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We would like to start by congratulating the authors for having written this important
paper. Prediction intervals are popular in economics and finance (e.g. they are often used
by Central Banks to measure point forecasts uncertainty). The paper provides a unifying
treatment of bootstrap prediction intervals for autoregression models, which are one of the
workhorse models for economic forecasting. Therefore, the methods proposed by the authors
will likely have an important impact on the economics profession.
The paper considers autoregressive models of the form Xt = m (Xt−1, Xt−2, . . . , Xt−p) + εt,

where the errors εt satisfy the following assumption:

ε1, ε2, . . . are i.i.d.
(
0, σ2

)
and εt is independent from {Xt−1, Xt−2, . . .} for all t. (1)

An heteroskedastic version of the model is also considered in the paper, but we will focus
our attention on the homoskedastic version. The functions m (·) and σ (·) are unknown and
potentially nonparametric, thus the models are rather general along this dimension. However,
in economics and many other fields, it is standard to include information from additional
predictors when forecasting a given variable of interest, for example predicting excess stock
returns using the dividend-price ratio. Therefore, our first object of interest is how to extend
the analysis of the paper (assumptions, definitions and the corresponding bootstrap methods)
when extra predictors are used for forecasting future values of the target variableX. Our second
concern is the construction of prediction intervals for X in the presence of estimated predictors.
Factor-augmented prediction models are an important example in economics where estimated
predictors arise. These factors are estimated from large panels of macroeconomic and financial
data and provide a way to include a large set of information when making forecasts. They have
become increasingly common since the work of Stock and Watson (2002).
In the sequel, we will highlight some of the issues that the presence of additional predictors

create for bootstrap prediction intervals. To simplify the exposition, we will focus on the simple
ARX(1) model

Xt = φ1Xt−1 + α′Ft−1 + εt, (2)
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where Ft−1 is an r× 1 vector containing extra predictors, which might be observed or not. We
will focus on h = 1 in the next two sections and reserve our discussion of multi-step forecasting
for Section 3.

1 Observed Ft−1

Extending the analysis of the paper when Ft−1 is observed is relatively straightforward provided
we modify the assumptions and the definitions appropriately to account for the presence of Ft−1.
In particular, suppose we observe data {Xt, Ft : t = 1, . . . , n} and we care about (interval)
prediction of Xn+1 given information at time n. Under the martingale difference assumption
that

E (εt|Xt−1, Xt−2, . . . , Ft−1, Ft−2, . . .) = 0, (3)

the MSE-optimal predictor of Xn+1 at time n is given by

Xn+1|n = E (Xn+1|Xn, Xn−1, . . . , Fn, Fn−1, . . .) = φ1Xn + α′Fn.

Its feasible version is X̂n+1 = φ̂1Xn+α̂′Fn. The prediction errorXn+1−X̂n+1 can be decomposed
as

Xn+1 − X̂n+1 =
(
Xn+1 −Xn+1|n

)
+
(
Xn+1|n − X̂n+1

)
= εn+1 +

[(
φ1 − φ̂1

)
Xn + (α− α̂)′ Fn

]
,

where the first term reflects the innovation error and the second term reflects the estimation
error. These two terms are independent if we strengthen (1) by

Assumption 1. ε1, ε2, . . . are i.i.d.(0, σ2) and εt is independent from {Xt−1, Xt−2, . . . , Ft−1, Ft−2, . . .}
for all t.

Assumption 1 extends the causality assumption in the paper (cf. eq. (1)) in the presence of
extra predictors. This assumption is very strong for economic applications because it requires
the predictors {Fs : s < t} to be independent of εt for each t (this is a much stronger form of
exogeneity as compared to the martingale difference condition (3), which only requires condi-
tional mean independence between the predictors and the error term). We wonder if it could be
possible to relax this assumption and still get valid prediction intervals for Xn+1 in the presence
of extra predictors.
The forward bootstrap method that is advocated in the paper is easily generalized to this

case if we condition on the values of Ft when bootstrapping Xt. Specifically, the two steps of
the method for the ARX(1) model are as follows.

A. For t = 1, . . . , n, let
X∗t = φ̂1X

∗
t−1 + α̂′Ft−1 + ε∗t ,

where X∗0 is a starting value chosen appropriately and {ε∗t : t = 1, . . . , n} is an i.i.d. re-
sample from

{
ε̂t − ε̂ : t = 1, . . . , n

}
. Get the bootstrap analogues of φ̂1 and α̂, φ̂

∗
1 and α̂

∗,
respectively.
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B. Let X∗n = Xn and set

X̂∗n+1 = φ̂
∗
1Xn + α̂∗′Fn

X∗n+1 = φ̂1Xn + α̂′Fn + ε∗n+1,

where ε∗n+1 is an i.i.d. resample from
{
ε̂t − ε̂ : t = 1, . . . , n

}
.

