SB variance estimator, which may favour the use of the MBB
in applications. However, as remarked by Politis and Romano (1994), the SB may be less sensitive to
the choice of the block length than the MBB.

The consistency of the MBB variance estimator under weak moment conditions follows by an ap-
plication of De Jong and Davidson’s (2000) results for kernel variance estimators, given that the MBB
variance estimator for the sample mean is equal to a Bartlett kernel variance estimator, up to terms of
order Op (@2 / n)7 with ¢ the block length. These terms vanish in probability if %2 — 0. In this case, the
consistency of the MBB variance estimator holds even under minimal dependence conditions (cf. De
Jong and Davidson, 2000). The consistency of the MBB distribution estimator follows as a corollary.
To save space and because the SB is harder to analyse, here we only provide formal results for the SB.

2. Main Results

The SB variance estimator is given by
n o n—1 n—T ~ ~
6721 =n"! Z (Xnt — Xn) +2 Z by (7') n=t Z (Xnt - Xn) (Xn,t—l—r - Xn) >
t=1 r=1 t=1

where by, (1) = (1 —Z) (1 —pp)" + Z (1 — p,)" ", with p, such that p, — 0 and np2 — oco.
We assume { X, n,t =1,2,...} is Ly—near epoch dependent (Ly—NED) on a mixing process {V;},
ie. || Xnll, < oo and vy, = sup,, HXnt — Eﬁ;’: (Xnt)H2 — 0as k — co. Here, ||X||q =(FE \X]q)l/q, g>1,

and Eﬁ,’: ()=FE (]]-"ff,’:) , where fgj,f =0 (Vi—k, ..., Visk) is the o-field generated by V;_g, ..., Viik.
If vy = O (k7%¢) for some & > 0 we say {Xp:} is Lo—NED (on {V;}) of size —a. {V;} is assumed to be

strong mixing, with a-mixing coefficients «;, defined as usual such that o — 0 as £ — co. We make
the following assumption:

Assumption 1. a) For some r > 2 and some § > 0, || Xy, s <A <ooforalln,t=1,2,..;b)
{Xnt} is Ly—NED on {V;} with NED coefficients vy, of size —1; {V;} is an a—mixing sequence with «
of size —_T5; and ¢) {u,; = E (Xy;)} satisfies Assumption 2.2 of GW (2002).

We generalize GW’s (2002) assumptions in two dimensions. First, we require slightly more than
two finite moments whereas GW (2002) require slightly more than six moments. Second, we allow for

P 2(r—1)
more dependence as here v, = O (k‘l_g) and o = O (k_m_s), as opposed to v, = O (k_ r=2 )

and oy = O (k:ﬁr%> in GW (2002). While our size conditions on v do not match the best possible

dependence conditions for consistency of kernel variance estimators (cf. De Jong and Davidson (2000)),



they are not too much stronger. Indeed, De Jong and Davidson (2000) require that v, be of size —1/2
as opposed to vy of size —1, with the same mixing size conditions as Assumption 1.b). Assumption 1.c¢)
is satisfied if p,,, = p for all £,n. Our main result is as follows:
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Theorem 1. Assume {X,;} satisfies Assumption 1. Then, if p, — 0 and np? — oo, 62 — 02 LA 0, with

o = Var (02 Xur) -

The consistency of the SB distribution of \/n (X}, — X,,) for the distribution of \/n (X, — f,,) follows
from Theorem 1 under a slightly stronger dependence condition than Assumption 1.b):
Assumption 1.b'). For § > 0 chosen as in Assumption 1.a), {Xp¢} is Lors—NED on {V;} with

(2+0)(r+8)

NED coefficients vy, of size —1; {V;} is an a—mixing sequence with o, of size — =25

Theorem 2. Assume {X,,} satisfies Assumption 1 strengthened by Assumption 1.b'). Then, if p, — 0
and np2 — oo, for any € > 0, P{SupmeR ‘P* [\/ﬁ (X:; — Xn) < x] - P [\/ﬁ (Xn - ﬂn) < 17” > 5} — 0,
where [i,, =n~" > iy Hn: and P* is the probability measure induced by the bootstrap.

Theorem 2 justifies using the SB to build asymptotically valid confidence intervals for (or test
hypotheses about) fi,, under only slightly more than two finite moments. Possible applications of this
result include White (2000) and Hansen (2003), where the SB is used to compute p-values.

