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Abstract

This paper’s main contribution is to propose and theoretically justify the application of boot-
strap methods for inference in autoregressive panel data models with fixed effects. Whereas the
focus of the existing literature has been on bias correcting the standard fixed effects OLS estimator
(due to the well known incidental parameter bias), our focus here is on improving the quality of
inference by relying on the bootstrap instead of the standard normal distribution when computing
critical values for test statistics. In particular, we show by simulation that confidence intervals
based on the normal distribution can be very distorted in finite samples. Instead, a bootstrap that
resamples the residuals and generates the bootstrap observations recursively using the estimated
autoregressive panel data model greatly reduces these distortions. We show that this recursive-
design residual-based bootstrap fixed effects OLS estimator contains a built-in bias correction term
that mimics the incidental parameter bias. Thus, this method can be used to approximate the bias
(as well as the entire distribution) of the (biased) fixed effects OLS estimator. This is in contrast
with two other methods we consider (a fixed-design residual-based bootstrap and a pairs bootstrap)
whose distributions are incorrectly centered at zero. As it turns out, both the recursive-design and
the pairs bootstrap are asymptotically valid when applied to the bias-corrected estimator, but the
fixed-design bootstrap is not. In the simulations, the recursive-design bootstrap is the method that
does best overall.

JEL classification: C15, C22.
Keywords: bootstrap, panel data autoregression, fixed effects, incidental parameter bias.

1 Introduction

Estimation and inference in the context of linear dynamic panel data models is complicated by the

presence of fixed effects. Indeed, as noted by Neyman and Scott (1948) and Nickell (1981), estimation

of the fixed effects creates an incidental parameter bias in the standard fixed effects OLS estimator

that persists even as n → ∞ (and T is fixed). Although this inconsistency disappears when both n

and T diverge to infinity, an asymptotic bias appears in the limiting distribution of the fixed effects

estimator when n and T grow at the same rate, as shown by Hahn and Kuersteiner (2002). The
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conference at Texas A&M (October 2012), and the CESG conference at Queen’s University (October 2012). A special
thanks to Russell Davidson and James MacKinnon for useful comments and discussions. Gonçalves acknowledges financial
support from the NSERC. Kaffo acknowledges financial support from the FQRSC.
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existence of the incidental parameter bias has motivated the proposal of many bias reduction methods

for panel autoregressive models with fixed effects, including Kiviet (1995), Hahn and Kuersteiner

(2002), Alvarez and Arellano (2003), Bun and Carree (2005), Phillips and Sul (2007), Everaert and

Pozzi (2007), Gouriroux, Phillips, and Yu (2010), Fernandez-Val and Weidner (2013) and Lee (2012),

among others.

Our focus in this paper is on inference rather than bias correction. In particular, our main goal is

to propose bootstrap methods whose finite sample properties improve upon those of the asymptotic

normal approximation when computing critical values for test statistics based on bias-corrected es-

timators. Although this asymptotic approach is justified by the existing literature, our simulations

show that asymptotic theory-based confidence intervals for the common autoregressive parameter of

an AR(1) model with fixed effects can be severely distorted in finite samples. This provides motivation

for the use of the bootstrap.

A natural bootstrap scheme in this context is a recursive-design residual-based bootstrap which

resamples the residuals and recursively generates bootstrap observations for the dependent variable

using the estimated autoregressive panel data model. The choice of how to generate the bootstrap

residuals depends on the assumptions we make on the idiosyncratic error term. Here, we follow

most of the existing panel data literature and maintain throughout the assumption of cross sectional

independence. In contrast, we allow for time series dependence in the error term by assuming that

it satisfies a martingale difference sequence assumption for each individual. This rules out serial

correlation but is compatible with time series and cross sectional heteroskedasticity in the error term.

To capture both forms of heteroskedasticity, we implement the residual-based bootstrap using the

wild bootstrap, where bootstrap residuals are obtained by multiplying the estimated residuals by

an external random variable that is i.i.d.(0, 1) across both the time series and the cross sectional

dimensions. A version of the recursive-design wild bootstrap method has been applied by Everaert

and Pozzi (2007) for bias correction without theoretical justification.

We consider two other bootstrap methods in this paper. One is a version of the residual-based

bootstrap that fixes the regressors when generating the bootstrap observations on the dependent

variable (i.e. we simply add the wild bootstrap residuals to the estimated conditional mean). We call

this method the fixed-design residual-based bootstrap. The other method is a pairs bootstrap which

resamples the pairs formed by the dependent and the lagged dependent variables (this amounts to

the standard nonparametric bootstrap applied to the pairs). Given the cross sectional independence

assumption, our proposal is to resample only in the cross sectional dimension. The main reason why we

also consider these two methods is that they have been applied very successfully in the pure time series

literature by Gonçalves and Kilian (2004), who showed that they are robust to more general forms of

conditional heteroskedasticity (in the form of leverage effects) than the recursive-design residual-based

bootstrap. As we will show, even though the three methods we analyze here can be viewed as panel

extensions of the bootstrap methods studied by Gonçalves and Kilian (2004), the results we obtain are
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not a straightforward extension of the results obtained in the pure time series autoregression model

due to the presence of the incidental parameter bias.

Our first finding is that only the recursive-design residual-based bootstrap is able to capture the

incidental parameter bias term inherent in the fixed effects OLS estimates. The fixed-design residual

bootstrap and the pairs bootstrap fail to do so as their bootstrap distributions are incorrectly centered

at zero. Thus, although these bootstrap methods are more generally applicable (in that they allow

for leverage effects), they do not consistently estimate the distribution of the standard fixed effects

estimator in a linear dynamic panel data model with individual specific fixed effects. This is in contrast

with the recursive-design bootstrap, which can be used to approximate the whole distribution of the

fixed effects OLS estimator, including its bias. We formally prove the consistency of this bootstrap

bias, thus providing a theoretical justification for a bootstrap based bias correction as used for instance

in Everaert and Pozzi (2007).

Although our results for the recursive-design bootstrap justify bootstrap inference based on the

(uncorrected and biased) fixed-effects OLS estimator without the need for an explicit bias correction,

further finite sample improvements of the bootstrap approximation can be obtained if we base our

inference on a bias-corrected estimator. Bootstrapping a bias-corrected fixed effects estimator essen-

tially removes the incidental parameter bias from the asymptotic distribution, resulting in a t-statistic

that is asymptotically pivotal.

Building on the theory of the bootstrap for the standard (biased) fixed effects OLS estimator, we

show that the recursive-design bootstrap is asymptotically valid when applied to the bias-corrected

estimator of Hahn and Kuersteiner (2002). The asymptotic invalidity of the fixed-design bootstrap for

the standard fixed effects estimator extends to the bias-corrected estimator. However, as it turns out,

the pairs bootstrap distribution of the bootstrap bias-corrected fixed effects estimator is consistent

provided we center the bootstrap bias-corrected estimator around the bias-corrected estimator eval-

uated on the original sample (instead of its biased version). In the simulations, the recursive-design

bootstrap is the method that does best overall, essentially removing the finite sample distortions

associated with the confidence intervals that rely on the asymptotic normal distribution.

The existing literature on bootstrapping linear panel data models with fixed effects is surprisingly

rather limited. One important exception is Kapetanios (2008), who proposed and studied the pairs

bootstrap in the context of panel regression models with strictly exogenous regressors and fixed effects,

for which the incidental parameter bias does not exist. More recently, Gonçalves (2011) proved the

asymptotic validity of the moving blocks bootstrap under general forms of cross sectional and time

series dependence in the regression error of a panel linear regression model. Although the regularity

conditions of Gonçalves (2011) allow in principle dynamic regressors, the impact of the incidental

parameter bias on inference was ruled out by assuming that n/T → 0. Contrary to these papers, here

we establish the consistency of the bootstrap for fixed-effects estimators when the incidental parameter

bias is present. A few other papers have recently studied the validity of the bootstrap for panel data
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models with fixed effects and incidental parameter bias. In particular, Galvão and Kato (2013) study

the asymptotic properties of the pairs bootstrap in the context of linear dynamic panel data models

with possible misspecification. They find that the pairs bootstrap is asymptotically valid when applied

to a bias corrected estimator and that it is robust to misspecification. Similarly, Kaffo (2013) also

applies the pairs bootstrap to a bias corrected estimator in the context of nonlinear dynamic panel

data models with fixed effects. In both cases, the bootstrap is not able to capture the incidental

parameter bias and is only valid when used for inference on a bias corrected estimator. These results

(although more general than ours) are entirely parallel to what we find here for the simpler AR(1)

panel data model. However, contrary to these papers, here we are able to go a step further and propose

a bootstrap method that is also able to capture the bias (the recursive-design bootstrap).

The remainder of the paper is organized as followed. Section 2 introduces the model and the

assumptions, and provides a summary of the asymptotic theory for the fixed effects estimator. These

results are a restatement of Hahn and Kuersteiner’s (2002) results under our set of assumptions

(which are slightly different from theirs). Section 3 provides the bootstrap results for the standard

fixed effects OLS estimator for the three bootstrap schemes described above. We show that only the

recursive-design bootstrap is able to capture the asymptotic bias term. Section 4 relies on the results

of Section 3 to prove the consistency of this bootstrap method for estimating the distribution of the

biased-corrected fixed effects estimator of Hahn and Kuersteiner (2002). Section 5 contains Monte

Carlo results while Section 6 concludes. All proofs are relegated to the Appendix.

2 Assumptions and asymptotic theory for the fixed effects estimator

when n, T → ∞

Following Hahn and Kuersteiner (2002), we consider estimation of the autoregressive parameter θ0 in

a stationary linear dynamic panel model with fixed effects1

yit = αi + θ0yit−1 + εit, i = 1, . . . , n; t = 1, . . . , T, (1)

where |θ0| < 1 and αi are individual specific fixed effects that capture the unobserved individual

heterogeneity. We assume that the initial observation yi0 is available. Given the stability condition

that |θ0| < 1 and the assumption that the panel is stationary, the impact of initial conditions does not

matter asymptotically when T is large.

The standard fixed effects OLS estimator of θ0 is given by

θ̂ =

(

1

nT

n∑

i=1

T∑

t=1

(yit−1 − ȳi−)
2

)−1
1

nT

n∑

i=1

T∑

t=1

(yit−1 − ȳi−) (yit − ȳi) ,

1Our results could be generalized to higher order dynamics at the cost of complicating the notation. Since this would
not add any additional insights, we prefer to follow Hahn and Kuersteiner (2002) and focus on this simple AR(1) panel
model.
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where ȳi ≡
1

T

T∑

t=1

yit and ȳi− ≡ 1

T

T∑

t=1

yit−1 are the individual time averages.

The main goal of this section is to provide a set of assumptions under which we can prove the

bootstrap results that will follow and at the same time present the asymptotic theory of the fixed

effects estimator under these assumptions.

Assumption A1 describes formally our set of assumptions. Note that for a given time series {wt}
and for j ∈ N, we let cum

(
w0, wt1 , . . . , wtj−1

)
denote the jth order joint cumulant of

(
w0, wt1 , . . . , wtj−1

)

(see Brillinger, 1981, p. 19), where t1, . . . , tj−1 are integers2.

Assumption A1

(i) {εit, t = 1, 2, . . .} are independent across i.

(ii) For each i, {εit, t = 1, 2, . . .} is a strictly stationary martingale difference sequence, i.e. E
(
εit|F t−1

i

)
=

0, a.s., where F t−1
i = σ (εit−1, εit−2, . . .) .

(iii) E |εit|4r is uniformly bounded in i and t, for some r ≥ 2.

(iv) E
(
ε2it
)
= σ2

i , where lim
n→∞

1

n

n∑

i=1

σ2
i = σ2 < ∞.

(v) E(ε2itεit−lεit−p) = τ ilp is uniformly bounded for all i, t, l ≥ 1, p ≥ 1; τ ill > 0 for all l, and

lim
n→∞

1

n

n∑

i=1

τ ilp = τ lp, for fixed l, p ∈ N.

(vi)

+∞∑

t1,t2,t3=−∞
|cum (εit1 , εit2 , εit3 , εi0)| < ∆ < ∞ uniformly in i.

(vii)

+∞∑

t1,t2,t3=−∞

∣
∣
∣cum

(

zl1it1 , z
l2
it2
, zl3it3 , z

l4
i0

)∣
∣
∣ < ∆ < ∞ uniformly in i, l1, l2, l3 and l4, where z

l
it = εitεit−l

and l1,. . . ,l4 are positive integers.

(viii)
1

n

n∑

i=1

|αi|2 = O(1).

(ix) n, T → ∞ such that n/T → ρ < ∞.

In this paper, we follow the fixed effects approach and treat αi as parameters to be estimated.

Accordingly, Assumption A1 implicitly treats αi as being constant. Alternatively, our analysis can be

2In particular, cum (w0) = E (w0) and cum (w0, wt1) = Cov (w0, wt1) . For a zero random variable,
cum (w0, wt1 , wt2) = E (w0wt1wt2) and cum (w0, wt1 , wt2 , wt3) = E (w0wt1wt2wt3) − E (w0wt1)E (wt2wt3) −
E (w0wt2)E (wt1wt3)− E (w0wt3)E (wt1wt2) .
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interpreted as being conditional on a random realization of the fixed effects αi as long as we modify

our assumptions by conditioning on αi.
3

Assumption A1(i) assumes cross sectional independence. Although we do not impose homogeneity

along the cross sectional dimension, we nevertheless require this heterogeneity to disappear asymptot-

ically. Assumption A1(ii) imposes a martingale difference sequence restriction on {εit : t = 1, 2, . . .}
for each i = 1, . . . , n; time stationarity is also assumed for simplicity. The m.d.s. assumption implies

that the model for the conditional mean of yit given F t−1
i is correctly specified. This is a strong

assumption that has been recently relaxed by Galvão and Kato (2013) in the context of possibly mis-

specified linear dynamic panel data models with fixed effects. Specifically, their results show that the

pairs bootstrap is asymptotically valid for inference on a pseudo-true parameter when applied to a

bias-corrected estimator. Here, we assume the model is corrected specified for the conditional mean,

which allows us to obtain results for the recursive-design bootstrap based on the wild bootstrap. The

motivation for this method relies on the fact that the m.d.s assumption restricts the dependence in the

time dimension, ruling out serial correlation in εit, but allows for time series dependence in the form

of conditional heteroskedasticity. Allowing for conditional heteroskedasticity over time is important

in order to capture GARCH effects, as documented by the increasing literature on estimating large

dimensional GARCH panels (see e.g. Engle, Shephard, and Sheppard (2008) and Pakel, Shephard, and

Sheppard (2011)). Assumption A1(vi) restricts the fourth order cumulants of εit whereas Assumption

A1(vii) is an additional eighth order restriction on the distribution of the innovations needed to estab-

lish a central limit theorem and justify covariance matrix estimation. Given that |θ0| < 1, it implies

Condition 3 of Hahn and Kuersteiner (2002). Assumption A1(ix) assumes that n and T diverge to

infinity at the same rate and is standard in this literature.

Under Assumption A1, we can prove the following result. See Appendix A for the proof.

Theorem 2.1 Let {yit} be generated by (1). Under Assumption A1, we have

√
nT
(

θ̂ − θ0

)

→d N (D,C) ,

where D = −√
ρ(1 + θ0); and C = A−1BA−1, with A = σ2

(
1− θ20

)−1
and B =

∞∑

l=1

∞∑

p=1

θl+p−2
0 τ lp.

Theorem 2.1 is a restatement of Hahn and Kuesteiner’s (2002) Theorem 1 under our Assumption

A1. The method of proof follows closely that of Gonçalves and Kilian (2004), adapted to the panel

context considered here. In particular, the cross sectional independence assumption A1(i) allows us

to use results by Hansen (2007) (see also Moon and Phillips (2004)) to derive the joint asymptotic

theory of θ̂ as n, T → ∞ under Assumption A1.

