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This review of bootstrap methods for time series is most welcome especially coming from two key figures in the
development of thesemethods.Wewould like to complement their exposition by focusing on some further issues of current
interest.

Block bootstrap methods for time series data have been most intensively studied under the assumption of stationarity
and mixing. An important example is the stationary bootstrap of Politis and Romano (1994). As detailed in the review, this
method is a variation of the standard block bootstrap that manages to create bootstrap series that are strictly stationary.
This property not only replicates the strict stationarity of the original time series, but it also makes the method easy to
analyze theoretically. However, some rather involved Mean Square Error calculations of Lahiri (1999) seemed to imply that
the stationary bootstrap has poor asymptotic efficiency relative to the usual block bootstrap in the sample mean case. As
a result, practitioners have been understandably reluctant in endorsing the stationary bootstrap after the publication of
Lahiri’s (1999) paper.

It was quite a surprise when Nordman (2009) discovered an error in Lahiri’s (1999) calculations; as it turns out, the
stationary bootstrap has identical asymptotic accuracy as the block bootstrapwith non-overlapping blocks; the latter iswell-
known to be only slightly less efficient than the full-overlap block bootstrap. These new findings are expected to rekindle the
interests of researchers since the stationarity of bootstrap sample paths is a very powerful tool. For example, functional data
are of current interest in the 21st century; see the review by McMurry and Politis (2011). It suffices to note that Politis and
Romano (1994b) were able to prove the asymptotic validity of the stationary bootstrap for the sample mean of functional
data almost twenty years ago. Such a result does not seem to be available for the regular block bootstrap even to date.

The assumptions of strict stationarity and strong mixing can be too strong for many applications in economics and
finance. First, for many of these applications, the time span is rather long, making it unlikely that stationarity holds. A more
appropriate assumption is to allow for some time series heterogeneity (for instance, in the form of time varying moments).
Similarly, mixing is too strong a dependence condition to be broadly applicable. Andrews (1984) gives an example of a
simple AR(1) model that fails to be strong mixing. More generally, although measurable functions of mixing processes
are themselves mixing when the function depends on a finite number of lagged values of the mixing process, this is not
necessarily the case when the observed time series depends on the infinite history of an underlying mixing process. For
instance, popular ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) processes, which are a function of the entire past history
of a fundamental driving innovation, are known to be mixing only when we assume these innovations to be i.i.d. (see e.g.
Carrasco & Chen, 2002, and Basrak, Davis & Mikosch, 2002).
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The need to accommodate a large class of heterogeneousweakly dependent time seriesmotivated thework by Gonçalves
and White (2002); Goncalves and White (2004, 2005). These papers demonstrated the consistency of two ‘‘first generation’’
block bootstrap methods, namely the stationary bootstrap (SB) and the moving block bootstrap (MBB), with data that arise
as functions of mixing processes, i.e., processes that are near epoch dependent (NED) on an underlying mixing process
(Billingsley, 1968; Gallant & White, 1988; McLeish, 1975). An important example of the usefulness of NED in economics
concerns ARCH and GARCH processes, which were shown to be NED on a mixing process under very mild regularity
conditions (that do not require the i.i.d. assumption on the fundamental innovations) (see Hansen, 1991). Other examples
of NED processes include the bilinear and threshold autoregressive models (see Davidson, 2002).

An alternative approach toward allowing a degree of heterogeneity is given by the notion of local (as opposed to global)
stationarity that applies when the stochastic structure of the data series is slowly evolving. Locally stationary processes
were formally defined by Dahlhaus (1996, 1997) following the earlier work of Priestley (1988). To that effect, Paparoditis
and Politis (2002) and Dowla, Paparoditis and Politis (2003) proposed a modification of the block bootstrap called the local
block bootstrap (LBB) for locally stationary processes. The main idea of the LBB is to only resample blocks that are ‘close’
to each other, i.e., a block that starts at time t can only be replaced with blocks whose starting points are ‘close’ to t . These
papers established the consistency of the LBB for inference on µ in the context of the following model,
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Here, εt is a mean-zero, strong mixing process satisfying some moment and mixing conditions, and m and σ are fixed
functions from [0, 1] into R satisfying some smoothness conditions. In the above, the sample mean X̄n = n−1 ∑n
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0 m (x) dx = 0, we have µ̄n → µ as n → ∞, and therefore the sample mean X̄n is an estimate of µ.
As it turns out, the property of NED on a mixing process can be established for many locally stationary processes. For
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the L2-norm. Hence, under some additional conditions, the results of Gonçalves and White (2002) could be used to justify
the consistency of the standard moving block bootstrap and stationary bootstrap for inference on µ. One crucial condition
for MBB/SB to be consistent for the mean is Assumption 2.2 of Gonçalves and White (2002) which requires that the mean
heterogeneity is not too strong so as to verify
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where ℓn is the (average) block size and is such that ℓn = o
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n
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; for example, condition (2) is trivially satisfied ifm ≡ 0. In

any case, under condition (2), the moving block bootstrap and the stationary bootstrap can be used for inference on µ with
data from model (1) despite the fact that the underlying stochastic process is heterogeneous.

