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Abstract

This paper studies the properties of naive block bootstrap tests that are scaled by zero
frequency spectral density estimators (long run variance estimators). The naive bootstrap is a
bootstrap where the formula used in the bootstrap world to compute standard errors is the same
as the formula used on the original data. Simulation evidence shows that the naive bootstrap
can be much more accurate than the standard normal approximation. The larger the HAC
bandwidth, the greater the improvement. This improvement holds for a large number of popular
kernels, including the Bartlett kernel, and it holds when the i.i.d. bootstrap is used and yet
the data are serially correlated. Using recently developed fixed-b asymptotics for HAC robust
tests, we provide theoretical results that can explain the finite sample patterns. We show that
the block bootstrap, including the special case of the i.i.d. bootstrap, has the same limiting
distribution as the fixed-b asymptotic distribution. For the special case of a location model,
we provide theoretical results that suggest the naive bootstrap can be more accurate than the
standard normal approximation depending on the choice of the bandwidth and the number of
finite moments in the data. Our theoretical results lay the foundation for a bootstrap asymptotic
theory that is an alternative to the traditional approach based on Edgeworth expansions.
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grant SES-0525707 whereas Gonçalves acknowledges financial support from the SSHRCC.



1 Introduction

In this paper we analyze bootstrap procedures applied to tests based on heteroskedasticity auto-

correlation (HAC) robust variance estimators using time series data that is covariance stationary.

Because of dependence in the data, implementation of the bootstrap is more complicated than in

the i.i.d. case. Many variants of the bootstrap have been proposed for dependent data includ-

ing the well known moving blocks bootstrap originally proposed by Kunsch (1989). Theoretical

conditions under which the block bootstrap can be expected to provide refinements have been es-

tablished by Götze and Künsch (1996), Lahiri (1996), Andrews (2002) and others. Refinements of

the block bootstrap in generalized method of moments (GMM) models have been shown by Hall

and Horowitz (1996) and Inoue and Shintani (2006). The theoretical results in these papers have

been established using Edgeworth expansions with leading terms that are distributed standard

normal.

When the moving blocks bootstrap (MBB) is applied to tests based on heteroskedasticity au-

tocorrelation robust variance estimators, a particular version of the MBB has been labeled “naive”

by Davison and Hall (1993). The naive bootstrap uses the same formula for the HAC estimator in

the bootstrap world as is used on the original data. While this may seem to be a natural way to

proceed with the MBB, Davison and Hall (1993) and Götze and Künsch (1996) have shown that

the naive MBB will not provide higher order accuracy as measured by Edgeworth expansions. To

obtain higher order Edgeworth results they show that the HAC estimator in the bootstrap world

needs to be computed using a formula that reflects the constraint on the correlation structure of the

bootstrap data imposed by the moving blocks scheme. Recent work by Inoue and Shintani (2006)

extends the Edgeworth analysis to certain testing problems in the GMM framework.

In a recent paper, Kiefer and Vogelsang (2005) reported small sample simulation results for

HAC robust t-statistics for testing hypotheses about the sample mean of a stationary univariate

time series. They found that the naive bootstrap, including the i.i.d. bootstrap, can dramatically

outperform the standard normal approximation, and this improvement over the standard normal

approximation occurs for many kernels including the Bartlett kernel. The case of the Bartlett kernel

is interesting because the Edgeworth expansion results in the literature suggest that even the non-

naive version of the MBB will not be more accurate than the standard normal approximation in the

Bartlett kernel case. The simulations reported by Kiefer and Vogelsang (2005) also exhibited an

interesting and persistent pattern: the naive MBB, especially the i.i.d. bootstrap, closely mimics

rejections that are obtained when using the fixed-b asymptotic approximation proposed in their

paper. Because these finite sample patterns are not predicted by the existing Edgeworth theory,

an alternative theory is needed to understand the finite sample performance of the naive MBB.

In this paper we develop a theoretical framework that can be used to explain the finite sample
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patterns reported by Kiefer and Vogelsang (2005). We make two theoretical contributions. First, we

provide sufficient conditions under which the naive MBB has the same first order fixed-b asymptotic

distribution as the original statistic. This result holds for fixed block lengths (including the special

case of the i.i.d. bootstrap) and for block lengths that increase with the sample size but at a slower

rate1. This result explains why rejections using the naive MBB closely follow the rejections using

fixed-b asymptotic critical values. Second, in a simple location model and for the special case of

the Bartlett kernel, we develop a higher order asymptotic theory to show that the i.i.d. bootstrap

has an error in rejection probability (ERP) that may converge to zero faster than the ERP of

the standard normal approximation depending on the bandwidth choice and the number of finite

moments that exist in the data. Ex ante, it is not intuitively obvious that the i.i.d. bootstrap

could be more accurate than the standard normal approximation (see Singh (1981)). Ex post, this

property is no longer surprising when viewed from within the fixed-b asymptotic framework.