3For instance, A1(ii) should read “For each i, {εit, t = 1, 2, . . .} is a strictly stationary martingale difference sequence
conditional on αi, i.e. E

(

εit|F
t−1

i , αi

)

= 0, where Ft−1

i = σ (εit−1, εit−2, . . .) .”. Similarly, all expectations should be
conditional on αi and the limits in parts (iv) and (v) should be replaced with probability limits. See Remark 1 of Hahn
and Kuersteiner (2011) for more details on the appropriate modifications.
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Presenting this result and its heuristic derivation is helpful in understanding the reasons for the

(in)validity of the different bootstrap methods we consider in the next section. The fixed effects OLS

estimator can be represented as

√
nT
(

θ̂ − θ0

)

= A−1
nT

1√
nT

n∑

i=1

T∑

t=1

(yit−1 − ȳi−) (εit − ε̄i) ,

whereAnT =
1

nT

n∑

i=1

T∑

t=1

(yit−1 − ȳi−)
2 .Under Assumption A1, we show in the Appendix that AnT →P

A. Moreover, adding and subtracting µi ≡ E (yit−1) = αi/ (1− θ0) to the term (yit−1 − ȳi−) and using

the fact that the average over t of (εit − ε̄i) is zero implies that

√
nT
(

θ̂ − θ0

)

= A−1 1√
nT

n∑

i=1

T∑

t=1

(yit−1 − µi) (εit − ε̄i) + oP (1) .

The following decomposition holds for the normalized score,

1√
nT

n∑

i=1

T∑

t=1

(yit−1 − µi) (εit − ε̄i) =
1√
nT

n∑

i=1

T∑

t=1

(yit−1 − µi) εit

︸ ︷︷ ︸

→dN(0,B)

− 1√
nT

n∑

i=1

T∑

t=1

(yit−1 − µi) ε̄i

︸ ︷︷ ︸

→P−A·D

,

where the stochastic behavior of each of the two terms above is discussed in Lemma A.4 in Appendix

A.

This result has two implications for the validity of the bootstrap. First, the bootstrap needs to

mimic the asymptotic variance of θ̂ given by C = A−1BA−1. This variance has the usual sandwich

form under conditional heteroskedasticity. In particular, it depends on the long run variance of the

score process (after concentrating out αi) defined as

B = lim
n,T→∞

V ar

(

1√
nT

n∑

i=1

T∑

t=1

(yit−1 − µi) εit

)

.

Theorem 2.1 shows that B depends on4 τ lp, the limiting value of the cross sectional average of the

fourth order cumulants of εit. When εit are i.i.d.
(
0, σ2

)
, we have that τ lp = σ4 for l = p and τ lp = 0

for l 6= p, implying that B = σ4/
(
1− θ20

)
. In this case, B = σ2A and C = 1 − θ20. But when εit

are heteroskedastic (in either dimension), the fourth order cumulants of εit do not simplify and the

sandwich form for C is obtained. As discussed by Gonçalves and Kilian (2004) in the pure time series

context, bootstrap validity depends on replicating the properties of τ lp and this is also true in the

panel context.

4Note that Hahn and Kuersteiner (2002) obtain a different but equivalent expression for B, given by
σ4

1− θ20
+ χ,

where χ ≡
∞
∑

t=−∞

χ(t, 0) and χ(t1, t2) ≡ E[uit1−1uit2−1εit1εit2 ] − E[εit1εit2 ]E[uit1−1uit2−1], uit−1 = yit−1 − E (yit−1) .

The constant χ reflects higher order moments of the error term when conditional heteroskedasticity is allowed for and
it becomes zero when εit is i.i.d.

(

0, σ2
)

, implying the same value for B. Our expression makes the comparison of our
results with Gonçalves and Kilian (2004) easier.
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Second, the bootstrap needs to capture the asymptotic bias term D created by the estimation

of the fixed effects. As the decomposition above shows (and as was discussed already by Hahn and

Kuersteiner (2002)), this noncentrality parameter results from the correlation between the averaged

error terms ε̄i and the demeaned regressors yit−1−µi and is non zero when ρ = lim
n

T
6= 0. As we will

see next, the presence of this incidental parameter asymptotic bias is the crucial difference between

the application of the bootstrap in the pure time series context considered in Gonçalves and Kilian

(2004) and in the panel context considered here.

3 Bootstrap results for the fixed effects estimator

In this section, we study the asymptotic validity of the bootstrap when applied to the fixed effects OLS

estimator θ̂. Following Gonçalves and Kilian (2004), we consider three bootstrap methods adapted to

the panel AR(1) model considered here. Two of these are residual-based wild bootstrap (WB) methods

whereas the third one is a pairs bootstrap that resamples only in the cross sectional dimension (which

is justified under our cross sectional independence assumption).

We use the following notation for the bootstrap asymptotics (see Chang and Park (2003) for similar

notation and for several useful bootstrap asymptotic properties): Let Z∗
nT be a sequence of bootstrap

statistics. We write Z∗
nT = oP ∗ (1) in probability, or Z∗

nT →P ∗

0 in probability, if for any ε > 0, δ > 0,

lim
n,T→∞

P [P ∗ (|Z∗
nT | > δ) > ε] = 0. Similarly, we write Z∗

nT = OP ∗ (1) in probability if for all ε > 0

there exists a Mε < ∞ such that lim
n,T→∞

P [P ∗ (|Z∗
nT | > Mε) > ε] = 0. Finally, we write Z∗

nT →d∗ Z

in probability if, conditional on the sample, Z∗
nT weakly converges to Z under P ∗, for all samples

contained in a set with probability converging to one. Specifically, we write Z∗
nT →d∗ Z in probability

if and only if E∗ (f (Z∗
nT )) → E (f (Z)) in probability for any bounded and uniformly continuous

function f .

3.1 Recursive-design wild bootstrap

The recursive-design bootstrap generates a panel of pseudo observations {y∗it, i = 1, . . . , n; t =

1, . . . , T} recursively from the panel AR(1) model with estimated parameters,

y∗it = α̂i + θ̂y∗it−1 + ε∗it, i = 1, . . . , n; t = 1, . . . , T,

where α̂i =
1

T

T∑

t=1

(yit − θ̂yit−1), i = 1, . . . , n and θ̂ is the fixed effects OLS estimator defined in the

previous section (the method remains valid if θ̂ is replaced with any consistent estimator θ̃ of θ0).

The initial condition is y∗i0 =
α̂i

1− θ̂
, i = 1, . . . , n, which is equivalent to setting y∗i0 equal to the

stationary mean in the bootstrap world. The bootstrap residuals are obtained with the wild bootstrap

ε∗it = ε̂itηit, where ηit ∼ i.i.d.(0, 1) over (i, t) with E∗ |ηit|4 ≤ ∆ < ∞, and ε̂it = yit− α̂i− θ̂yit−1 are the

estimated residuals. The wild bootstrap was originally proposed by Wu (1986) and Liu (1988) in the
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context of cross section regressions with unconditional heteroskedasticity. Its application to the time

series autoregressive context was considered by Gonçalves and Kilian (2004) (see also Kreiss (1997)).

Here we extend its application to the panel autoregressive context with individual fixed effects (see

Gonçalves and Perron (2014) for a recent application to panel factor models).

Letting ηit be i.i.d.(0, 1) along the two dimensions is appropriate since by Assumption A1 εit

is independent across i and uncorrelated over t (due to the m.d.s. assumption), but we allow for

heteroskedasticity in the two dimensions.

The bootstrap analogue of θ̂ is θ̂
∗
rd, the recursive-design wild bootstrap OLS estimator,

θ̂
∗
rd =

(

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2

)−1
1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)
(y∗it − ȳ∗i ) , (2)

where ȳ∗i and ȳ∗i− are defined analogously to ȳi and ȳi−.

As in Gonçalves and Kilian (2004), we require a strengthening of Assumption A1 to establish the

validity of the recursive-design wild bootstrap for the fixed effects OLS estimator.

A1. (v′) τ ilp ≡ E
(
ε2itεit−lεit−p

)
= 0 for all l 6= p, for all i, and t, l ≥ 1, p ≥ 1.

A1 (v′) is the panel analogue of Assumption A′(iv′) in Gonçalves and Kilian (2004). As they remark,

this assumption further restricts the class of conditionally heteroskedastic autoregressive models that

are covered by excluding certain asymmetric GARCH and ARCH models (e.g. the popular EGARCH

model). This is crucial to prove that the bootstrap variance of θ̂
∗
rd is consistent for C.

Theorem 3.1 Under Assumption A1 strengthened by Assumption A1(v′), it follows that

sup
x∈R

∣
∣
∣P ∗(

√
nT (θ̂

∗
rd − θ̂) ≤ x)− P (

√
nT (θ̂ − θ0) ≤ x)

∣
∣
∣→P 0.

The proof of Theorem 3.1 is in Appendix B. The crucial difference compared to the proof of

Theorem 3.2 of Gonçalves and Kilian (2004) is the need to account for the incidental parameter bias

generated by the estimation of the fixed effects. In particular, Lemma B.4 in Appendix B shows that

the incidental parameter bias in the bootstrap world is such that

1√
nT

n∑

i=1

T∑

t=1

(
y∗it−1 − µ̂i

)
ε̄∗i →P ∗ −A ·D,

in probability, where µ̂i = α̂i/
(

1− θ̂
)

= E∗ (y∗it−1

)
. This, together with the fact that

1√
nT

n∑

i=1

T∑

t=1

(
y∗it−1 − µ̂i

)
ε∗it →d∗ N

(

0, B̃
)

,

in probability, where B̃ =

∞∑

l=1

θ
2(l−1)
0 τ ll, implies that

√
nT
(

θ̂
∗
rd − θ̂

)

→d∗ N
(

D,A−1B̃A−1
)

, in prob-

ability. Since B̃ = B whenever τ i,lp = 0 for l 6= p (i.e. under A1(v′)), the recursive-design wild
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bootstrap distribution of
√
nT
(

θ̂
∗
rd − θ̂

)

is consistent for the distribution of the biased fixed effects

OLS estimator
√
nT
(

θ̂ − θ
)

. In particular, the recursive-design bootstrap contains a built-in bias

correction term that mimics the incidental parameter bias induced by the individual fixed effects.

Theorem 3.1 justifies the construction of bootstrap percentile-type confidence intervals for θ0 with-

out the need for an explicit bias correction method. It does not however justify the use of the boot-

strap to consistently estimate the bias of θ̂ without further conditions, for instance that the sequence
{√

nT
(

θ̂
∗
rd − θ̂

)}

is uniformly integrable (see e.g. Billingsley (1995), Theorem 25.12).

Although our focus in this paper is on using the bootstrap for constructing confidence intervals

for θ0, we now provide a result that theoretically justifies the use of the bootstrap for bias correction.

The bootstrap has been used for this purpose in Everaert and Pozzi (2007) without a theoretical

justification. Compared to the analytical bias correction method of Hahn and Kuersteiner (2002) (and

of many others since then), the bootstrap approach is easy to generalize to more complex models

without requiring the need for different analytical formulae.

Following Liu and Singh (1992) and Gonçalves and White (2005), we focus on the following boot-

strap fixed effects estimator

θ̃
∗
=







θ̂
∗
rd if

1

nT

n∑

i=1

T∑

t=1

(y∗it−1 − ȳ∗i−)
2 ≥ δ

2

θ̂ otherwise,

for some δ > 0. Thus, θ̃
∗
is equal to θ̂

∗
rd whenever

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2
is bounded away from

zero. Since n−1T−1
n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2 →P ∗

A > 0, in probability, it follows that for any ε > 0 and

sufficiently large n and T , there exists δ > 0 such that

P

[

P ∗
(

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2 ≥ δ

2

)

> 1− ε

]

> 1− ε. (3)

Thus, this modification does not have adverse practical consequences but at the same time it greatly

simplifies the theoretical study of the bootstrap bias estimator D∗ = E∗
(√

nT
(

θ̃
∗ − θ̂

))

.

Theorem 3.2 Under the same assumptions as in Theorem 3.1, D∗ →P D, where D∗ = E∗
(√

nT (θ̃
∗ − θ̂)

)

and D = −√
ρ(1 + θ0).

The proof of Theorem 3.2 is in Appendix B. We show that under Assumption A1 strengthened

by A1(v′), E∗
(∣
∣
∣

√
nT (θ̃

∗ − θ̂)
∣
∣
∣

1+δ
)

= OP (1) for some δ > 0, which is a sufficient condition for the

uniform integrability of the sequence
{∣
∣
∣

√
nT (θ̃

∗ − θ̂)
∣
∣
∣

}

, in probability. This together with Theorem

3.1 implies Theorem 3.2.
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To end this section, we discuss bootstrap percentile-t intervals based on the following t-statistic

t
θ̂
∗

rd
=

√
nT
(

θ̂
∗
rd − θ̂

)

√

Ĉ∗
rd

,

where Ĉ∗
rd = Â∗−1

rd B̂∗
rdÂ

∗−1
rd , with

Â∗
rd =

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2
and B̂∗

rd =
1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2
ε̃∗2it , (4)

and ε̃∗it = y∗it−ȳ∗i−θ̂
∗ (

y∗it−1 − ȳ∗i−
)
. The statistic t

θ̂
∗

rd
is the bootstrap analogue of tθ̂ =

√
nT
(

θ̂ − θ0

)

/
√

Ĉ,

where Ĉ is defined as Ĉ∗ using the original data.

Given Theorems 2.1 and 3.1, the asymptotic validity of a bootstrap percentile-t interval based on

t
θ̂
∗

rd
follows from the following lemma. It shows the consistency of Ĉ∗

rd towards C = A−1BA−1, where

B = B̃ under Assumption A1 (v′).

Lemma 3.1 Under the same assumptions as in Theorem 3.1, Ĉ∗
rd →P ∗

C = A−1B̃A−1, in probability.

3.2 Fixed-design wild bootstrap

The fixed-design wild bootstrap generates {y∗it, i = 1, . . . , n; t = 1, . . . , T} according to

y∗it = α̂i + θ̂yit−1 + ε∗it, i = 1, . . . , n; t = 1, . . . , T, (5)

where ε∗it = ε̂itηit, with ηit ∼ i.i.d.(0, 1) across (i, t) such that E∗ |ηit|4 ≤ ∆ < ∞. As for the

recursive-design wild bootstrap, θ̂ can be replaced by any consistent estimator θ̃ of θ0 and α̂i by

α̃i =
1

T

T∑

t=1

(

yit − θ̃yit−1

)

.

The fixed-design wild bootstrap estimator is

θ̂
∗
fd =

(

1

nT

n∑

i=1

T∑

t=1

(yit−1 − ȳi−)
2

)−1
1

nT

n∑

i=1

T∑

t=1

(yit−1 − ȳi−) (y
∗
it − ȳ∗i ) . (6)

Gonçalves and Kilian (2004) consider this method in the context of a pure time series autoregression

and show that it is asymptotically valid for estimating the distribution of the autoregressive parameter

under conditional heteroskedasticity of unknown form. In particular, and in contrast to the recursive-

design wild bootstrap, the fixed-design wild bootstrap is more generally applicable because it does not

require Assumption A1(v′), thus allowing for leverage effects in the form of an asymmetric response of

volatility to positive and negative shocks of the same absolute magnitude. It is therefore interesting

to know whether this method is valid in the context of a panel autoregression model with individual

fixed effects.

Theorem 3.3 Under Assumption A1, it follows that
√
nT
(

θ̂
∗
fd − θ̂

)

→d∗ N (0, C) , in probability,

where C = A−1BA−1, with A and B defined as in Theorem 2.1.
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The proof of Theorem 3.3 is in Appendix B. In contrast to the recursive-design wild bootstrap, the

fixed-design wild bootstrap is not able to reproduce the noncentrality parameter of the limiting distri-

bution of the fixed effects OLS estimator. The bootstrap distribution of
√
nT (θ̂

∗
fd − θ̂) is incorrectly

centered at zero, as n, T → ∞.