The robustness of standard block bootstrap methods to departures from stationarity (for instance, in the form of local
stationarity) is easy to understand through the lens of the current review paper. As the authors emphasize, the asymptotic
validity of any bootstrap scheme depends crucially on how the dependence – andwewould add, heterogeneity – properties
of the data enter the limiting distribution of the statistic of interest. To the extent that heterogeneity does not impact the
limiting distribution of the statistics of interest, the bootstrap does not need to mimic this feature (or lack thereof). This
explains why the stationary bootstrap can be asymptotically valid under some heterogeneity, e.g. model (1) with condition
(2). It also helps explain a reverse phenomenon: why the moving block bootstrap can be consistent under strict stationarity
despite the fact that the bootstrap samples it generates are not stationary.

This robustness property is also quite appealing since regular bootstrap methods only require the choice of one tuning
parameter (the block size). This is in contrast to the LBB which requires the choice of an additional tuning parameter,
the ‘local’ window size over which blocks are considered to be close to each other and thus exchangeable. On the other
hand, the LBB can be more generally valid as it is in principle applicable to all kinds of locally stationary models, not just
model (1). Furthermore, in the case of model (1), the LBB does not require restricting the degree of mean heterogeneity,
e.g. condition (2). The implication is that while the standard MBB/SB would treat the mean heterogeneity as a nuisance that
is asymptotically negligible under condition (2), the LBB would actively adapt to the underlying nonstationarity, and thus
hopefully better account for it. It would be interesting to compare the finite sample performance of these two methods
under model (1).

Although the current review paper focuses on first order asymptotic validity of the bootstrap, one of the key properties
of any bootstrap method is its ability to provide an asymptotic refinement over the first order asymptotic distribution. This
requires the use of asymptotically pivotal statistics, which, in the time series context, involves studentized statistics based
on a spectral density estimator at frequency zero—also known in econometrics as Heteroskedasticity and Autocorrelation
Consistent (HAC) variance estimator.

HAC variance estimators are typically consistent under the assumption that the bandwidth parameter grows with the
sample size but at a slower rate. Under this assumption, the asymptotic distribution of HAC-based t-tests is standard normal,
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independent of the kernel and bandwidth used. However, the finite sample performance of HAC-based t-tests that rely on
the asymptotic normal distribution can be very poor, one of the main reasons being that the latter does not reflect the
choice of the kernel and the bandwidth parameter. Thismotivated Kiefer and Vogelsang (2005) to develop a new asymptotic
theory for HAC-based tests that takes into account the kernel and the bandwidth choices. In particular, Kiefer and Vogelsang
(2005) assumed that the bandwidth is a fixed proportion of the sample size when deriving the asymptotic distribution of
the robust t-test. Under this fixed-bandwidth (or fixed-b) asymptotics, the limiting distribution of the usual robust-t test is
a complicated functional of Brownianmotions – that can nevertheless be simulated – and it depends explicitly on the kernel
function and on the bandwidth parameter chosen.

The simulation results of Kiefer and Vogelsang (2005) showed that the fixed-b approximation outperformed the
conventional asymptotic normal approximation in finite samples. For a simple Gaussian location model, results by Jansson
(2004) and Sun, Phillips, and Jin (2008) provided a theoretical explanation of these simulation results.More recently,McElroy
and Politis (in press) extended the asymptotic calculations of Kiefer and Vogelsang (2005) to the case of long memory data,
also allowing for the possibility of using a ‘flat-top’ kernel for smoothing such as the trapezoid of Politis and Romano (1995);
see Politis (in press) for more details.

Another important finding by Kiefer and Vogelsang (2005) was that a naïve application of block bootstrapmethods (even
an i.i.d. bootstrap with block size equal to one) to robust-t tests closely mimics rejections that are obtained when using the
fixed-b approximation. These finite sample patterns are not predicted by the existing Edgeworth expansions theory; in
particular, see Davison and Hall (1993), and Götze and Künsch (1996).

Gonçalves and Vogelsang (2011) developed an alternative theory to explain the finite sample patterns reported by Kiefer
and Vogelsang (2005). Within the fixed-b asymptotic framework, they showed that a naive moving block bootstrap HAC-
based t-statistic (by naive, we mean that we simply replace the bootstrap data for the original data in the formulas used to
construct the test statistic) has the same fixed-b asymptotic distribution as the original test statistic. This explains why the
naive block bootstrap replicates the rejections obtained with fixed-b critical values. This is true even when the block size
equals one, i.e., when an i.i.d. bootstrap is used, and the data areweakly dependent. The reason is that the fixed-b asymptotic
distribution of a studentized statistic does not reflect the dependence structure of the time series. Hence, the bootstrap does
not need to mimic this dependence when applied to the studentized sample mean from time series data; the denominator
– although inconsistent by itself – takes care of the dependence.