A. Appendix

We present only abbreviated versions of the proofs of our results. For a version of this Appendix with
more detailed proofs, see http://www.mapageweb.umontreal.ca/goncals.

Lemma A.1. Let Z,; be such that E(Zy) = 0 and |Zp| < C, for all t,n, for some C < oc.
If Z,: is Lo—NED on V;, an a—mixing process, then for fixed 7 > 0 and all t < s < t + T,

|\Cov (ZntZn pyry ZnsZn,s+r)| < K1 ( [ s=t] + 1/[94;1]> + Ko (a[7/4] + I/[T/4])2, for some finite constants
K1 and K, depending on C, but not on n,t, s or .

Proof. See Lemma A.4 of GW (2002) and note that here the boundedness of Z,; allows using Hélder’s
inequality with ¢ = co and p =1 instead of ¢ = p = 2.
Proof of Theorem 1. We show that 52 — o2 5 0, where

n n

n—1
CH “IZ nt+2zbn _1 ZZILtZTL t+1r = =n ZZZ thébn, |t— 9|) (Al)
=1

t=1 s=1

with Z,; = Xpy — . The result follows since 62 — 52 = op (1), if np, — oo (cf. GW, 2002, p. 1379).
Let h(a,z) =zl (Jz| < a)+al (x> a)~al (v < ~a),g(a,r)=(x—a)l(z>a)+(z+a)](z < ~a),
and note x = g (a,z)+h (a, ) . For some K to be defined later, let Z,,; = g (K, Zy)~Eq (K, Znt) y Zng =
h(K, Zy)~FEh (K, Zy), and note ng Zm—i—Zm since EZ,; = 0. Thus, from (A.1), 5,21 = Ay, + Aoy, +
Asn + 5, where Am =n Ly, thbn (It — s|), Am = 0 LS S ZniZsbn (= 5))
Agp=n~150 ngZnsb (|t 9|) dnd O',n =n" 130, Z ot Zinsby (|t — s|) . The proof follows

in three steps. In Step 1, we show limg oo limsup,,_, o F |Am| = 0 i =1,2,3. In Step 2, we show 7,, —
72 = op (1), where 72 = Var (n 1/2 S m) In Step 3, we show limg_,o limsup,, ‘a 727‘ =0,
Step 1. Flrst since we can write b, (z) = I (n) + fa ( - ‘r) ,  where

n
fo(z) =0 —|z|)I(z] <1)exp(—n|z|(—log (1l —pp))), each A;, can be written as

n! Z Z XntWhas [ <|t ) nt Z Z XntWhs fn ( P = |) = aip + a2np,
t=1 s=1

t=1 s=1
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where Xy = Wi = ZNnt for Ay, while Xy = ZNnt and Wy = Zp; for Ao, and As,. Second, note that
L 00 ptoo o n o n

aip = (27) / / n !/ Z Xnpwine (€1,&) | |0~ / answ‘Zns (€1, €2) | 1 (&1) o (&) dE1dEy,
STe0 oo =1 s=1

(A.2)

where 9, (§) = 251_2 (1—cos(&1)), ¥2(&) = 2 (1 + f%)_l » Wing (§1,&) = exp (—it (”_151 + Qn§2))
and want (§1,&,) = exp (it (n_1§1 + QR§2))7 with gn = —log(1—pp). Note |wint (§1,&5)| = 1 for all
n,t,&; and &5, for 7 = 1,2. A representation similar to (A.2) holds for ao,, with a choice of different
functions wipe (-, -) and Wape (-, -) having the same properties as wip: (¢, +) and wap (-, +) . From (A.2), by
Fatou’s Lemma, Fubini’s theorem and the Cau(:hy-S('hwartz inequality,

n
E|a1n| < (277)“2 // n_l/QZ-Xntwlnt (5]752) /ZZWnaU)Zns 5]752
t=1 2

b1 (€)1 (§2)] dE1dE,.
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Under Assumption 1, when A,; = Znt, we can show
n
sup fL_l/zZXntwlnt (&1,89)| <OV (K), (A4)
(§1:62)€ER? t=1 2

for C' < oo and some function f (K) such that f (K) — 0 as K — oco. When Xy = Zps,

sup
(&1,¢5)€ER?