The reason for the failure of the fixed-design wild bootstrap to capture the incidental parameter

bias is that it destroys the correlation between the average bootstrap residuals ε̄∗i and the bootstrap

regressors y∗it−1 − µ̂i because it fixes these at the sample values, i.e. y∗it−1 − µ̂i = yit−1 − α̂i/
(

1− θ̂
)

.

This implies that

1√
nT

n∑

i=1

T∑

t=1

(
y∗it−1 − µ̂i

)
ε̄∗i =

1√
nT

n∑

i=1

T∑

t=1

(yit−1 − µ̂i) ε̄
∗
i →P ∗

0,

since E∗ (ε̄∗i ) = 0.

Two implications follow from this negative result. First, the fixed-design wild bootstrap cannot

be used to approximate the distribution (nor the bias) of the biased fixed effects OLS estimator θ̂. As

our simulations show, this method does not replicate the incidental parameter bias of θ̂ and therefore

fails when used to construct percentile (or percentile-t) bootstrap confidence intervals for θ0 based on

this estimator. The second implication is that its invalidity extends to bootstrap confidence intervals

for θ0 based on the bias-corrected estimator that relies on the analytical bias correction method of

Hahn and Kuersteiner (2002). We will discuss the application of the bootstrap to the bias-corrected

estimator of Hahn and Kuersteiner (2002) in Section 4.

3.3 Pairs bootstrap

A third method that is robust to conditional heteroskedasticity of unknown form in the error term of

a pure time series autoregressive model is the pairs bootstrap, where one resamples with replacement

the vector that collects the dependent variable and its lagged values. This method was also studied

by Gonçalves and Kilian (2004), who proved its asymptotic validity under the same assumptions as

those underlying the validity of the fixed-design wild bootstrap.

The goal of this section is to study the applicability of a panel version of this bootstrap method

in the context of a panel AR(1) model with individual specific fixed effects. Specifically, we consider

resampling only in the cross-sectional dimension, by resampling the “pairs” (yi, yi−), where yi =
(
yi1 . . . yiT

)′
and yi− =

(
yi0 . . . yiT−1

)′
. This method was proposed by Kapetanios (2008)

in the context of a panel regression model with strictly exogeneous regressors and fixed effects, in

which case no incidental parameter bias exists5. Our contribution here is to analyze the properties

of this method for linear dynamic panel models where the incidental parameter bias is present. Note

that there are other ways of resampling the pairs (yit, yit−1) in the panel context. For instance, one

alternative bootstrap method is to resample only in the time dimension, by resampling the “pairs”

5See also Hounkannounon (2010) for the applicability of this method in the context of panel regression models with
random effects.
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(yt, yt−1), where yt =
(
y1t . . . ynt

)′
and yt−1 =

(
y1t−1 . . . ynt−1

)′
. This method was also

considered in Kapetanios (2008) and more recently in Gonçalves (2011), who showed the asymptotic

validity of the moving blocks bootstrap under general forms of cross sectional dependence and time

series dependence in the regression error of a panel linear regression model. Although the regularity

conditions of Gonçalves (2011) allow in principle dynamic regressors, the impact of the incidental

parameter bias on inference is ruled out by assuming that n/T → ρ = 0. We do not consider this

bootstrap method here because we assume cross sectional independence, in which case resampling in

the cross sectional dimension is more appropriate.

More specifically, we generate
(
y∗i , y

∗
i−
)
∼ i.i.d. {(yi, yi−1) : i = 1, . . . , n} , i.e. letting I1, . . . , In be

i.i.d. Uniform on {1, . . . , n}, we have that

(
y∗i , y

∗
i−
)
=






yIi,1 yIi,0
...

...
yIi,T yIi,T−1




 .

The pairs bootstrap fixed effects estimator is then defined as the original fixed effects OLS estimator

but with {(yit, yit−1)} replaced with
{(

y∗it, y
∗
it−1

)}
. Let θ̂

∗
pb denote this estimator.

Theorem 3.4 Under Assumption A1, it follows that
√
nT
(

θ̂
∗
pb − θ̂

)

→d∗ N (0, C) , in probability,

where C = A−1BA−1, with A and B defined as in Theorem 2.1.

Similarly to the fixed-design wild bootstrap, the pairs bootstrap distribution of the bootstrap fixed

effects OLS estimator is incorrectly centered at zero.

To understand the reason why the pairs bootstrap fails in capturing the bias, note that the pairs

bootstrap fixed effects OLS estimator has the following representation

√
nT
(

θ̂
∗
pb − θ̂

)

= A∗−1
nT

1√
nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

) (

ε̂∗it − ε̂∗i
)

,

where A∗
nT =

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2
is the bootstrap analogue of AnT and ε̂∗it is the bootstrap

version of the error term εit, i.e. ε̂∗it = y∗it − α̂∗
i − θ̂y∗it−1 ≡ ε̂Ii,t. Since εit depends on αi (which is

a function of i), its bootstrap analogue when resampling in the cross sectional dimension involves

resampling α̂i, i.e. ε̂∗it depends on α̂∗
i = α̂Ii , a resampled version of α̂i. Given that resampling only

occurs in the cross sectional dimension, we can define

s∗i ≡
1√
T

T∑

t=1

(
y∗it−1 − ȳ∗i−

) (

ε̂∗it − ε̂∗i
)

as being the bootstrap version of si ≡
1√
T

T∑

t=1

(yit−1 − ȳi−)
(
ε̂it − ε̂i

)
, i.e. s∗i = sIi for all i = 1, . . . , n.

13



It follows that
√
nT
(

θ̂
∗
pb − θ̂

)

= A∗−1
nT

1√
n

n∑

i=1

s∗i = A−1 1√
n

n∑

i=1

s∗i

︸ ︷︷ ︸

→d∗N(0,B)

+ oP ∗ (1) ,

given that A∗
nT →P ∗

A, in probability. Since I1, . . . , In are i.i.d. uniformly distributed on {1, . . . , n},
{s∗i : i = 1, . . . , n} is i.i.d. (conditional on the original observations) and a bootstrap CLT holds for

1√
n

n∑

i=1

s∗i , yielding an asymptotic normal distribution for
√
nT
(

θ̂
∗
pb − θ̂

)

. Nevertheless, the asymp-

totic bootstrap population mean turns out to be zero because

E∗ (s∗i ) =
1

n

n∑

i=1

si =
1

n

1√
T

n∑

i=1

T∑

t=1

(yit−1 − ȳi−)
(
ε̂it − ε̂i

)
= 0,

by the first order condition for the fixed effects OLS estimator. Thus, the limiting bootstrap distribu-

tion of
√
nT
(

θ̂
∗
pb − θ̂

)

is (incorrectly) centered at zero.

4 Bootstrapping the bias-corrected estimator

The results of Section 3 justify bootstrap inference on θ0 based on the recursive-design bootstrap

fixed effects OLS estimator θ̂
∗
rd. In particular, Theorem 3.1 justifies the construction of bootstrap

percentile intervals for θ0 whereas Theorem 3.1 together with Lemma 3.1 justify bootstrap percentile-

t intervals. Although these approaches are valid and have the advantage of avoiding the need for an

explicit bias correction of θ̂, further finite sample improvements of the bootstrap approximation can be

obtained if we base our inference on a bias-corrected estimator. Bootstrapping a bias-corrected fixed

effects estimator removes the incidental parameter bias from the asymptotic distribution, resulting in

a t-statistic that is asymptotically pivotal.

For the particular panel AR(1) model with individual fixed effects that we consider here, a simple

analytical formula for the bias of θ̂ has been derived by Hahn and Kuersteiner (2002). Specifically,

their bias-corrected fixed effects estimator is given by

ˆ̂
θ = θ̂ +

1

T

(

1 + θ̂
)

, (7)

where θ̂ is the standard biased fixed effects OLS estimator. The intuition for this bias correction is

simple: by Theorem 2.1, θ̂ − θ0 is approximately distributed as N

(

− 1

T
(1 + θ0) ,

1

nT
C

)

. Therefore,

∆ = − 1

T
(1 + θ0) is the bias of θ̂ of order O (1/T ). The bias-corrected estimator given in (7) is the

feasible version of the infeasible bias-corrected estimator given by θ̂ −∆ = θ̂ +
1

T
(1 + θ0).

The main contribution of this section is to prove the asymptotic validity of the recursive-design

bootstrap when applied to
ˆ̂
θ. As our simulations in Section 5 show, bootstrap intervals based on

ˆ̂
θ have

coverage probabilities that are closer to the desired nominal level than the bootstrap intervals based on

θ̂. We also consider the application of the fixed-design and the pairs bootstrap to
ˆ̂
θ. Our results show
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that whereas the asymptotic invalidity of the fixed-design bootstrap to estimate the distribution of θ̂

extends to
ˆ̂
θ, this is not the case for the pairs bootstrap, which becomes a valid method of inference

when used to estimate the distribution of
ˆ̂
θ.

We start by considering the recursive-design wild bootstrap, which we now implement using only

bias-corrected estimates. More specifically, the bootstrap panel observations are generated recursively

from the estimated panel AR(1) model using the bias-corrected estimates, i.e. we let

y∗it = ˆ̂αi +
ˆ̂
θy∗it−1 + ε∗it, i = 1, . . . , n; t = 1, . . . , T, (8)

where ˆ̂αi =
1

T

T∑

t=1

(

yit − ˆ̂
θyit−1

)

, i = 1, . . . , n, and
ˆ̂
θ is the bias-corrected fixed effects OLS estimator

defined in (7). The initial condition is y∗i0 = ˆ̂αi

(

1− ˆ̂
θ
)−1

, i = 1, . . . , n.

Let
ˆ̂
θ∗rd denote the bootstrap version of the bias-corrected fixed effects estimator (7), i.e.

ˆ̂
θ∗rd = θ̂

∗
rd +

1

T

(

1 + θ̂
∗
rd

)

, (9)

where θ̂
∗
rd is as defined in (2) but using bootstrap observations generated as in (8).

Our goal is to show the consistency of the bootstrap distribution of
√
nT
(
ˆ̂
θ∗rd −

ˆ̂
θ
)

for the distri-

bution of
√
nT
(
ˆ̂
θ − θ0

)

. An immediate consequence of Theorem 2.1 is that
√
nT
(
ˆ̂
θ − θ0

)

→d N (0, C)

(see Theorem 2 of Hahn and Kuersteiner (2002)). Therefore, it suffices to show that
√
nT
(
ˆ̂
θ∗rd −

ˆ̂
θ
)

→d∗

N (0, C), in probability. This is an immediate consequence of the proof of Theorem 3.1. Heuristically,

by replacing
ˆ̂
θ∗rd with (9) we have that

√
nT
(
ˆ̂
θ∗rd −

ˆ̂
θ
)

=
√
nT
(

θ̂
∗
rd −

ˆ̂
θ
)

︸ ︷︷ ︸

→d∗N(D,C)

+

√
n

T

(

1 + θ̂
∗
rd

)

︸ ︷︷ ︸

→P∗√ρ(1+θ0)≡−D

−→d∗ N (0, C) ,

where the first term converges in distribution to N (D,C) by Theorem 3.1 (note that we center θ̂
∗
rd

around
ˆ̂
θ because the bootstrap DGP (8) depends on

ˆ̂
θ; using

ˆ̂
θ instead of θ̂ does not change the

consistency result of Theorem 3.1 as long as we center
ˆ̂
θ∗rd around

ˆ̂
θ because

ˆ̂
θ is a consistent estimator

of θ0). The second term converges in probability to −D because θ̂
∗
rd is a consistent estimator of θ0

(albeit biased) and n/T → ρ under Assumption A1.

Theorem 4.1 below states this result formally.

Theorem 4.1 Under the same assumptions as in Theorem 3.1, we have that

sup
x∈R

∣
∣
∣P ∗

(√
nT
(
ˆ̂
θ∗rd −

ˆ̂
θ
)

≤ x
)

− P
(√

nT
(
ˆ̂
θ − θ0

)

≤ x
)∣
∣
∣→P 0.

Theorem 4.1 justifies using the bootstrap distribution of
√
nT
(
ˆ̂
θ∗rd −

ˆ̂
θ
)

to consistently estimate

the distribution of
√
nT
(
ˆ̂
θ − θ0

)

. The consistency of the distribution of the bootstrap t-statistic

tˆ̂
θ∗rd

=
√
nT
(
ˆ̂
θ∗rd −

ˆ̂
θ
)

/
√

Ĉ∗ follows whenever Ĉ∗ is a consistent estimator of C, as in Lemma 3.1. In
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particular, our proposal is to choose C̃∗
rd = Ã∗−1

rd B̃∗
rdÃ

∗−1
rd , where Ã∗

rd and B̃∗
rd are exactly as defined in

(4) with the difference that {y∗it} is generated as in (8) and ε̃∗it is a function of
ˆ̂
θ∗rd instead of θ̂

∗
rd. To

conserve space, we do not provide the formal result but note that the same exact arguments used to

prove Lemma 3.1 can be applied to show the consistency of C̃∗
rd towards C. The Monte Carlo simulation

results of the next section show that the finite sample properties of this approach are superior to the

asymptotic normal approximation.

Next, we explain why the fixed-design bootstrap method is not asymptotically valid when applied

to
ˆ̂
θ. Let

ˆ̂
θ∗fd denote the bootstrap version of

ˆ̂
θ where θ̂

∗
fd is computed as (6) with {y∗it} generated

using equation (5) with θ̂ (and α̂i) replaced with
ˆ̂
θ (and ˆ̂αi). Proceeding as for the recursive-design

bootstrap, the following decomposition holds

√
nT
(
ˆ̂
θ∗fd −

ˆ̂
θ
)

=
√
nT
(

θ̂
∗
fd −

ˆ̂
θ
)

︸ ︷︷ ︸

→d∗N(0,C)

+

√
n

T

(

1 + θ̂
∗
fd

)

︸ ︷︷ ︸

→P∗√ρ(1+θ0)≡−D

−→d∗ N (−D,C) ,

where in particular Theorem 3.3 justifies the convergence of the the first term. This shows that the

bootstrap distribution of
√
nT
(
ˆ̂
θ∗fd −

ˆ̂
θ
)

is incorrectly centered at −D (the correct mean should be

zero since the asymptotic distribution of
√
nT
(
ˆ̂
θ − θ0

)

is centered at 0).

In contrast, the pairs bootstrap is asymptotically valid when applied to
ˆ̂
θ. In this case, letting

ˆ̂
θ∗pb

denote the bootstrap version of
ˆ̂
θ based on the biased fixed effects estimator θ̂

∗
pb, we have that

√
nT
(
ˆ̂
θ∗pb −

ˆ̂
θ
)

=
√
nT
(

θ̂
∗
pb − θ̂

)

︸ ︷︷ ︸

−

→d∗N(0,C)

√
n

T

(

1 + θ̂
)

︸ ︷︷ ︸

→P−√
ρ(1+θ0)≡D

+

√
n

T

(

1 + θ̂
∗
pb

)

︸ ︷︷ ︸

→P∗√ρ(1+θ0)≡−D

−→d∗ N (0, C) .

Thus, although the pairs bootstrap does not provide a consistent estimator of the distribution of√
nT
(

θ̂ − θ0

)

(because its asymptotic distribution is incorrectly centered at zero), the pairs bootstrap

distribution of
√
nT
(
ˆ̂
θ∗pb −

ˆ̂
θ
)

is consistent for the distribution of
√
nT
(
ˆ̂
θ − θ0

)

. The formal result is

stated in the following theorem.

Theorem 4.2 Under the same assumptions as in Theorem 3.4, we have that

sup
x∈R

∣
∣
∣P ∗(

√
nT
(
ˆ̂
θ∗pb −

ˆ̂
θ
)

≤ x)− P (
√
nT
(
ˆ̂
θ − θ0

)

≤ x)
∣
∣
∣→P 0.