In establishing the higher order properties of the i.i.d. bootstrap, we provide an upper bound

on the error rate of the fixed-b approximation and show that this is of the same order as the

upper bound on the i.i.d. bootstrap error. Specifically, the bound we derive is of the order

O
(
T−1/2+3/(2p)

)
, where p is the number of finite moments in the data. In contrast, the error

rate of the normal approximation for one-tail tests based on the Bartlett kernel is O
(
T−1/2

)
+

O
(
M
T

)
+O

(
M−1

)
, where M is the bandwidth parameter (see e.g. Sun and Phillips (2009)). Any

rate for M that is either larger or smaller than O
(√

T
)
implies a normal approximation error of

magnitude larger than O
(
T−1/2

)
. This is unequivocally larger than our upper bound when p = ∞;

when p < ∞, it can be larger or smaller than our upper bound depending on the particular value

of p and how it relates to the rate of M . For instance, p > 9 suffices if M = O
(
T 1/3

)
, which is

the rate of the conventional MSE-optimal bandwidth parameter choice for the Bartlett kernel. If

M = O
(√

T
)
, which is the optimal-ERP bandwidth choice for one sided confidence intervals as

recently found by Sun and Phillips (2009), the normal approximation error converges at the best

possible rate of O
(
T−1/2

)
. In this case, our upper bound on the fixed-b (and the i.i.d. bootstrap)

approximation is at least of the same order (they are of equal order only if p = ∞ as when the data

is Gaussian) and our upper bound becomes uninformative.

Recently, Jansson (2004) and Sun, Phillips and Jin (2008) analyzed the higher order asymptotic

properties of the fixed-b asymptotic theory for the simple location model when the data is Gaussian.

The upper bound on the error rate of the fixed-b asymptotics we derive here when p = ∞ is not

as fast as the rates found by Jansson (2004) and Sun et al. (2008). Thus, the bound on the

ERP we provide is not sharp. While it is possible that the results in Jansson (2004) and Sun

et al. (2008) extend to the non-Gaussian case studied here, establishing such results appear very

difficult. Because Jansson (2004) and Sun et al. (2008) obtain results under the assumption that

the data is Gaussian, their results cannot be applied to the bootstrap since the bootstrap data
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cannot be Gaussian by construction.

The remainder of the paper is organized as follows. In the next section we describe the model

and test statistics. We review the fixed-b asymptotic approximation. Section 3 reports simulation

results for the simple location model and for a stationary regression model. The simulations illus-

trate the performance of the naive MBB relative to the standard normal and fixed-b approximations.

In Sections 4 and 5 we provide theoretical explanations for several of the patterns that emerge from

the simulations. Section 4 focuses on stationary regression models and establishes the first order

asymptotic equivalence between the naive bootstrap and the fixed-b asymptotic approximation.

These results could be generalized in straightforward ways to nonlinear models estimated by gen-

eralized method of moments. In Section 5 we narrow the focus to the simple location model and

we provide higher order asymptotic results for Bartlett kernel based tests. These results establish

that the fixed-b asymptotic approximation and the naive i.i.d. bootstrap have ERPs that converge

to zero at rates faster than the standard normal approximation. In Section 6 we discuss heuristic

comparisons between fixed-b asymptotic approximations and the Edgeworth approximations de-

rived by Velasco and Robinson (2001) in an effort to shed some light on the relative performance

of Edgeworth approximations and the naive bootstrap/fixed-b asymptotics in the simple location

model. Proofs are given in two mathematical appendices.

2 Model and Test Statistics

Throughout the paper we focus on stationary regression models of the form

yt = x′tβ + ut, t = 1, 2, . . . , T, (1)

where xt and β are s× 1 vectors. The stationary time series {xt} and {ut} are autocorrelated and

possibly conditionally heteroskedastic. It is assumed that ut is mean zero and is uncorrelated with

xt.