Interestingly, an i.i.d. bootstrap approximation to the distribution of the fixed-b studentized statistic (i.e., a naive i.i.d.
bootstrap) correctly reflects the kernel and bandwidth choices. These choices determine the finite sample properties of
HAC-based tests and, as previously mentioned, they are completely absent from the normal approximation. Therefore, we
may expect the naive i.i.d. bootstrap applied to studentized statistics to outperform the normal approximation. Gonçalves
and Vogelsang (2011) showed that this is the case for a very simple location model using the Bartlett kernel. Specifically,
relying on the theory of strong approximations, it was shown that the i.i.d. bootstrap has an error in rejection probability
(ERP) that may converge to zero faster than the ERP of the standard normal approximation under some conditions on the
HAC bandwidth choice and the number of finite moments that exist in the data.

Since the fixed-b asymptotic distribution is more accurate than the standard normal approximation, it can be used as
the new benchmark for comparisons with the bootstrap. The naive i.i.d. bootstrap is consistent for this new asymptotic
benchmark, but the Monte Carlo simulation results of Gonçalves and Vogelsang (2011) clearly suggest that using a larger
block size outperforms the fixed-b asymptotic approximation. An interesting topic of further research is to propose a
theoretical explanation for this finding, and to then develop a way to optimally choose the block size in connection with
fixed-b studentized statistics from time series data.

One of the so-called ‘‘second generation’’ bootstrapmethods for time series is the tapered block bootstrap (TBB) introduced
by Paparoditis and Politis (2001, 2002). The data tapering of the blocks used in the TBB is designed to decrease the bootstrap
bias, andhas, as a result, an increased accuracy of estimation of sampling characteristics (standard error, distribution, etc.) for
linear and approximately linear statistics. Although the studentized TBB has yet to be studied in detail, the unstudentized
TBB is the most accurate block bootstrap procedure available at the moment; the TBB’s accuracy is better by an order of
magnitude as compared to the untapered (usual) block bootstrap and/or the stationary bootstrap.

The TBBwas recently revisited by Shao (2010a)who developed the extended tapered block bootstrap (ETBB), and thereby
widened the scope of the applicability of the TBB. Themain idea of the ETBB is to apply the tapering to the randomweights in
the bootstrapped empirical distribution. Its asymptotic validity in estimating asymptotic variance and sampling distribution
has been shown in Shao (2010a) for the smooth functionmodel; it is also expected towork for a large class of approximately
linear statistics such as the samplemedian. The ETBB is identical to the TBB in the samplemean case, and it is asymptotically
equivalent to TBB in the case of the smooth function model. Their difference lies in the way approximately linear statistics
are handled; the TBB explicitly uses linearization in forming bootstrapped statistics whereas the ETBB uses it implicitly. The
favorable bias and mean squared error properties of the TBB over the moving block bootstrap (MBB) are fully preserved by
ETBB.

By and large, the development of bootstrap methods for time series has been focused on equally spaced time series.
However, irregularly spaced processes (in time and/or space) occur quite often in real applications. The irregularity could be
due to the missing observations in an evenly spaced time series or to the observations being available at randomly sampled
time points. Interestingly, in the presence of a small fraction of missing observations, a practitioner could conceivably
proceed with implementing a block bootstrap procedure by simply ignoring the fact that there are missing values. On the
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other hand, the presence of a large number of missing values and/or irregularly spaced data must necessarily be addressed.
Fortunately, the use of block bootstrap methods is possible and theoretically justifiable in the irregularly spaced setting.
Pertinent references include Politis, Paparoditis, and Romano (1998, 1999), Lahiri and Zhu (2006), etc.; see also Hall (1985)
for an early treatment of point processes that foreshadows the now popular block resampling methods.

Recently, Shao (2010b) proposed a new resampling procedure, the dependent wild bootstrap (DWB) for stationary time
series. The DWB extends the traditional wild bootstrap of Wu (1986) to the time series setting by allowing the auxiliary
variables involved in the wild bootstrap to be dependent; hence, the DWB is capable of mimicking the dependence in
the original series nonparametrically. Unlike block bootstrap methods, the DWB does not involve a partition of the data
into blocks and there is no change when it is implemented with irregular spaced data or missing values. Shao (2010b)
provided a rigorous theoretical study of the asymptotic properties of the DWB including: (a) the consistency of distribution
approximation under the framework of the smooth function model; (b) bias and variance expansions of the DWB variance
estimator for irregularly spaced time series on a lattice; (c) consistency of the DWB for variance estimation and distribution
approximation in the mean case for irregularly spaced non-lattice time series. On the downside, the DWB is not as widely
applicable as the block bootstrap (in its many variations), and lacks the higher order accuracy property of the latter.
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