For bootstrap percentile-t intervals based on the pairs bootstrap, we consider t∗pb =
√
nT
(
ˆ̂
θ∗pb −

ˆ̂
θ
)

/
√

C̃∗
pb,

with C̃∗
pb = Ã∗−1

pd B̃∗
pdÃ

∗−1
pd , where Ã∗

pb and B̃∗
pb are defined as in (4) evaluated on the pairs bootstrap

data and bias-corrected estimator. The analogue of Lemma 3.1 is as follows.

Lemma 4.1 Under the same assumptions as in Theorem 3.4 , C̃∗
pb →P ∗

C = A−1BA−1, in probability.
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5 Simulations

The goal of this section is to evaluate the finite sample performance of the three bootstrap methods

studied in the previous section. We generate a panel of AR(1) processes with GARCH errors using

the following equation

yit = αi + θ0yit−1 + εit, i = 1, . . . , n; t = 1, . . . , T, (10)

where εit is such that E (εit|Fit−1) = 0 and V ar (εit|Fit−1) = σ2
it, with

σ2
it = γi (1− ω − β) + ωε2it−1 + βσ2

it−1, (11)

where γi > 0, ω, β ∈ [0, 1), and ω + β < 1. See Pakel, Shephard, and Sheppard (2011) for more

details on this particular GARCH specification. Because ω + β < 1, these GARCH(1, 1) processes

are stationary but heterogeneous. In particular, the unconditional variance is given by γi. In the

simulations, we set εit ∼ N
(
0, σ2

it

)
where σit is given by (11) with σ2

i0 = γi, the unconditional

variance. Following Pakel, Shephard, and Sheppard (2011), we let γi ∼ i.i.d. U [0.02, 0.05], which

matches the range of annual volatility of most stock returns. The initial observations are drawn from

the stationary distribution, yi0 | αi, γi ∼ N

(
αi

1− θ0
,

γi
1− θ20

)

and we set ω and β equal to 0.30 and

0.65, respectively. Since the fixed-effects estimator is invariant to αi, we let αi = 0; in addition, we let

θ0 ∈ {0.3, 0.6, 0.9, 0.99}, and consider n ∈ {20, 40, 60, 80, 100} and T ∈ {10, 20, 30}.
Tables 1 and Figures 1-4 summarize our results, which are based on 2500 Monte Carlo simulations

with 999 bootstrap replications each.

Table 1 reports the bias properties of the different methods. The first column corresponds to

the true finite sample bias E
(

θ̂ − θ0

)

whereas the second column reports the estimated bias using

the analytical correction of Hahn and Kuersteiner (2002) (i.e. − 1

T

(

1 + θ̂
)

). The remaining three

columns pertain to the bootstrap bias estimators based on the recursive-design wild bootstrap (RD),

the fixed-design wild bootstrap (FD) and the pairs bootstrap (PB). To implement the residual-based

wild bootstrap methods, we let ηit follow the Rademacher distribution (i.e. ηit = 1 with probability

0.5 and −1 with probability 0.5). We also used ηit ∼ N (0, 1) and ηit chosen according to Mammen

(1993) but these choices were dominated by the Rademacher distribution, confirming the results by

Davidson and Flachaire (2008) who advocate the use of the Rademacher distribution.

The simulation results in Table 1 confirm our theory. The FD and and the PB do not capture the

incidental parameter bias whereas the RD does. An interesting result is that the RD outperforms the

analytical bias correction of Hahn and Kuersteiner (2002), especially as θ0 approaches 1.

Figures 1-4 report coverage rates of nominal 95% intervals for θ0 based on the different bootstrap

methods and the asymptotic normal distribution. We consider intervals based on θ̂ (Figures 1 and 2)

and intervals based on its bias-corrected version
ˆ̂
θ (Figures 3 and 4). The bootstrap can yield both

equal-tailed and symmetric intervals whereas the normal distribution generates symmetric intervals
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Table 1: Performance of the bootstrap for bias-correction

Bias

T n θ0 True AT RD FD PB

10 20 0.3 -0.098 -0.090 -0.098 0.000 0.000
0.6 -0.138 -0.116 -0.135 0.000 -0.003
0.9 -0.185 -0.141 -0.178 0.000 -0.005
0.99 -0.256 -0.164 -0.232 0.000 -0.008

60 0.3 -0.098 -0.09 -0.099 0.000 0.000
0.6 -0.135 -0.117 -0.133 0.000 -0.001
0.9 -0.180 -0.142 -0.174 0.000 -0.002
0.99 -0.248 -0.165 -0.227 0.000 -0.004

100 0.3 -0.099 -0.09 -0.099 0.000 0.000
0.6 -0.135 -0.116 -0.133 0.000 -0.001
0.9 -0.179 -0.142 -0.173 0.000 -0.002
0.99 -0.245 -0.165 -0.225 0.000 -0.003

20 20 0.3 -0.049 -0.048 -0.049 0.000 0.000
0.6 -0.070 -0.061 -0.069 0.000 -0.002
0.9 -0.093 -0.075 -0.091 0.000 -0.004
0.99 -0.130 -0.089 -0.124 0.000 -0.005

60 0.3 -0.050 -0.047 -0.050 0.000 0.000
0.6 -0.069 -0.062 -0.067 0.000 -0.001
0.9 -0.089 -0.076 -0.088 0.000 -0.002
0.99 -0.124 -0.089 -0.119 0.000 -0.002

100 0.3 -0.050 -0.048 -0.050 0.000 0.000
0.6 -0.067 -0.062 -0.067 0.000 -0.001
0.9 -0.087 -0.076 -0.087 0.000 -0.001
0.99 -0.122 -0.089 -0.118 0.000 -0.002
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Figure 1: Coverage rates of nominal 95% symmetric intervals based on θ̂
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Figure 2: Coverage rates of nominal 95% equal-tailed confidence intervals based on θ̂
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Figure 3: Coverage rates of nominal 95% symmetric intervals based on
ˆ̂
θ
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Figure 4: Coverage rates of nominal 95% equal-tailed confidence intervals based on
ˆ̂
θ
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by construction. Hence, we consider bootstrap symmetric intervals in Figures 1 and 3 and bootstrap

equal-tailed intervals in Figures 2 and 4. Each figure contains nine plots, where each plot shows the

actual coverage rates across different values of n for a given combination of T and θ0. Specifically,

we vary T across rows (T ∈ {10, 20, 30}) and θ0 across columns (θ0 ∈ {0.3, 0.6, 0.9} for Figures 1-2

and, θ0 ∈ {0.6, 0.9, 0.99} for Figures 3-4). All intervals are based on t-statistics studentized with an

heteroskedasticity-robust standard error.

Figure 1 shows that the asymptotic theory-based intervals that rely on the biased fixed-effects

estimator can be severely distorted, especially as n increases. This is entirely expected because these

intervals rely on the N (0, 1) distribution, which does not take into account the presence of the inci-

dental parameter bias. We only include these intervals here as a benchmark for the PB and the FD

bootstrap methods, which also fail to capture this bias. The results for these methods show that they

indeed follow closely the intervals based on the asymptotic standard normal distribution. Figure 1 also

shows that the RD bootstrap symmetric intervals outperform all the remaining intervals, essentially

eliminating the coverage distortions for θ0 = 0.3 and 0.6. For these values of θ0, the RD bootstrap

shows very little sensitivity to increases of n, which reflects the fact that it contains a built-in inciden-

tal parameter bias correction. When θ0 = 0.9, the RD bootstrap rates deteriorate (with distortions

increasing as a function of n), but it still dominates the remaining methods. Distortions decrease as

a function of T . As Hahn and Kuersteiner (2002) show, the limiting distribution of θ̂ (and its rate

of convergence) changes when θ0 = 1, which explains the deterioration of all methods in the vicinity

of one. The comparison of Figure 1 with Figure 2 shows that equal-tailed intervals based on the RD

bootstrap outperform the symmetric intervals, especially when θ0 is large (and close to one).

Figure 3 shows that asymptotic theory-based intervals that rely on the bias-corrected estimator
ˆ̂
θ can be severely distorted in finite samples, especially if θ0 is large. In particular, large distortions

arise when θ0 ∈ {0.9, 0.99}. For instance, if T = 10 and θ0 = 0.9, the coverage rate of a 95%

asymptotic theory-based interval varies between 70% and 40% for values of n between 20 and 100.

These rates increase to around 90% to 80% when T = 30. When θ0 = 0.99, these numbers deteriorate

by a lot, varying between 70% and 35% when T = 30. When θ0 = 0.6, the asymptotic theory works

much better, but there are still noticeable coverage distortions when T = 10 (rates are around 90%

in this case). By comparison, the RD bootstrap symmetric intervals are much less distorted for all

combinations of n, T and θ0. For θ0 ∈ {0.6, 0.9}, this method essentially eliminates all the coverage

distortions noted for the asymptotic theory-based intervals. When θ0 = 0.99, rates deteriorate but

not by much, remaining around 90% for all values of n and T . The PB tends to follow the asymptotic

theory-based intervals when θ0 = 0.6, but it outperforms these intervals when θ0 increases. Symmetric

intervals tend to ouperform equal-tailed intervals for these two methods, as the comparison of Figures

3 and 4 shows.

The FD bootstrap symmetric intervals are too conservative for all combinations of n, T and θ0.

The reason for this behavior is that the FD bootstrap distribution is incorrectly centered at −D =
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√
ρ (1 + θ0) > 0. Thus, the bootstrap distribution of

√
nT
(
ˆ̂
θ∗fd −

ˆ̂
θ
)

is shifted to the right of that of
√
nT
(
ˆ̂
θ − θ0

)

, implying that the bootstrap quantiles of the absolute value of
√
nT
(
ˆ̂
θ∗fd −

ˆ̂
θ
)

will be

systematically larger than those of the original finite sample distribution (centered at zero). Instead,

the equal-tailed FD intervals tend to undercover, reflecting the fact that the bootstrap distribution is

to the right of the true distribution. As n increases, this pushes the center of the bootstrap distribution

further to the right, explaining the deterioration of the results for large values of n.

6 Conclusion

The main contribution of this paper is to study the validity of the bootstrap for inference on a sta-

tionary linear dynamic panel model with individual specific fixed effects. We consider three bootstrap

methods: the recursive-design wild bootstrap, the fixed-design wild bootstrap and the pairs bootstrap.

These methods are a natural generalization to the panel context of the bootstrap methods considered

by Gonçalves and Kilian (2004) in the pure time series autoregressive model.

A crucial difference between the pure time series context and the panel context considered here is

the presence of the incidental parameter bias due to the estimation of the fixed effects. We show that

only the recursive-design bootstrap is able to capture this bias whereas the other two methods fail

to do so. Thus, in contrast with the recursive-design wild bootstrap, the fixed-design and the pairs

bootstrap do not consistently estimate the distribution of the standard biased fixed effects estimator

and cannot be used for bias correction.

Although bootstrap intervals based on the biased fixed effects estimates are asymptotically valid

if obtained with the recursive-design bootstrap, refinements can be obtained if bootstrap inference

is based on the bias-corrected estimates. Our results show that the recursive-design is valid in this

context whereas the fixed-design bootstrap is not. An interesting finding is that the invalidity of the

pairs bootstrap to estimate the distribution of the biased fixed effects estimator does not prevent this

method to be valid when applied to the bias-corrected estimates.

An important limitation of the present setup is the fact that we do not allow for additional

regressors xit.When these regressors are strictly exogeneous, a recursive-design bootstrap that fixes

xit at their original values should be able to capture the incidental bias. We have confirmed this by

simulations (not reported here). Providing a proof of this result is outside the scope of this paper

and is left for future research. The validity of the pairs bootstrap when applied to a bias-corrected

estimator under the presence of extra regressors has recently been studied by Kaffo (2013) in the more

general context of nonlinear dynamic models.

Further extensions of this work include the proposal of bootstrap methods that are robust to

nonstationarity, where a form of the grid bootstrap can be useful, and a study of the higher order

properties of the recursive-design bootstrap using Edgeworth expansions. These extensions are outside

the scope of the present paper and are left for future research.
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Gonçalves, S., and H. White (2005): “Bootstrap Standard Error Estimates for Linear Regression,”

Journal of the American Statistical Association, 100, 970–979.

Gouriroux, C., P. C. Phillips, and J. Yu (2010): “Indirect inference for dynamic panel models,”

Journal of Econometrics, 157(1), 68–77.

Hahn, J., and G. Kuersteiner (2002): “Asymptotically Unbiased Inference for a Dynamic Panel

Model with Fixed Effects when Both n and T Are Large,” Econometrica, 70(4), 1639–1657.

(2011): “Bias Reduction For Dynamic Nonlinear Panel Models With Fixed Effects,” Econo-

metric Theory, 27(06), 1152–1191.

Hansen, C. B. (2007): “Asymptotic properties of a robust variance matrix estimator for panel data

when T is large,” Journal of Econometrics, 141(2), 597–620.

Hounkannounon, B. (2010): “Bootstrap for panel regression models with random effects,” Discus-

sion paper.

Kaffo, M. (2013): “Bootstrap inference for nonlinear dynamic panel data models with individual

fixed effects,” Unpublished manuscript.

Kapetanios, G. (2008): “A Bootstrap Procedure for Panel Datasets with Many Cross-sectional

Units,” Econometrics Journal, 11(2), 377–395.

Kiviet, J. F. (1995): “On bias, inconsistency, and efficiency of various estimators in dynamic panel

data models,” Journal of Econometrics, 68(1), 53–78.

Kreiss, J. (1997): “Asymptotical Properties of Residual Bootstrap for Autoregressions,” Manuscript,

institute for mathematical stochastics, technical university of braunschweig, germany.

Lee, Y. (2012): “Bias in dynamic panel models under time series misspecifcation,” Journal of Econo-

metrics.

Liu, R. (1988): “Bootstrap procedure under some non-i.i.d. models.,” Annals of Statistics, 16, 1696–

1708.

Liu, R., and K. Singh (1992): “Efficiency and robustness in resampling,” Annals of Statitics, 20,

370–384.

Moon, H. R., and P. C. B. Phillips (2004): “GMM Estimation of Autoregressive Roots Near

Unity with Panel Data,” Econometrica, 72(2), 467–522.

Neyman, J., and E. Scott (1948): “Consistent estimates based on partially consistent observations,”

Econometrica, 16, 1–32.

26



Nickell, S. J. (1981): “Biases in Dynamic Models with Fixed Effects,” Econometrica, 49(6), 1417–26.

Pakel, C., N. Shephard, and K. Sheppard (2011): “Nuisance parameters, composite likelihoods

and a panel of GARCH models,” Statistica Sinica, 21(1), 307–329.

Phillips, P. C., and D. Sul (2007): “Bias in dynamic panel estimation with fixed effects, incidental

trends and cross section dependence,” Journal of Econometrics, 137(1), 162–188.

Wu, C. (1986): “Jackknife, bootstrap and other resampling methods in regression analysis.,” Annals

of Statistics, 14, 1261–1295.

27



A Appendix A: proofs of results in Section 2

Throughout this Appendix, we let ∆ denote a generic constant independent of n and T. Given a matrix

A, we let |A| =
(
tr
(
A′A

))1/2
. The following results are instrumental in the proofs that follow. They

correspond to Lemmas 1 and 2 in Hansen (2007) respectively.

Theorem A.1 Suppose ZiT are independent across i for all T with E (ZiT ) = µiT and E |ZiT |1+δ <

∆ < ∞ for some δ > 0 and all i, T . Then
1

n

n∑

i=1

(ZiT − µiT ) →P 0 as n, T → ∞ jointly.