<C. (A.5)
2

n2N " X (61, €2)
t=1

Similar bounds apply to sup(¢, ¢ jere Hn'1/2 S8 Whswans (€1, &3) H2 when Wy = Zps and W, = Znss

respectively. For Aln, where Xy = Wu = Znt, (A3) and (A.4) imply
Blaw| < C7 (K) (2m) [525 1b (€)]d6s 722 0y (€] &y < CF2)7 (). for € < 0%, given the
absolutely integrability of ¢¥; and 4. A similar result holds for Ay, and As,, implying that for each
Ain, limsup,,_, ., F |a1n| can be made arbitrarily small by choosing K sufficiently large, since f (K) — 0
as K — oo. By Markov’s inequality, for this choice of K, a1, 20, A similar proof applies to ag, and
thus Az, 25 0, for i = 1,2, 3.

Next, we prove (A.4) and (A.5). For (A.4), define Zp; (&1,8&, K) = Zny (K) wint (€1, &), with the
dependence of Znt on K now being explicit. For all K, Znt (K) is a Lipschitz function of Z,;, and
for all (£;,&5), wint (€1,€&5) is a non random function bounded in absolute value by 1. Thus, for each
(£1,¢9,K), Zot (£4,&,, K) is mean-zero, Ly—NED on V; with the same size as Z,; (cf. Davidson, 1994,
Theorem 17.12). But

gnt(fhfwK)H = Ssup |w1nt(§1a€2)|‘
r (§1a§2)€R2

sup
(&1,¢5)€ER?

27Lt (K)Hr = ‘ Znt (K)Hr < 2 ||g (K7 Z’llt)||7‘7

where the second equality holds by |wint (€1,€5)] = 1 and the last inequality holds by the Minkowsky
and the Jensen inequalities. By definition of g (K, Z,;), we have |g (K, Zn)| < |ZntI (| Znt] > K)|,
implying

E |g (Ka Znt)lr <E

(1Zn]" I (|Zn]" > K")) < SUPE(IZntI 1(|Znt| > K)) = [ (K),

where f(K) — 0 as K — oo. Thus, by Davidson’s (1994) Corollary 17.6 (i), for each (£,,£,, K),

Zt (£1,&,, K) is an Ly—mixingale of size —min{L P (l — %) = ~%, with mixingale constants

Zot (€1, 6o, )H < 2f1/" (K). By McLeish’s (1975,
T

Cnt (£1, €9, K) uniformly bounded by SUP(¢, ¢,)eR?



Theorem 1.6) inequality, for all (£, &, )

2 2 T
E<Z§nt(§1a§27K)> <E< nt (€1, €9, K ) Sczg?u(ffhﬁzaf()SCTLJQ/T(K)’
t=1 = t=1

proving (A.4). To prove (A.5), note that as before, Z,; (£;,&,, K) is an Ly—mixingale of size —1/2 with

'M“

constants Cnt (€1, &2, K) uniformly bounded by sup( ¢ )ere H?nt £1,69, K H . But
sup || 2wt (61,60 K|, = sup  Jwine (61,60 | Znt ()|, < 2010 (K, Zug)ll, < 21| Zell, < 4AY7,
(§1,§2)€R2 (51,52)€R2

given Assumption 1.a) and |h (K, Zn:)| < Z,: for all ¢,n, thus implying (A.5) by McLeish’s inequality.
Step 2. For all K > 0, Z; = h (K, Zy) — Eh (K, Zy;) is a mean-zero, Lo—NED array on V; of size —1,
where V; is a—mixing of size — 15, r > 2, hence of size —1. Because ‘th‘ < K for all ¢t,n, we use

Lemma A.1 to show that Var (%i) =0 (W) and proceed as in GW (2002), proof of Theorem 2.1.

Step 3. Since Z,; = Zm—Z,Lt, we have E% = an—i—Bln—l—Bgn—i—Bgn, where By, = n~! Z DY ( nths> ,
By, = n“lz D 1E< nths> and Bs, = n“lz D 1E< nth> can be made arbitrarily
small by an argument similar to Step 1.

Proof of Theorem 2. Follow GW’s (2002) proof of Theorem 2.2., verifying their condition (C2)
as in Theorem 1.
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