The bootstrap prediction error X∗n+1 − X̂∗n+1 can be decomposed as

X∗n+1 − X̂∗n+1 = ε∗n+1 +
[(
φ̂1 − φ̂

∗
1

)
Xn + (α̂− α̂∗)′ Fn

]
,

where the second term is independent of ε∗n+1, conditionally on the data (as happens in the real
world).
Given the exogeneity assumption on Ft, fixing the value of the extra predictors is entirely

natural. It also automatically implies that the bootstrap point forecast for n+ 1 is conditional
on Fn, which is very important for obtaining interval forecasts that are conditionally valid (as
emphasized in the paper). Generating the observations on X∗t recursively as is done in step A of
the method is also natural as it exploits the parametric structure of the model. However, given
that the main purpose of step A is to replicate the parameter estimation uncertainty in φ̂1 and
α̂, we believe other bootstrap methods could be used. For instance, a fixed-design bootstrap
method that fixes both Xt−1 and Ft−1 when generating X∗t would also allow us to capture
the parameter estimation uncertainty. The asymptotic validity of this method for confidence
intervals in the context of heteroskedastic autoregressive models was proven in Gonçalves and
Kilian (2004, 2007). This work showed that bootstrap confidence intervals based on fixing
the regressors were valid more generally than bootstrap intervals based on the recursive-design
version (in particular, the fixed-design bootstrap allowed for asymmetric forms of conditional
heteroskedasticity such as the popular EGARCH (Exponential Generalized AutoRegressive
Conditional Heteroskedastic) model of Nelson (1991), which were ruled out when proving the
validity of the recursive-design bootstrap).
One of the crucial contributions of the paper is to propose a definition of asymptotic validity

of a bootstrap prediction interval that takes into account the presence of parameter estimation
uncertainty. The usual notion of asymptotic validity (see Definition 2.3) requires that the
prediction interval contains the future observation with a probability that converges to a given
nominal level as the sample size increases. (In the autoregressive context, this probability
should be conditional on the value of the last observed values of the predictors used in forming
the point forecast.) Although this property is fundamental for the validity of a prediction
interval, it is not stringent enough to account for parameter estimation uncertainty. Therefore,
the paper proposes the notion of asymptotic pertinence (cf. Definition 2.4) as an extension of
Definition 2.3 that accounts for this source of variability in the point forecast.
Under Assumption 1, extending the definitions of asymptotic validity and asymptotic per-

tinence to the case of ARX models is straightforward provided we extend the information set
to include both Xn and Fn.

2 Unobserved Ft−1: factor-augmented regressions

Factor-augmented regression models have become very popular for forecasting economic vari-
ables since the seminal paper by Stock and Watson (2002). The main idea is that we think of
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the predictors Ft−1 in equation (2) as being the unobserved common factors underlying a panel
factor model:

Zt = ΛFt + et, t = 1, . . . , n,

where Zt contains N observed variables, Λ is an N × r matrix containing the factor loadings,
and et is the N × 1 vector of idiosyncratic error terms. Point predictions of Xn+1 are then

obtained by a two-step procedure: first, we typically obtain
{
F̃t

}
by applying the method of

principal components to Zt (although some other estimators are available), and then we regress
Xt on Xt−1 and F̃t−1 to obtain the OLS estimators φ̂1 and α̂. The point forecast of Xn+1 is
given by

X̂n+1 = φ̂1Xn + α̂′F̃n.

Since the above factor model is only identified up to rotation, Bai (2003) showed that the
principal component of Ft converges (as N and n go to infinity jointly) to HFt where H is a
matrix that depends on population and sample quantities. This means that α̂ does not converge
to α but to H−1′α. Note however that this lack of identification does not affect the forecast
X̂n+1.
Since

Xn+1 = φ1Xn + α′Fn + εn+1,

the prediction error Xn+1 − X̂n+1 can now be decomposed as

Xn+1 − X̂n+1 = εn+1 +
[(
φ1 − φ̂1

)
Xn + (α− α̂)′ Fn + α̂′

(
Fn − F̃n

)]
.

The second term reflects not only the uncertainty associated with the estimation of φ1 and α,
but also the estimation uncertainty that arises from having to estimate Fn with F̃n.
Recently, Gonçalves, Perron and Djogbenou (2013) proposed bootstrap prediction intervals

for Xn+1 in this context. Their method consists of the following steps:

1. For t = 1, . . . , n, let

(a) X∗t = φ̂1Xt−1 + α̂′F̃t−1 + ε∗t , where {ε∗t : t = 1, . . . , n} is an i.i.d. resample from{
ε̂t − ε̂ : t = 1, . . . , n

}
.

(b) Z∗t = Λ̃F̃t + e∗t , where {e∗t : t = 1, . . . , n} is a resample from {ẽt} obtained indepen-
dently from {ε̂t} . Get the bootstrap analogues of F̃t, F̃ ∗t .

(c) Get φ̂
∗
1 and α̂

∗, the bootstrap analogues of φ̂1 and α̂, respectively, by running an
OLS regression of X∗t on Xt−1 and F̃ ∗t−1.