Theorem A.2 For k×1 vectors ZiT , suppose ZiT are independent across i for all T with E (ZiT ) = 0,

E
(

ZiTZ
′

iT

)

= ΩiT , and E |ZiT |2+δ < ∆ < ∞ for some δ > 0. Assume Ω = lim
n,T

1

n

n∑

i=1

ΩiT is positive

definite with minimum eigenvalue λmin > 0. Then
1√
n

n∑

i=1

ZiT →d N (0,Ω) as n, T → ∞ jointly.

We first provide some auxiliary lemmas, followed by the proof of Theorem 2.1. The proof of the

auxiliary lemmas follows at the end.

Lemma A.1 Under Assumption A1, for fixed l, p ∈ N, (i)
1

nT

n∑

i=1

T∑

t=1

εit−lεit−p →P σ21{l=p}; and

(ii)
1

nT 2

n∑

i=1

T∑

t=1

t−1∑

s=1

εit−lεis−p →P 0.

Lemma A.2 Under Assumption A1, for fixed k ∈ N,
1√
nT

n∑

i=1

T∑

t=1

(εitεit−1, . . . , εitεit−k) →d N (0,Ωk) ,

where Ωk ≡ [τ lp]l,p=1,...,k.

Lemma A.2 is the analog of Lemma A.1 of Gonçalves and Kilian (2004) (henceforth GK (2004)).

To state the following lemma, we need to introduce some notation. In particular, let uit =

∞∑

l=0

θl0εit−l,

which is well defined given that |θ0| < 1. It follows that

yit−1 =
αi

1− θ0
+

∞∑

l=1

θl−1
0 εit−l ≡

αi

1− θ0
+ uit−1, (12)

for all (i, t). Therefore,

AnT ≡ 1

nT

n∑

i=1

T∑

t=1

(yit−1 − ȳi−)
2 =

1

nT

n∑

i=1

T∑

t=1

u2it−1 −
1

n

n∑

i=1

ū2i− ≡ AnT1 −AnT2,

where ūi− =
1

T

T∑

t=1

uit−1. The next lemma establishes the consistency of AnT .

Lemma A.3 Under Assumption A1, (i) AnT1 →P A ≡ σ2
(
1− θ20

)−1
; (ii) AnT2 →P 0; and (iii)

AnT →P A.
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Our next lemma establishes the limiting distribution of

BnT ≡ 1√
nT

n∑

i=1

T∑

t=1

(yit−1 − ȳi−) (εit − ε̄i) =
1√
nT

n∑

i=1

T∑

t=1

uit−1εit−
1√
nT

n∑

i=1

T∑

t=1

uit−1ε̄i ≡ BnT1−BnT2.

Lemma A.4 Under Assumption A1, (i) BnT1 →d N (0, B), where B =
∞∑

l,p=1

θl+p−2
0 τ lp; (ii) BnT2 →P

−A ·D, where A = σ2
(
1− θ20

)−1
and D = −√

ρ (1 + θ0) ; and (iii) BnT →d N (A ·D,B).

Proof of Theorem 2.1. The proof follows from Lemmas A.3 and A.4 by Slutsky’s theorem.

Proof of Lemma A.1 (i) For fixed l, p ∈ N, let Z lp
iT =

1

T

T∑

t=1

εit−lεit−p, i = 1, . . . , n. We check

that {Z lp
iT } satisfies the conditions of Theorem A.1. First, {Z lp

iT } are independent across i for all T

with E
(

Z lp
iT

)

= σ2
i 1{l=p}. Second, we show that E

∣
∣
∣Z

lp
iT

∣
∣
∣

1+δ
< ∆ < ∞ for some δ > 0 and all i

and T . Taking δ = 1, by repeated application of the Cauchy-Schwartz inequality, we can show that

E
(

Z lp
iT

)2
≤ E (εit)

4 ≤ ∆ < ∞. Thus,
1

n

n∑

i=1

(

Z lp
iT − σ2

i 1{l=p}
)

→P 0 as n, T → ∞ jointly. The

result follows by noting that lim
n→∞

1

n

n∑

i=1

σ2
i = σ2 by A1(iv). To prove part (ii), define for fixed l, p ∈ N,

Z lp
iT =

1

T 2

T∑

t=1

t−1∑

s=1

εit−lεis−p. Then, {Z lp
iT } are independent across i for all T with E

(

Z lp
iT

)

= µlp
iT , where

µlp
iT = 0 for l ≤ p and for l − p ≥ T, and µlp

iT =
T − l − p

T 2
σ2
i for l − p ∈ {1, . . . , T − 1}. By repeated

application of the Cauchy-Schwartz inequality, we can show that E
(

Z lp
iT

)2
≤ E (εit)

4 ≤ ∆ < ∞,

which proves that Z lp
iT verifies the conditions of Theorem A.1. To end the proof of (ii), note that by

definition of µlp
iT ,

1

n

n∑

i=1

µlp
iT =

T − l − p

T 2

(

1

n

n∑

i=1

σ2
i

)

1{l−p∈{1,...,T−1}} → 0

as n, T → ∞ jointly, for all l, p ∈ N, given that lim
n→∞

1

n

n∑

i=1

σ2
i = σ2.

Proof of Lemma A.2 For fixed k ∈ N, let Zk
iT =

1√
T

T∑

t=1

(εitεit−1, . . . , εitεit−k)
′, i = 1, . . . , n.

We check that Zk
iT satisfies the conditions of Theorem A.2. First, Zk

iT are independent across i for

all T with E
(

Zk
iT

)

= 0. Second, E
(

Zk
iTZ

k′
iT

)

= [τ ilp]l,p=1,...,k ≡ Ωik for all i since by assumption

E
(
ε2itεit−lεit−p

)
= τ ilp for all t and all l, p. Third, we show that for fixed k ∈ N, E

∣
∣
∣Zk

iT

∣
∣
∣

2δ
≤ ∆ < ∞,

uniformly in i for some δ > 1 (we take δ = 2). By the c− r inequality,

E
∣
∣
∣Zk

iT

∣
∣
∣

4
= E





k∑

l=1

(

1√
T

T∑

t=1

εitεit−l

)2




2

≤ k
k∑

l=1

E

(

1√
T

T∑

t=1

εitεit−l

)4

= k
k∑

l=1

1

T 2

T∑

t1,...,t4=1

E
(

zlit1z
l
it2z

l
it3z

l
it4

)

,
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where we let zlit = εitεit−l for all 1 ≤ l ≤ k. Noting that E
(

zlit

)

= 0 and given the definition of the

fourth order joint cumulant (see Brillinger (1981), p. 19), we have that

E
(

zlit1z
l
it2z

l
it3z

l
it4

)

= E
(

zlt1z
l
t2

)

E
(

zlt3z
l
t4

)

+ E
(

zlt1z
l
t3

)

E
(

zlt2z
l
t4

)

+ E
(

zlt1z
l
t4

)

E
(

zlt2z
l
t3

)

+cum
(

zlit1 , z
l
it2 , z

l
it3 , z

l
it4

)

.

By the m.d.s assumption, E
(

zltz
l
s

)

= E (εitεit−lεisεis−l) = τ ill1{t=s} for any (t, s) , which implies that

1

T 2

T∑

t1,...,t4=1

E
(

zlit1z
l
it2z

l
it3z

l
it4

)

= 3τ 2ill +
1

T 2

T∑

t1,...,t4=1

cum
(

zlit1 , z
l
it2 , z

l
it3 , z

l
it4

)

.

Given the strict stationarity assumption, cum
(

zlit1 , z
l
it2 , z

l
it3 , z

l
it4

)

= cum
(

zlit1−t4 , z
l
it2−t4 , z

l
it3−t4 , z

l
i0

)

,

which implies that

1

T 2

T∑

t1,...,t4=1

E
(

zlit1z
l
it2z

l
it3z

l
it4

)

= 3τ2ill +
1

T 2

T∑

t4=1







T∑

t1,t2,t3=1

cum
(

zlit1−t4 , z
l
it2−t4 , z

l
it3−t4 , z

l
i0

)






,

where the expression in curly brackets is O(1) uniformly in i, l and t4, given A1(vii) (applied with

l1 = l2 = l3 = l4 = l). This shows that
1

T 2

T∑

t1,...,t4=1

E
(

zlit1z
l
it2z

l
it3z

l
it4

)

is uniformly bounded in i, l and

T and hence, for a fixed k ∈ N, E
∣
∣
∣Zk

iT

∣
∣
∣

4
≤ ∆ < ∞ uniformly in i and T . Also,

lim
n,T→∞

1

n

n∑

i=1

Ωik = lim
n→∞

1

n

n∑

i=1

[τ ilp]l,p=1,...,k =

[

lim
n→∞

1

n

n∑

i=1

τ ilp

]

l,p=1,...,k

= [τ lp]l,p=1,...,k ≡ Ωk,

where Ωk is positive definite with minimum eigenvalue λmin > 0 since by assumption, τ ll > 0 for all

l. Thus, the conditions of Theorem A.2 are verified, ending the proof.

Proof of Lemma A.3. The proof of part (i) follows from Lemma A.1(i) using the same steps as the

proof that A1n →P 0 in Theorem 3.1 in GK (p. 108). To prove (ii), which is new in our panel context,

we use the definition of ūi− to decompose AnT2 as follows:

AnT2 =
1

n

n∑

i=1

(

1

T

T∑

t=1

∞∑

l=1

θl−1
0 εit−l

)2

=
1

T







∞∑

l=1

∞∑

p=1

θl+p−2
0

(

1

nT

n∑

i=1

T∑

t=1

εit−lεit−p

)





+ 2







∞∑

l=1

∞∑

p=1

θl+p−2
0

(

1

nT 2

n∑

i=1

T∑

t=1

t−1∑

s=1

εit−lεis−p

)






≡ a1,nT + 2a2,nT .

Given part (i), we have a1,nT = (1/T ) ×AnT1 = oP (1). Next we show that a2,nT = oP (1). For fixed

m ∈ N, define am2,nT =

m∑

l=1

m∑

p=1

θl+p−2
0

(

1

nT 2

n∑

i=1

T∑

t=1

t−1∑

s=1

εit−lεis−p

)

. By Lemma A.1(ii), it follows that

that am2,nT → 0 for all m ∈ N. Thus, it suffices to show that lim
m→∞

lim sup
n,T→∞

P
(∣
∣a2,nT − am2,nT

∣
∣ > δ

)
= 0,
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for all δ > 0 (see Brockwell and Davis (1991)’s Proposition 6.3.9). By Markov’s inequality,

P
(∣
∣a2,nT − am2,nT

∣
∣ > δ

)
≤ 1

δ
E
∣
∣a2,nT − am2,nT

∣
∣

≤ 1

δ
E

∣
∣
∣
∣
∣
∣

∞∑

l=m+1

∞∑

p=1

θl+p−2
0

(

1

nT 2

n∑

i=1

T∑

t=1

t−1∑

s=1

εit−lεis−p

)
∣
∣
∣
∣
∣
∣

+
1

δ
E

∣
∣
∣
∣
∣
∣

m∑

l=1

∞∑

p=m+1

θl+p−2
0

(

1

nT 2

n∑

i=1

T∑

t=1

t−1∑

s=1

εit−lεis−p

)
∣
∣
∣
∣
∣
∣

≤ 2

δ

∞∑

l=m+1

∞∑

p=1

|θ0|l+p−2

(

1

nT 2

n∑

i=1

T∑

t=1

t−1∑

s=1

E |εit−lεis−p|
)

≤
( ∞∑

l=m+1

|θ0|l−1

)

K → 0 as m → ∞,

given the absolute summability of θl−1
0 and the fact that E |εit−lεis−p| ≤ ∆ < ∞ uniformly. This

completes the proof of (ii). (iii) follows from (i) and (ii).

Proof of Lemma A.4 Part (i) follows from Lemma A.1 and the cross sectional independence as-

sumption, using arguments similar to those used in the proof of Theorem 3.1 of GK (2004) (see part

(ii) of their proof). To prove (ii) (which is specific to the fixed effects OLS estimator), note that we

can show that the following decomposition holds:

BnT2 ≡ 1

T
√
nT

n∑

i=1

T∑

t=1

( ∞∑

l=1

θl−1
0 εit−l

)(
T∑

s=1

εis

)

=
1

T
√
nT

n∑

i=1

T∑

t=1

(
t−1∑

l=1

θl−1
0 εit−l +

∞∑

l=t

θl−1
0 εit−l

)(
T∑

s=1

εis

)

=

√
n

T

T−1∑

l=1

θl−1
0

1

nT

n∑

i=1

(
T−l∑

t=1

εit

)(
T∑

s=1

εis

)

+

√
n

T

1− θT0
1− θ0

{ ∞∑

l=1

θl−1
0

(

1

nT

n∑

i=1

T∑

t=1

εitεi1−l

)}

≡ BnT2.1 + BnT2.2.

Now,

BnT2.1 =

√
n

T

T−1∑

l=1

θl−1
0

1

nT

n∑

i=1

(
T−l∑

t=1

εit

)(
T−l∑

s=1

εis +

T∑

s=T−l+1

εis

)

=

√
n

T

T−1∑

l=1

θl−1
0

1

nT

n∑

i=1

(
T−l∑

t=1

εit

)2

+

√
n

T

T−1∑

l=1

θl−1
0

1

nT

n∑

i=1

(
T−l∑

t=1

εit

)(
T∑

s=T−l+1

εis

)

≡ b1 + b2.

For fixed m ∈ N, define

b1,m =

√
n

T

m−1∑

l=1

θl−1
0




1

n

n∑

i=1

(

1√
T

T−l∑

t=1

εit

)2


 =

√
n

T

m−1∑

l=1

θl−1
0

(

1

n

n∑

i=1

ZiT,l

)

,

where ZiT,l ≡ T−1

(
T−l∑

t=1

εit

)2

. For fixed l, we can show that
1

n

n∑

i=1

ZiT,l →P σ2 by an applica-

tion of Lemma A.1. In particular, we can use the same arguments as in Lemma A.2 to show that

E |ZiT,l|2 is uniformly bounded by relying on Assumption A1 (vi). Thus, b1,m →P √
ρ

m−1∑

l=1

θl−1
0 σ2 =
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√
ρσ2 1− θm−1

0

1− θ0
≡ Dm and Dm → √

ρσ2 1

1− θ0
≡ −A · D as m → ∞, where A ≡ σ2/

(
1− θ20

)
and

D ≡ −√
ρ (1 + θ0). In addition, by Markov’s inequality, we have

P (|b1 − b1,m| > δ) ≤ 1

δ

√
n

T

T−1∑

l=m

|θ0|l−1

(

1

n

n∑

i=1

E (ZiT,l)

)

=
1

δ

√
n

T

T−1∑

l=m

|θ0|l−1

(

T − l

T

1

n

n∑

i=1

σ2
i

)

.

It follows that lim
m→∞

lim sup
n,T→∞

P (|b1 − b1,m| > δ) = 0 since n/T → ρ, |θ0|l−1 is absolutely summable

and
1

n

n∑

i=1

σ2
i → σ2. Let us turn to b2. For fixed m, define

b2,m =

√
n

T

m−1∑

l=1

θl−1
0

1

n

n∑

i=1

1

T

(
T−l∑

t=1

εit

)(
T∑

s=T−l+1

εis

)

≡
√

n

T

m−1∑

l=1

θl−1
0

1

n

n∑

i=1

YiT,l,

where YiT,l are independent across i, E (YiT,l) = 0 and E |YiT,l|2 ≤ E

(

1√
T

T∑

t=1

εit

)4

≤ ∆ by Assump-

tion A1 (v) and (vi). Thus, by Theorem A.1,
1

n

n∑

i=1

YiT,l = oP (1) and therefore, b2,m = oP (1). Finally,

by Markov’s inequality, we have

P (|b2 − b2,m| > δ) ≤ 1

δ

√
n

T
E

∣
∣
∣
∣
∣

T−1∑

l=m

θl−1
0

1

nT

n∑

i=1

(
T−l∑

t=1

εit

)(
T∑

s=T−l+1

εis

)∣
∣
∣
∣
∣

≤ 1

δ

√
n

T

T−1∑

l=m

|θ0|l−1 1

n

n∑

i=1

E

(

1√
T

T∑

t=1

εit

)2

=
1

δ

√
n

T

(

1

n

n∑

i=1

σ2
i

)
T−1∑

l=m

|θ0|l−1 ,

which implies that lim
m→∞

lim sup
n,T→∞

P (|b2 − b2,m| > δ) = 0 for any δ > 0. To complete the proof of Lemma

A.4 (ii), we note that E (BnT2.2) = 0 and we can show that V ar (BnT2.2) = O (1/nT ) = o (1). Part

(iii) follows from (i) and (ii) by Slutsky’s theorem.

B Appendix B: Proofs of results in Section 3

B.1 Proofs of results in Section 3.1

Throughout this section, y∗it = α̂i + θ̂y∗it−1 + ε∗it, where ε∗it = ε̂it · ηit, with ηit are i.i.d.(0, 1) and

ε̂it = yit − α̂i − θ̂yit−1.

B.1.1 Auxiliary lemmas

Lemma B.1 Under Assumption A1, for fixed k, l ∈ N, (i) n−1T−1
n∑

i=1

T∑

t=k+1

ε∗2it−k →P ∗

σ2; (ii)

n−1T−1
n∑

i=1

T∑

t=k+1

ε∗it−kε
∗
it →P ∗

0; and (iii) n−1T−1
n∑

i=1

T∑

t=max(k,l)+1

ε∗2it ε
∗
it−kε

∗
it−l →P ∗

τkl1{k=l}, in

probability, where τkl = E
(
ε2itεit−kεit−l

)
.
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Lemma B.2 Under Assumption A1, for all k ∈ N,
1√
nT

n∑

i=1

T∑

t=k+1

(
ε∗itε

∗
it−1, . . . , ε

∗
itε

∗
it−k

)′ →d∗ N
(

0, Ω̃k

)

,

in probability, where Ω̃k ≡ diag (τ11, . . . , τkk).

For the next lemma, let y∗i0 =
α̂i

1− θ̂
. It follows that for fixed i = 1, . . . , n and t = 1, . . . , T ,

y∗it = θ̂
t α̂i

1− θ̂
+

1− θ̂
t

1− θ̂
α̂i +

t−1∑

s=0

θ̂
s
ε∗it−s =

α̂i

1− θ̂
+

t−1∑

s=0

θ̂
s
ε∗it−s ≡

α̂i

1− θ̂
+ u∗it.

Therefore,

A∗
nT =

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − y∗i−

)2
=

1

nT

n∑

i=1

T∑

t=1

u∗2it−1 −
1

n

n∑

i=1

ū∗2i− ≡ A∗
nT1 −A∗

nT2,

where ū∗i− =
1

T

T∑

t=1

u∗it−1 and u∗it−1 =

t−1−1∑

s=0

θ̂
s
ε∗it−1−s =

t−1∑

s=1

θ̂
s−1

ε∗it−s.

Lemma B.3 Under Assumption A1, (i) A∗
nT1 →P ∗

A ≡ σ2

1− θ20
; (ii) A∗

nT2 →P ∗

0; and (iii)

A∗
nT →P ∗

A, in probability.

Similarly, if we define B∗
nT =

1√
nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)
(ε∗it − ε̄∗i ), given the definition of y∗it−1, we

have

B∗
nT =

1√
nT

n∑

i=1

T∑

t=1

u∗it−1ε
∗
it −

1√
nT

n∑

i=1

T∑

t=1

u∗it−1ε̄
∗
i ≡ B∗

nT1 −B∗
nT2. (13)

Lemma B.4 Under Assumption A1, (i) B∗
nT1 →d∗ N

(

0, B̃
)

; (ii) B∗
nT2 →P ∗ −A · D; and (iii)

B∗
nT →d∗ N

(

A ·D, B̃
)

, in probability, where B̃ =
∞∑

l=1

θ2l−2
0 τ ll, and A and D are defined as in Lemma

A.4.

B.1.2 Proofs

Proof of Theorem 3.1. The result follows from Lemmas B.3 and B.4, Theorem A.1 and Polya’s

Theorem, given that the normal distribution is everywhere continuous. Note that Assumption A1

needs to be strengthened by A1(v′) in order for B̃ = B.

Proof of Theorem 3.2. We show that (1)
√
nT (θ̃

∗ − θ̂) →d∗ N(D,C) in probability; and (2) for

some δ > 0, E∗
(∣
∣
∣

√
nT (θ̃

∗ − θ̂)
∣
∣
∣

1+δ
)

= OP (1). Starting with (1), we can write
√
nT (θ̃

∗ − θ̂) =
√
nT (θ̂

∗
rd− θ̂)+R∗

nT , with R∗
nT = −

√
nT (θ̂

∗
rd− θ̂)1{ 1

nT

∑n
i=1

∑T
t=1

(y∗it−1
−ȳ∗i−)2< η

2
}, given the definition of

θ̃
∗
(with δ =

η

2
and η ∈ (0,

σ2

1− θ20
)). By Theorem 3.1,

√
nT (θ̂

∗
rd − θ̂) = OP ∗(1), in probability, and

E∗
(

1{ 1

nT

∑n
i=1

∑T
t=1

(y∗it−1
−ȳ∗i−)2< η

2
}
)

= P ∗
(

1

nT

n∑

i=1

T∑

t=1

(y∗it−1 − ȳ∗i−)
2 <

η

2

)

→P 0,
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given (3). By Markov’s inequality, we conclude that R∗
nT = oP ∗(1) in probability. To prove (2), we let

δ = 1 and define S =

{

1

nT

n∑

i=1

T∑

t=1

(y∗it−1 − ȳ∗i−)
2 ≥ η

2

}

. Then, given the definition of θ̃
∗
, we have

E∗
(∣
∣
∣

√
nT (θ̃

∗ − θ̂)
∣
∣
∣

2
)

= E∗
(∣
∣
∣

√
nT (θ̂

∗
rd − θ̂)1S

∣
∣
∣

2
)

= E∗





(

1

nT

n∑

i=1

T∑

t=1

(y∗it−1 − ȳ∗i−)
2

)−2(

1√
nT

n∑

i=1

T∑

t=1

(y∗it−1 − ȳ∗i−)(ε
∗
it − ε̄∗i )

)2

1S





≤ 4

η2
E∗





(

1√
nT

n∑

i=1

T∑

t=1

(y∗it−1 − ȳ∗i−)(ε
∗
it − ε̄∗i )

)2


 ≡ 4

η2
E∗(B∗2

nT ),

where B∗
nT can be decomposed as B∗

nT = B∗
1nT − B∗

2nT , with B∗
1nT and B∗

2nT given in equation (13).

We now show that E∗(B∗2
nT ) = OP (1) . We have that E∗ (B∗2

nT

)
≤ 2

(
E∗ (B∗2

1nT

)
+ E∗ (B∗2

2nT

))
, where

E∗ (B∗2
1nT

)
= V ar∗ (B∗

1nT ) →P B̃, so E∗ (B∗2
1nT

)
= OP (1) . For the second term, note that

B∗
2nT =

1√
nT

n∑

i=1

T∑

t=1

u∗it−1ε̄
∗
i = B∗

nT2.1 + B∗
nT2.2,

where B∗
nT2.1 and B∗

nT2.2 are defined in the proof of Lemma B.4. As we argue in that proof, E∗ (B∗2
nT2.2

)
→P

0, so we are left to prove that E∗ (B∗2
nT2.1

)
= OP (1). Given the definition of B∗

nT2.1,

E∗ (B∗2
nT2.1

)
=

1

nT 3

n∑

i,j=1

T−1∑

l,p=1

θ̂
l+p−2

E∗





(
T−l∑

t=1

ε∗it

)2(T−p
∑

s=1

ε∗js

)2




=
1

nT 3

n∑

i=1

T−1∑

l,p=1

θ̂
l+p−2

E∗





(
T−l∑

t=1

ε∗it

)2(T−p
∑

s=1

ε∗is

)2




+
1

nT 3

n∑

i 6=j

T−1∑

l,p=1

θ̂
l+p−2

E∗





(
T−l∑

t=1

ε∗it

)2


E∗





(
T−p
∑

s=1

ε∗js

)2


 ≡ b∗1 + b∗2.

Now,

b∗1 =
1

nT 3

n∑

i=1

T−1∑

l=1

θ̂
2l−2

E∗





(
T−l∑

t=1

ε∗it

)4


+ 2
1

nT 3

n∑

i=1

T−1∑

l>p

θ̂
l+p−2

E∗





(
T−l∑

t=1

ε∗it

)2(T−p
∑

s=1

ε∗is

)2




= b∗11 + b∗12

For b∗11, using the fact that E∗|ηit|4 ≤ ∆ < ∞,

b∗11 ≤
(1 + ∆)

nT 3

n∑

i=1

T−1∑

l=1

θ̂
2l−2







T−l∑

t=1

ε̂4it + 3
T−l∑

t6=s

ε̂2itε̂
2
is






≤ 3 (1 + ∆)

T







1

nT 2

n∑

i=1

T∑

t,s=1

ε̂2itε̂
2
is







(
T∑

l=1

θ̂
2l−2

)

= OP (
1

T
),
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given that the terms in brackets are OP (1). Similarly,

b∗12 = 2
1

nT 3

n∑

i=1

T−1∑

l>p

θ̂
l+p−2

E∗









T−p
∑

t=1

ε∗it +
T−l∑

t=T−p+1

ε∗it





2(
T−p
∑

s=1

ε∗is

)2




≤ 4

nT 3

n∑

i=1

T−1∑

l>p

θ̂
l+p−2

E∗





(
T−p
∑

t=1

ε∗it

)4

+





T−l∑

t=T−p+1

ε∗it





2(
T−p
∑

s=1

ε∗is

)2




≤ 4 (1 + ∆)

nT 3

n∑

i=1

T−1∑

l>p

θ̂
l+p−2






3

T∑

t,s=1

ε̂2itε̂
2
is +





T−l∑

t=T−p+1

ε̂2it





(
T−p
∑

s=1

ε̂2is

)






≤ 16 (1 + ∆)

T







1

nT 2

n∑

i=1

T∑

t,s=1

ε̂2itε̂
2
is











T−1∑

l>p

θ̂
l+p−2



 = OP (
1

T
) = OP (1).

Finally, for b∗2 we have

b∗2 =
1

nT 3

n∑

i 6=j

T−1∑

l,p=1

θ̂
l+p−2

(
T−l∑

t=1

ε̂2it

)(
T−p
∑

s=1

ε̂2js

)

≤ n

T

(

1

nT

n∑

i=1

T∑

t=1

ε̂2it

)2




T−1∑

l,p=1

θ̂
l+p−2



 = OP (1).

This complete the proof of Theorem 3.2.

Proof of Lemma 3.1. From Lemma B.3, Â∗
rd →P ∗

A. Hence, it suffices to show that B̂∗
rd →P ∗

B̃, in

probability. We can write ε̃∗it − ¯̃ε∗i = ε∗it − ε̄∗i −
(

θ̂
∗
rd − θ̂

) (
y∗it−1 − ȳ∗i−

)
, where ε̃∗it = y∗it − α̂∗

i − θ̂
∗
rdy

∗
it−1

and ε∗it = y∗it − α̂i − θ̂y∗it−1. Thus,

B̂∗
rd = B̂∗

1 + B̂∗
2 + B̂∗

3 , with

B̂∗
1 =

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2
(ε∗it − ε̄∗i )

2, B̂∗
2 = −2

(

θ̂
∗
rd − θ̂

) 1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)3
(ε∗it − ε̄∗i ) and

B̂∗
3 =

(

θ̂
∗
rd − θ̂

)2 1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)4
.

We show: (a) B̂∗
1 →P ∗

B, (b) B̂∗
1 →P ∗

0 and (c) B̂∗
1 →P ∗

0. Starting with (a), note that

B̂∗
1 =

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2
(ε∗it − ε̄∗i )

2

=
1

nT

n∑

i=1

T∑

t=1

(
u∗it−1 − ū∗i−

)2
(ε∗it − ε̄∗i )

2

=
1

nT

n∑

i=1

T∑

t=1

(
u∗2it−1 − 2u∗it−1ū

∗
i− + ū∗2i−

) (
ε̂∗2it − 2ε∗itε̄

∗
i + ε̄∗2i

)

=
1

nT

n∑

i=1

T∑

t=1

u∗2it−1ε
∗2
it +R∗

nT ,
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where

R∗
nT = − 2

nT

n∑

i=1

T∑

t=1

u∗2it−1ε
∗
itε̄

∗
i +

1

nT

n∑

i=1

T∑

t=1

u∗2it−1ε̄
∗2
i − 2

nT

n∑

i=1

T∑

t=1

u∗it−1ū
∗
i−ε

∗2
it +

4

nT

n∑

i=1

T∑

t=1

u∗it−1ū
∗
i−ε

∗
itε̄

∗
i

+
1

nT

n∑

i=1

T∑

t=1

ū∗2i−ε
∗2
it − 3

n

n∑

i=1

ū∗2i−ε̄
∗2
i ≡ −R∗

nT1 +R∗
nT2 −R∗

nT3 +R∗
nT4 +R∗

nT5 −R∗
nT6.

By arguments similar to those of the proof of Corollary 3.1. of Gonçalves and Kilian (2004), one

can show that
1

nT

n∑

i=1

T∑

t=1

u∗2it−1ε
∗2
it →P ∗

B̃. To show that R∗
nT →P ∗

0 in probability, it suffices that

E∗ (∣∣R∗
nTj

∣
∣
)
→P 0 for j = 1, 2, 3, 5, 4, 6. For j = 1,

|R∗
nT1| ≤ 2

[

1

nT

n∑

i=1

T∑

t=1

u∗4it−1

]1/2 [

1

nT

n∑

i=1

T∑

t=1

ε∗2it ε̄
∗2
i

]1/2

≡ A∗
1 ×A∗

2.

Let us start with A∗
1. Since u∗it−1 =

t−1∑

s=1

θ̂
s−1

ε∗it−s,

E∗ |A∗
1|2 =

1

nT

n∑

i=1

T∑

t=1

(
t−1∑

s=1

θ̂
s−1

ε∗it−s

)∗4

=
1

nT

n∑

i=1

T∑

t=1

t−1∑

s,p,q,r=1

θ̂
s+p+q+r−4

E∗ (ε∗it−sε
∗
it−pε

∗
it−qε

∗
it−r

)

≤ ∆

nT

n∑

i=1

T∑

t=1

t−1∑

s,p=1

θ̂
2s+2p−4

ε̂2it−sε̂
2
it−p ≤ ∆

nT

n∑

i=1

T∑

t=1

T∑

s,p=1

θ̂
2s+2p−4

ε̂2it−sε̂
2
it−p,

where ε̂it = 0 ∀t ≤ 0. Therefore,

E∗ |A∗
1|2 ≤ ∆

T∑

s,p=1

θ̂
2s+2p−4

(

1

nT

n∑

i=1

T∑

t=1

ε̂2it−sε̂
2
it−p

)

≤ ∆

T∑

s,p=1

θ̂
2s+2p−4

(

1

nT

n∑

i=1

T∑

t=1

ε̂4it−s

)1/2(

1

nT

n∑

i=1

T∑

t=1

ε̂4it−p

)1/2

≤ ∆

T∑

s,p=1

θ̂
2s+2p−4

(

1

nT

n∑

i=1

T∑

t=1

ε̂4it

)

= OP (1) ,

given that
1

nT

n∑

i=1

T∑

t=1

ε̂4it = OP (1) under Assumption A1 and the fact that θ̂ − θ0 = oP (1) with

|θ0| < 1. To conclude that R∗
nT1 →P ∗

0, it suffices to show that E∗ (|A∗
2|) →P 0. This can be done as

follows:

E∗ |A∗
2|2 =

1

nT

n∑

i=1

T∑

t=1

E∗ (ε∗2it ε̄
∗2
i

)
=

1

nT 3

n∑

i=1

T∑

t=1

T∑

p,q=1

E∗ (ε∗2it ε
∗
ipε

∗
iq

)

=
1

nT 3

n∑

i=1

T∑

t=1

T∑

p=1

ε̂2itε̂
2
ip =

1

T







1

n

n∑

i=1

(

1

T

T∑

t=1

ε̂2it

)2





= OP

(
1

T

)

.
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Similar arguments can be applied to R∗
nT , j = 2, 3, 5, 4, 6. For B̂∗

2 and B̂∗
3 , one can easily show that

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)3
(ε∗it − ε̄∗i ) and

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)4
are OP ∗ (1).