2. Let X∗n = Xn and set

X̂∗n+1 = φ̂
∗
1Xn + α̂∗′F̃ ∗n

X∗n+1 = φ̂1Xn + α̂′F̃n + ε∗n+1,

where ε∗n+1 is an i.i.d. draw from
{
ε̂t − ε̂ : t = 1, . . . , n

}
.
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It is interesting to note that this algorithm amounts to a form of the forward bootstrap
method proposed by the current paper. Steps A and B are now replaced by Steps 1 and 2. Step
1 is the analogue of Step A in the previous section. The main difference is that it contains an
additional step (step b) that estimates F̃ ∗t−1, which is then used as the estimated predictor for
X∗t (step c). The other difference is that step 1(a) is based on a fixed-design bootstrap instead
of the recursive-design bootstrap discussed in the paper (see our previous comment). Step 2 is
the analogue of Step B. As emphasized in the paper, we redefine the last bootstrap observation
to be equal to Xn when constructing the bootstrap point forecast X̂∗n+1 and the bootstrap new
observation X∗n+1. However, and contrary to the case where Fn is observed, X̂

∗
n+1 now depends

on F̃ ∗n , the estimated version of F̃n that is used to construct X
∗
n+1. This step is meant to capture

the estimation uncertainty in the predictors.
Following previous work by Bai and Ng (2006), who showed the asymptotic validity of

Gaussian prediction intervals for Xn+1 in the factor-augmented regression model under the
assumption that εt is i.i.d. N (0, 1), Gonçalves, Perron and Djogbenou (2013) proved that
bootstrap prediction intervals, as described above, are asymptotically valid unconditionally,
without requiring the Gaussianity of εt. An interesting extension of the present paper would
be to provide an asymptotic framework that is able to handle both parameter estimation un-
certainty and predictors estimation uncertainty, i.e. that extends the notion of asymptotic
pertinence to this context.

3 Multi-horizon forecasting, h > 1

Finally, we consider the case where the forecasting horizon, h, is larger than 1. There are two
approaches to produce such forecasts. The first one is to specify a forecasting model for horizon 1
and iterate it to the desired horizon h. This is the approach followed in the current paper. When
other predictors are present, this approach has the drawback of requiring forecasts of the future
values of the predictors, whether they are observed or not. This is usually accomplished in a
vector autoregressive (VAR) framework when the predictors are observed or a factor augmented
VAR (FAVAR) when predictors are estimated factors.
An alternative approach (the so-called direct approach) which avoids this diffi culty is to

make direct forecasts and specify a forecasting model at horizon h. In this scenario, the analog
of our ARX model is

Xt = φhXt−h + α′Ft−h + εt, (4)

which can be estimated by OLS for t = h + 1, ..., n with corresponding point forecast X̂n+h =
φ̂hXn + α̂′Fn.
The main complication of the direct approach when h > 1 is the fact that the regression

errors εt will generally be serially correlated to order h − 1. This serial correlation affects the
distribution of the estimated parameters and the construction of prediction intervals requires
the use of an estimator of the covariance matrix that is robust to serial correlation as in Andrews
(1991). Similarly, when constructing intervals using the bootstrap, a method for drawing errors
that is robust to serial correlation is needed.
Gonçalves, Perron, and Djogbenou (2013) modify the algorithm from the previous section by

drawing ε∗t using the block wild bootstrap (BWB). The idea is to separate the sample residuals
ε̂t+h into non-overlapping blocks of b consecutive observations. For simplicity, we assume that
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T−h
b
, the number of such blocks, is an integer. Then, we generate our bootstrap errors by

multiplying each residual within a block j by the same draw of an external variable, i.e.

ε∗i+(j−1)b = ε̂i+(j−1)b · ηj

for j = 1, ..., T−h
b
, i = h + 1, ..., h + b, and ηj ∼ i.i.d. (0, 1) . The fact that each residual within

a block is multiplied by the same external draw preserves the time series dependence. Because
the errors are (h− 1)−dependent under correct specification, it is natural to set the block
length to h. One final issue is how to generate X∗n+h. The issue is that there is no residual
ε̂n+h that can be used to draw ε∗n+h as above. Gonçalves et al. (2013) make a draw from the
empirical distribution function of ε̂t, t = h + 1, ..., n. This should reproduce the unconditional
distribution of the error term, but it is not clear to us that this is the optimal choice. We
believe that extending the notion of asymptotic pertinence to direct forecasts would be a very
useful addition to the current paper.

4 Conclusion

Pan and Politis have made a significant contribution to the comparison of forecast intervals by
introducing the concept of asymptotic pertinence that allows parameter estimation to matter
even asymptotically. In this discussion, we have tried to extend this notion to the case where
additional predictors are available. The case of estimated predictors is diffi cult as it is not
obvious how to condition on the value of the latent predictor in the bootstrap world. We look
forward to contributions and discussion on these issues.
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