Proof of Lemma B.1. The proof follows closely that of Lemma A.2 in GK (2004) and therefore we

skip the details, only mentioning the changes introduced in the panel context. As in GK (2004), for

part (i), we can write

1

nT

n∑

i=1

T∑

t=1

ε∗2it − σ2 =

[

1

nT

n∑

i=1

T∑

t=1

ε̂2it
(
η2it − 1

)

]

+

[

1

nT

n∑

i=1

T∑

t=1

ε̂2it − σ2

]

≡ F ∗
1 + F2,

where now ε̂it = εit + (αi − α̂i) +
(

θ0 − θ̂
)

yit−1 depends also on (αi − α̂i), new to the fixed effects

estimator. Thus, to show that F2 = oP (1), we need to use the fact that sup
1≤i≤n

|α̂i − αi| = oP (1) under

our assumptions. Since E





(
T∑

t=1

εit

)2


 =
T∑

t=1

E
(
ε2it
)
= O (T ), it follows that

T∑

t=1

εit = OP

(√
T
)

uniformly in i, and therefore,
1√
T

T∑

t=1

εit = OP (1) uniformly in i. Also, given that
1

T

T∑

t=1

yit−1 = OP (1)

uniformly in i and θ̂ − θ0 = oP (1), we have

sup
1≤i≤n

|α̂i − αi| = sup
1≤i≤n

∣
∣
∣
∣
∣

1√
T

(

1√
T

T∑

t=1

εit

)

−
(

θ̂ − θ0

) 1

T

T∑

t=1

yit−1

∣
∣
∣
∣
∣

≤ 1√
T

sup
1≤i≤n

∣
∣
∣
∣
∣

(

1√
T

T∑

t=1

εit

)∣
∣
∣
∣
∣
+
∣
∣
∣θ̂ − θ0

∣
∣
∣ sup
1≤i≤n

∣
∣
∣
∣
∣

1

T

T∑

t=1

yit−1

∣
∣
∣
∣
∣

=
1√
T
OP (1) + oP (1)OP (1) = oP (1) .

The proof that E∗ (F ∗2
1

)
= oP (1) follows exactly the same steps as the proof in GK (2004), with the

only difference that we again rely on the uniform convergence (over i) of α̂i towards αi (in addition

to the convergence of θ̂ towards θ0) to show that
1

nT

n∑

i=1

T∑

t=1

ε̂4it = OP (1) . The proof of (ii) and (iii)

follow similarly. In particular, to prove (iii) we show that
1

nT

n∑

i=1

T∑

t=max(k,l)+1

ε2itεit−kεit−l →P τkl by

verifing the conditions of Theorem A.1.

Proof of Lemma B.2. For fixed k ∈ N, we check that Z∗k
iT =

1√
T

T∑

t=k+1

(
ε∗itε

∗
it−1, . . . , ε

∗
itε

∗
it−k

)′
satisfies

the conditions of Theorem A.2, conditionally on the original sample with probability converging to

one. First, {Z∗k
iT } are (conditionally) independent across i for all T with E∗

(

Z∗k
iT

)

= 0. Second,

E∗
(

Z∗k
iT Z

∗k′
iT

)

= diag

(

1

T

T∑

t=k+1

ε̂2itε̂
2
it−1, . . . ,

1

T

T∑

t=k+1

ε̂2itε̂
2
it−k

)

≡ Ω̂iT .
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Under our assumptions,
1

nT

n∑

i=1

T∑

t=k+1

ε̂2itε̂
2
it−p →P τpp, p = 1, . . . , k, which implies that plimn,T→∞

1

n

n∑

i=1

Ω̂iT =

Ω̃k, where Ω̃k is positive definite with minimum eigenvalue λmin > 0 since τ rr > 0 for all r ≥ 1. Lastly,

we can show that E∗
∥
∥
∥Z∗k

iT

∥
∥
∥

2δ
= OP (1), uniformly in i for δ = 2. In particular, by the c− r inequality

(with r = 2),

E∗
∥
∥
∥Z∗k

iT

∥
∥
∥

4
= E∗





k∑

l=1

(

1√
T

T∑

t=k+1

ε∗itε
∗
it−l

)2




2

≤ k2−1
k∑

l=1

E∗
(

1√
T

T∑

t=k+1

ε∗itε
∗
it−l

)4

= k
k∑

l=1

1

T 2

T∑

t1,...,t4=k+1

E∗ (ε∗it1ε
∗
it1−lε

∗
it2ε

∗
it2−lε

∗
it3ε

∗
it3−lε

∗
it4ε

∗
it4−l

)

≤ ∆k
k∑

l=1

1

T 2





T∑

t=k+1

ε̂4itε̂
4
it−l + 3

T∑

t6=s

ε̂2itε̂
2
it−lε̂

2
isε̂

2
is−l



 = OP (1) ,

given that 1/T

T∑

t=1+k

ε̂4itε̂
4
it−l = OP (1) under Assumption A1. Note also the use of the definition of

ε∗it = ε̂itηit and the i.i.d. properties of ηit to justify the fact that the only non-zero contributions to the

sum in the second equality are when (1) t1 = t2 = t3 = t4; (2) t1 = t2 6= t3 = t4; (3) t1 = t3 6= t2 = t4;

(4) t1 = t4 6= t2 = t3.

Proof of Lemma B.3 The proof of (i) follows the same arguments of the proof of Lemma A.4 of GK

(2004), by replacing their Lemma A.2 with our Lemma B.1 to justify the convergence in probability

of n−1T−1
n∑

i=1

T∑

t=k+1

ε∗2it−k towards σ2 and of n−1T−1
n∑

i=1

T−l∑

t=k+1

ε∗it−kε
∗
it towards zero. Part (iii) follows

from (i) and (ii). Part (ii) is new to the panel context considered here, so we provide more details.

First, recall that u∗it−1 =

t−1∑

s=1

θ̂
s−1

ε∗it−s, which implies that

ū∗i− ≡ 1

T

T∑

t=1

u∗it−1 =

T∑

t=1

(
t−1∑

s=1

θ̂
s−1

ε∗it−s

)

=

T−1∑

l=1

θ̂
l−1

(

1

T

T−l∑

t=1

ε∗it

)

︸ ︷︷ ︸

≡χ∗

il

=

T−1∑

l=1

θ̂
l−1

χ∗
il.

Hence,

A∗
nT2 =

1

n

n∑

i=1

ū∗2i− =
1

n

n∑

i=1

(
T−1∑

l=1

θ̂
l−1

χ∗
il

)2

=
1

n

n∑

i=1

T−1∑

l=1

θ̂
2(l−1)

χ∗2
il +

2

n

n∑

i=1

T−2∑

k=1

T−1−k∑

l=1

θ̂
(l−1)

θ̂
(k−1)

χ∗
ilχ

∗
il+k

≡ A∗
1 +A∗

2.

Given the definition of χ∗
il, we have that

A∗
1 =

1

n

n∑

i=1

T−1∑

l=1

θ̂
2(l−1)

(

1

T 2

T−l∑

t=1

ε∗2it + 2
1

T 2

T−l−1∑

k=1

T−l−k∑

t=1

ε∗itε
∗
it+k

)

≡ a∗11 + a∗12.
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Using Lemma B.1.(i), and following the proof of Lemma A.4 of GK(2004), we can show that

a∗11 =
1

T

{
T−1∑

l=1

θ̂
2(l−1)

(

1

nT

n∑

i=1

T−l∑

t=1

ε∗2it

)}

= OP ∗

(
1

T

)

= oP ∗ (1) .

For the second term, we have that

a∗12 =
2

T

T−1∑

l=1

θ̂
2(l−1)

(

1

T

1

n

n∑

i=1

T−l−1∑

k=1

T−l−k∑

t=1

ε∗itε
∗
it+k

)

=
2

T

T−1∑

l=1

T−l−1∑

k=1

θ̂
2(l−1)

(

1

T

1

n

n∑

i=1

T−l−k∑

t=1

ε∗itε
∗
it+k

)

.

For fixed m, let

a∗12,m =
2

T

m−1∑

l=1

m−l−1∑

k=1

θ̂
2(l−1)

(

1

T

1

n

n∑

i=1

T−l−k∑

t=1

ε∗itε
∗
it+k

)

.

By Lemma B.1.(ii), we have that
1

T

1

n

n∑

i=1

T−l−k∑

t=1

ε∗itε
∗
it+k →P ∗

0, in probability. Since θ̂ →P θ0, it

follows that a∗12,m →P ∗

0, in probability. To conclude that a∗12 →P ∗

0, in probability, it suffices to

show that lim
m→∞

lim sup
n,T→∞

P ∗ (∣∣a∗12 − a∗12,m
∣
∣ > δ

)
= oP (1). We have that

a∗12 − a∗12,m =
2

T

T−1∑

l=m

T−l−1∑

k=1

θ̂
2(l−1)

(

1

T

1

n

n∑

i=1

T−l−k∑

t=1

ε∗itε
∗
it+k

)

+
2

T

m−1∑

l=1

T−l−1∑

k=m−l

θ̂
2(l−1)

(

1

T

1

n

n∑

i=1

T−l−k∑

t=1

ε∗itε
∗
it+k

)

= R∗
12.1,m +R∗

12.2,m.

By the triangle inequality,

E∗ ∣∣R∗
12.1,m

∣
∣ ≤ 2

T

T−1∑

l=m

θ̂
2(l−1)

T−l−1∑

k=1

(

1

T

1

n

n∑

i=1

T−l−k∑

t=1

E∗ ∣∣ε∗itε
∗
it+k

∣
∣

)

≤ 2

T

T−1∑

l=m

θ̂
2(l−1)

T−l−1∑

k=1

(

1

T

1

n

n∑

i=1

T−l−k∑

t=1

|ε̂itε̂it+k|E∗ ∣∣ηitηit+k

∣
∣

)

≤ 2∆

(

1

T

1

n

n∑

i=1

T∑

t=1

ε̂2it

)(
T−1∑

l=m

θ̂
2(l−1)

)

,

where we have used the fact that E∗ ∣∣ηitηit+k

∣
∣ ≤ ∆ and Cauchy-Schwartz’s inequality to justify the

third inequality. Under Assumption A1, we have that
1

T

1

n

n∑

i=1

T∑

t=1

ε̂2it = OP (1) whereas

T−1∑

l=m

θ̂
2(l−1) →P

θ
2(m−1)
0 /

(
1− θ20

)
, which converges to 0 asm → ∞ since |θ0| < 1. This shows that lim

m→∞
lim sup

n,T→∞
E∗ ∣∣R∗

12.1,m

∣
∣ =
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oP (1). For R∗
12.2,m,

E∗ ∣∣R∗
12.2,m

∣
∣2 ≤ 4

T 2

m−1∑

l=1

T−l−1∑

k=m−l

m−1∑

p=1

T−p−1
∑

q=m−p

θ̂
2(l+p−2)




1

n2T 2

n∑

i=1

T−l−k∑

t=1

n∑

j=1

T−p−q
∑

s=1

E∗ (ε∗itε
∗
it+kε

∗
jsε

∗
js+q

)





=
4

T 2

m−1∑

l=1

T−l−1∑

k=m−l

m−1∑

p=1

T−p−1
∑

q=m−p

θ̂
2(l+p−2)




1

n2T 2

n∑

i=1

min(T−l−k,T−p−q)
∑

t=1

E∗ (ε∗2it ε
∗
it+kε

∗
it+q

)





=
4

T 2

m−1∑

l=1

m−1∑

p=1

min(T−l−1,T−p−1)
∑

k=max(m−l,m−p)

θ̂
2(l+p−2)




1

n2T 2

n∑

i=1

min(T−l−k,T−p−q)
∑

t=1

E∗ (ε∗2it ε
∗2
it+k

)





≤ 4

(

1

nT

n∑

i=1

T∑

t=1

ε̂4it

)

1

nT 2

m−1∑

l=1

m−1∑

p=1

θ̂
2(l+p−2)

,

which converges to 0 as n, T → ∞ since under Assumption 1, we have that
1

nT

n∑

i=1

T∑

t=1

ε̂4it = OP (1)

and

p lim
n,T→∞

m−1∑

l=1

m−1∑

p=1

θ̂
2(l+p−2)

=

(

1− θ
2(m−1)
0

1− θ20

)2

→ 1

1− θ20
as m → ∞,

showing that lim
m→∞

lim sup
n,T→∞

E∗ ∣∣R∗
12.2,m

∣
∣2 = oP (1). This ends the proof of A∗

1 = oP ∗(1). For A∗
2, we

have that

A∗
2 =

2

n

n∑

i=1

T−2∑

k=1

T−1−k∑

l=1

θ̂
(l+k−2)

(

1

T

T−l∑

t=1

ε∗it

)(

1

T

T−l−k∑

s=1

ε∗is

)

=
2

n

n∑

i=1

T−2∑

k=1

T−1−k∑

l=1

θ̂
(l+k−2)

(

1

T

T−l−k∑

t=1

ε∗it +
1

T

T−l∑

t=T−l−k+1

ε∗it

)(

1

T

T−l−k∑

s=1

ε∗is

)

=
2

n

n∑

i=1

T−2∑

k=1

T−1−k∑

l=1

θ̂
(l+k−2)

(

1

T

T−l−k∑

t=1

ε∗it

)2

+
2

n

n∑

i=1

T−2∑

k=1

T−1−k∑

l=1

θ̂
(l+k−2)

(

1

T

T−l∑

t=T−l−k+1

ε∗it

)(

1

T

T−l−k∑

s=1

ε∗is

)

≡ a∗21 + a∗22.

Now,

a∗21 =
2

T

T−2∑

k=1

T−1−k∑

l=1

θ̂
(l+k−2)

(

1

nT

n∑

i=1

T−l−k∑

t=1

ε∗2it

)

+
4

T

T−2∑

k=1

T−1−k∑

l=1

T−l−k−1∑

p=1

θ̂
(l+k−2)

(

1

Tn

n∑

i=1

T−l−k−p
∑

t=1

ε∗itε
∗
it+p

)

≡ a∗21.1 + a∗21.2.

By Lemma B.1 (i), and following the proof of Lemma A.4 of GK(2004), we can show that

a∗21.1 =
2

T

T−2∑

k=1

T−1−k∑

l=1

θ̂
(l+k−2)

(

1

nT

n∑

i=1

T−l−k∑

t=1

ε∗2it

)

= OP ∗

(
1

T

)

= oP ∗ (1) .

The proof that a∗21.2 = oP ∗ (1) follows by showing that E∗ |a∗21.2|2 = oP (1). For a∗22, we use Markov’s

inequality and apply the same reasoning as that used to show that b2 = oP (1) in the proof of Lemma
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A.4.

Proof of Lemma B.4. Part (i) follows by the same arguments used by GK (2004) to prove their

Lemma A.5, given our Assumption A1 and the fact that sup
i

|α̂i − αi| = oP (1) and θ̂ →P θ0. Part

(iii) follows trivially from parts (i) and (ii). Part (ii) is the new bias term, which we consider in more

detail here. First, recall that
T∑

t=1

u∗it−1 =

(
T−1∑

l=1

θ̂
l−1

T−l∑

t=1

ε∗it

)

, which implies that

B∗
nT2 =

1√
nT

n∑

i=1

T∑

t=1

u∗it−1ε̄
∗
i =

1√
nT

n∑

i=1

(
T−1∑

l=1

θ̂
l−1

T−l∑

t=1

ε∗it

)(

T−1
T∑

s=1

ε∗is

)

,

given the definition of ε̄∗i . It follows that

B∗
nT2 =

1

T
√
nT

n∑

i=1

T−1∑

l=1

θ̂
l−1

(
T−l∑

t=1

ε∗it

)(
T−l∑

s=1

ε∗is +
T−l∑

s=T−l+1

ε∗is

)

=
1

T
√
nT

n∑

i=1

T−1∑

l=1

θ̂
l−1

(
T−l∑

t=1

ε∗it

)2

+
1

T
√
nT

n∑

i=1

T−1∑

l=1

θ̂
l−1

(
T−l∑

t=1

ε∗it

)(
T−l∑

s=T−l+1

ε∗is

)

≡ B∗
nT2.1 + B∗

nT2.2.

For fixed l, we can write

(
T−l∑

t=1

ε∗it

)2

=

T−l∑

t=1

ε∗2it + 2

T−l−1∑

k=1

T−l−k∑

t=1

ε∗itε
∗
it+k,

which implies that

B∗
nT2.1 =

1

T
√
nT

n∑

i=1

T−1∑

l=1

θ̂
l−1

T−l∑

t=1

ε∗2it +
2

T
√
nT

n∑

i=1

T−1∑

l=1

θ̂
l−1

T−l−1∑

k=1

T−l−k∑

t=1

ε∗itε
∗
it+k ≡ b∗1 + b∗2.

Using arguments similar to those applied in the proof of Lemma B.3, we can show that b∗1 →P ∗

√
ρ

σ2

1− θ0
. For b∗2, we have that

E∗ |b∗2|2 = 4
( n

T

) T−1∑

l=1

T−l−1∑

k=1

T−1∑

p=1

T−p−1
∑

q=1

θ̂
l+p−2 1

n2T 2

n∑

i,j=1

T−l−k∑

t=1

T−p−q
∑

s=1

E∗ (ε∗itε
∗
it+kε

∗
jsε

∗
js+q

)

= 4
( n

T

) T−1∑

l=1

T−l−1∑

k=1

T−1∑

p=1

T−p−1
∑

q=1

θ̂
l+p−2 1

n2T 2

n∑

i=1

min(T−l−k,T−p−q)
∑

t=1

E∗ (ε∗2it ε
∗
it+kε

∗
it+q

)

= 4
( n

T

) T−1∑

l=1

min(T−l−1,T−p−1)
∑

k=1

T−1∑

p=1

θ̂
l+p−2 1

n2T 2

n∑

i=1

min(T−l−k,T−p−k)
∑

t=1

ε̂2itε̂
2
it+k

≤ 4
1

nT

(

1

nT

n∑

i=1

T∑

t=1

ε̂4it

)
(n

T

)

T

T−1∑

l=1

T−1∑

p=1

θ̂
l+p−2

= OP

(
1

n

)

.

Using similar arguments, we can show that E∗ |B∗
nT2.2|2 →P 0, which completes the proof of Lemma

B.4.
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B.2 Proof of Theorem 3.3

We show that

B∗
nT ≡ 1√

nT

n∑

i=1

T∑

t=1

(yit−1 − ȳi−) (ε
∗
it − ε̄∗i ) →d∗ N (0, B)

in probability, where ε∗it = ε̂it · ηit, with ηit are i.i.d.(0, 1) . We can write

B∗
nT =

1√
nT

n∑

i=1

T∑

t=1

uit−1ε
∗
it −

1√
nT

n∑

i=1

T∑

t=1

uit−1ε̄
∗
i ≡ B∗

nT1 −B∗
nT2.

Writing B∗
nT1 = n−1/2

n∑

i=1

Z∗
iT , with Z∗

iT ≡ 1√
T

T∑

t=1

uit−1ε
∗
it, we verify that the conditions of Theorem

A.2 hold with probability converging to one. First, {Z∗
iT } are independent across i for all T with

E∗ (Z∗
iT ) = 0 and E∗ (Z∗2

iT

)
=

1

T

T∑

t=1

u2it−1ε̂
2
it ≡ ΩiT . Moreover, for δ = 2, and using the independence

of ε∗it across i and t, we have that

E∗
(

Z∗2+δ
iT

)

= E∗





(

1√
T

T∑

t=1

uit−1ε
∗
it

)4


 =
1

T 2

T∑

t,s,p,q=1

uit−1uis−1uip−1uiq−1E
∗ (ε∗itε

∗
isε

∗
ipε

∗
iq

)

≤ 3

T 2

T∑

t,s=1

u2it−1u
2
is−1E

∗ (ε∗2it ε
∗2
is

)
≤ 3∆

T 2

T∑

t=1

u4it−1ε̂
4
it +

6∆

T 2

T∑

t>s=1

u2it−1u
2
is−1ε̂

2
itε̂

2
is = OP (1)

given that E∗ |ηit|4 ≤ ∆ < ∞. Finally, we can show that
1

n

n∑

i=1

ΩiT =
1

nT

n∑

i=1

T∑

t=1

u2it−1ε̂
2
it →P B. To

complete the proof, we show that B∗
nT2 =

√
n

T

1

n

n∑

i=1

Z∗
iT →P ∗

0 by verifying that the conditions of

Theorem A.1 apply to

Z∗
iT ≡ 1

T

T∑

t=1

uit−1ε̄
∗
i =

(

1√
T

T∑

t=1

uit−1

)(

1√
T

T∑

s=1

ε∗is

)

.

Given that ε∗is are independent across i, so are Z∗
iT . Moreover, E∗ (Z∗

iT ) = 0 and for δ = 1,

E∗
(

Z∗1+δ
iT

)

=

(

1√
T

T∑

t=1

uit−1

)2

E∗





(

1√
T

T∑

s=1

ε∗is

)2


 =

(

1√
T

T∑

t=1

uit−1

)2(

1

T

T∑

s=1

ε̂2is

)

= OP (1) .

B.3 Proof of Theorem 3.4

Let I1, . . . , In be i.i.d. random variables uniformly distributed on {1, . . . , n}, and let

(
y∗it, y

∗
it−1

)
= (yIit, yIit−1) , t = 1, . . . , T, i = 1, . . . , n.

Define ε̂it = yit−α̂i−θ̂yit−1, ε̂
∗
it = y∗it−α̂∗

i −θ̂y∗it−1 and ε∗it = y∗it−α∗
i −θ0y

∗
it−1, where α

∗
i = αIi . We show

that (a) A∗
nT ≡ 1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2 →P ∗

A and (b)B∗
nT ≡ 1√

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

) (
ε̂∗it − ¯̂ε∗i

)
→d∗
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N (0, B) , in probability. Recall that yit−1 =
αi

1− θ0
+ uit−1. Similarly, define µi ≡ E (yit−1) =

αi

1− θ0
and µ∗

i = µIi . Then, for (a),

A∗
nT =

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − µ∗
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i
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=

1

nT

n∑
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T∑
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i
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T
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1
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T∑
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i
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n

n∑
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1

T

T∑
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i

)
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nT1 −A∗

nT2.

We show that (a1) A∗
nT1 →P ∗

A and (a2) A∗
nT2 →P ∗

0. For (a1), we let Z∗
iT =

1

T

T∑

t=1

(
y∗it−1 − µ∗

i

)2
,

which implies that A∗
nT1 =

1

n

n∑

i=1

Z∗
iT , and we use Theorem A.1. Notice that {Z∗

iT } are independent

across i for all T with

E∗ (Z∗
iT ) =

1

T

T∑

t=1
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)

=
1

T
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1
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1

nT

n∑

i=1

T∑

t=1

u2it−1 →P A.

Also, for δ = 1,
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=
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T∑

t,s=1

u2it−1u
2
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For (a2), define Z̃∗
iT =

(

1

T

T∑

t=1

(
y∗it−1 − µ∗

i

)

)2

and let A∗
nT2 =

1
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n∑

i=1

Z̃∗
iT , where the {Z̃∗

iT } are inde-

pendent across i for all T with
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(
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)

=
1
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=

1
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1
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n∑
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by Lemma A.3. The result follows by showing thatE∗
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=
1

nT 4
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Using (a) and Theorem 2.1, we have R∗
nT = oP ∗ (1)OP (1) = oP ∗ (1). Therefore, (b) follows if we prove

that B∗′
nT →dP∗

N (0, B) in probability. Noting that
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ujs−1εjs







− 1√
nT

n∑

i=1

T∑

t=1







(
y∗it−1 − µ∗

i

)
ε̄∗i −

1

nT

n∑

j=1

T∑

s=1

ujs−1ε̄j






≡ B∗

nT1 −B∗
nT2,

Therefore, it suffices to show that (b1) B∗
nT1 →d∗ N (0, B) and (b2) B∗

nT2 →P ∗

0 in probability. For

(b1), we verify the conditions of Theorem A.2 with B∗
nT1 =

1√
n

n∑

i=1

Z∗
iT and

Z∗
iT ≡ 1√

T

T∑

t=1

z∗it ≡
1√
T

T∑

t=1

(
y∗it−1 − µ∗

i

)
ε∗it −

1

n
√
T

n∑

j=1

T∑

s=1

ujs−1εjs ≡ q∗iT − E∗ (q∗iT ) .

Notice that {Z∗
iT } are independent across i for all T with E∗ (Z∗

iT ) = 0 and Ω∗
iT ≡ E∗ (Z∗2

iT

)
=

E∗ (q∗iT )
2 − (E∗ (q∗iT ))

2, where

Ω∗ ≡ 1

n

n∑

i=1

Ω∗
iT =

1

n

n∑

i=1

E∗ (q∗iT )
2 − 1

n

n∑

i=1

(E∗ (q∗iT ))
2 ≡ Ω∗

1 +Ω∗
2.

By Lemma A.4 (i),

Ω∗
2 =

1

n

n∑

i=1




1

n
√
T

n∑

j=1

T∑

s=1

ujs−1εjs





2

=
1

n




1√
nT

n∑

j=1

T∑

s=1

ujs−1εjs





2

= OP

(
1

n

)

.

Moreover,

Ω∗
1 =

1

n

n∑

i=1

E∗ (q∗iT )
2 =

1

n

n∑

i=1

(

1√
T

T∑

t=1

uit−1εit

)2

=
1

nT

n∑

i=1

T∑

t=1

u2it−1ε
2
it +

1

nT

n∑

i=1

T∑

t6=s

uit−1εituis−1εis,

where the first term converges to B in probability and the second term is an oP (1) given Assumption

A1(vii) in particular. Thus, Ω∗ →P B. The result follows by showing that E∗
(

q∗2+δ
iT

)

= O (1) for

δ = 2. To prove (b2), we proceed similarly but verify the conditions of Theorem A.1 instead. We omit

the details to conserve space.

C Appendix C: Proofs of results in Section 4

Proof of Theorem 4.1. The proof follows from Theorem 3.1 and the fact that θ̂
∗
rd →P ∗

θ0 in

probability.

Proof of Theorem 4.2. The proof follows from Theorem 3.4 and the fact that θ̂
∗
pb →P ∗

θ0 in

probability.
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Proof of Lemma 4.1. From the proof of Theorem 3.4, Â∗
pb →P ∗

A. Hence, it suffices to show

that B̂∗
pb →P ∗

B, in probability. We can write ε̃∗it − ¯̃ε∗i = ε̂∗it − ¯̂ε∗i −
(
ˆ̂
θ∗pb −

ˆ̂
θ
) (

y∗it−1 − ȳ∗i−
)
, where

ε̃∗it = y∗it − α̂∗
i −

ˆ̂
θ∗pby

∗
it−1 with α̂∗

i = ȳ∗i −
ˆ̂
θ∗pbȳ

∗
i− and ε̂∗it = y∗it − α̌i − ˆ̂

θy∗it−1 with α̌i = α̂Ii . As in the

proof of Lemma 3.1, we can write

B̂∗
pb = B̂∗

1 + B̂∗
2 + B̂∗

3 , with

B̂∗
1 =

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2 (
ε̂∗it − ¯̂ε∗i

)2
, B̂∗

2 = −2
(
ˆ̂
θ∗pb −

ˆ̂
θ
) 1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)3 (
ε̂∗it − ¯̂ε∗i

)
and

B̂∗
3 =

(
ˆ̂
θ∗pb −

ˆ̂
θ
)2 1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)4
.

Given the pairs bootstrap DGP, one can show that
1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)3 (
ε̂∗it − ¯̂ε∗i

)
and

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)4
are OP ∗ (1) terms, and therefore, B̂∗

2 and B̂∗
3 are oP ∗ (1) terms. For B̂∗

1 , we

also define ε̂∗it − ¯̂ε∗i = ε∗it − ε̄∗i −
(
ˆ̂
θ − θ0

) (
y∗it−1 − ȳ∗i−

)
, where ε∗it = y∗it − α∗

i − θ0y
∗
it−1 with α̃∗

i = αIi .

This implies that

B̂∗
1 = χ∗

1 + χ∗
2 + χ∗

3, with

χ∗
1 =

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2
(ε∗it − ε̄∗i )

2, χ∗
2 = −2

(
ˆ̂
θ − θ0

) 1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)3
(ε∗it − ε̄∗i ) and

χ∗
3 =

(
ˆ̂
θ − θ0

)2 1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)4
. As before, one can show that given the bootstrap DGP of

the pairwise bootstrap,
1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)3
(ε∗it − ε̄∗i ) and

1

nT

n∑

i=1

T∑

t=1

(
y∗it−1 − ȳ∗i−

)4
are OP ∗ (1)

and therefore, χ̂∗
2 and χ̂∗

3 are oP ∗ (1). Let us turn to χ̂∗
1. Since we have resampled only in the cross

section,

E∗ |χ̂∗
1| =

1

n

n∑

i=1

E∗
{

1

T

T∑

t=1

(
y∗it−1 − ȳ∗i−

)2
(ε∗it − ε̄∗i )

2

}

=
1

nT

n∑

i=1

T∑

t=1

(
yit−1 − ȳi−

)2
(εit − ε̄i)

2

=
1

nT

n∑

i=1

T∑

t=1

(
yit−1 − µi

)2
(εit − ε̄i)

2 +
2

nT

n∑

i=1

T∑

t=1

(
yit−1 − µi

) (
µi − ȳi−

)
(εit − ε̄i)

2

+
1

nT

n∑

i=1

T∑

t=1

(
µi − ȳi−

)2
(εit − ε̄i)

2 ≡ B1 +B2 +B3,

where µi = E (yit) =
αi

1− θ0
. By Cauchy-Schwartz inequality,

|B2| ≤
(

2

nT

n∑

i=1

T∑

t=1

(
µi − ȳi−

)
2

)1/2(

2

nT

n∑

i=1

T∑

t=1

(
yit−1 − µi

)2
(εit − ε̄i)

4

)1/2

→P 0
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since
2

nT

n∑

i=1

T∑

t=1

(
yit−1 − µi

)2
(εit − ε̄i)

4 = OP (1) and
1

nT

n∑

i=1

T∑

t=1

(
µi − ȳi−

)
2 =

1

n

n∑

i=1

ū2i− → 0 by

Lemma A.3. One can also show that B3 = oP (1). Finally,

B1 =
1

nT

n∑

i=1

T∑

t=1

(
yit−1 − µi

)2
ε2it −

2

nT

n∑

i=1

T∑

t=1

(
yit−1 − µi

)2
εitε̄i +

1

nT

n∑

i=1

T∑

t=1

(
yit−1 − µi

)2
ε̄2i

where the first term obviously converges in probability to B while the remaining terms converge to 0

by making use of the Cauchy-Schwartz inequality.
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