The parameter of interest is β and its estimator is β̂ =
(∑T

t=1 xtx
′
t

)−1∑T
t=1 xtyt, the ordinary

least squares (OLS) estimator. Let Q = E (xtx
′
t) and Ω = limT→∞ V ar

(
T−1/2

∑T
t=1 vt

)
, where

vt = xtut. For HAC robust testing we require estimates of Q and Ω. The usual estimate of Q

is Q̂ = T−1
∑T

t=1 xtx
′
t. Estimation of Ω is often implemented with a kernel variance estimator such

as

Ω̂ =

T−1∑

j=−(T−1)

k

(
j

M

)
Γ̂j, (2)

where k (x) is a kernel function such that k (x) = k (−x), k (0) = 1, |k (x)| ≤ 1, k (x) is continuous

at x = 0, and
∫∞
−∞ k2 (x) <∞. Here, for j ≥ 0, Γ̂j = T−1

∑T
t=j+1 v̂tv̂

′
t−j are the sample autocovari-

ances of the score vector v̂t = xtût, with ût = yt − x′tβ̂ the OLS residuals, and Γ̂j = Γ̂′
−j for j < 0.
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M is the bandwidth parameter, which can act as a truncation lag for kernels such that k (x) = 0

for |x| > 1.

Consider testing the null hypothesis H0 : Rβ = r against H1 : Rβ 6= r, where R is a q×s matrix

of rank q and r is a q × 1 vector. We consider the following F -type statistic:

FT = T
(
Rβ̂ − r

)′ [
RQ̂−1Ω̂Q̂−1R′

]−1 (
Rβ̂ − r

)
/q.

In the case where q = 1 we can consider t−statistics of the form

tT =

√
T
(
Rβ̂ − r

)

√
RQ̂−1Ω̂Q̂−1R′

.

Under suitable regularity conditions (described subsequently),
√
T
(
Rβ̂ − r

)
can be approximated

by a vector of normal random variables with variance-covariance matrix RQ−1ΩQ−1R′. Given that

p lim Q̂ = Q, the traditional asymptotic approach seeks to establish consistency of Ω̂ to justify

approximating Ω̂ by Ω. Consistency of Ω̂ requires that M → ∞ as T → ∞, but M/T → 0. Under

the traditional approach, FT has a limiting chi-square distribution and tT has a limiting standard

normal distribution.

An alternative approximation for Ω̂ has been proposed by Kiefer and Vogelsang (2005). Suppose

the bandwidth is modelled as M = bT , with b a fixed constant in (0, 1]. Because b is held fixed in

this asymptotic nesting of M , this approach has been labelled fixed-b asymptotics. Under fixed-b

asymptotics, Ω̂ converges to a random variable (rather than a constant) that depends on the kernel

and bandwidth. As a consequence, FT and tT have nonstandard distributions. These limiting

distributions are useful for testing because they reflect the choice of bandwidth and kernel but are

otherwise asymptotically pivotal (i.e. independent of nuisance parameters) and critical values can

be tabulated. For example, under suitable regularity conditions (to be described subsequently),

Kiefer and Vogelsang (2005) showed that

FT ⇒Wq(1)
′Qq(b)

−1Wq(1)/q,

tT ⇒ W1(1)√
Q1(b)

, (3)

where ⇒ denotes weak convergence, Wi(r) is an i × 1 vector of independent standard Wiener

processes and Qi(b) is a random matrix that depends on the kernel. For example, in the case of

the Bartlett kernel,

Qi(b) =
2

b

∫ 1

0
W̃i(r)W̃i(r)

′dr − 1

b

∫ 1−b

0

(
W̃i(r + b)W̃i(r)

′ + W̃i(r)W̃i(r + b)′
)
dr (4)

where W̃i(r) =Wi(r)− rWi(1).
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An alternative to asymptotic approximations is the bootstrap. In this paper we focus on the

MBB of Kunsch (1989) and Liu and Singh (1992). Define the vector wt = (yt, x
′
t)
′ that collects

the dependent and the explanatory variables for each observation. Let ℓ ∈ N (1 ≤ ℓ < T ) be

a block length, and let Bt,ℓ = {wt, wt+1, . . . , wt+ℓ−1} be the block of ℓ consecutive observations

starting at wt. Note that ℓ = 1 gives the standard i.i.d. bootstrap. For simplicity take T = k0ℓ.

The MBB draws k0 = T/ℓ blocks randomly with replacement from the set of overlapping blocks

{B1,ℓ, . . . , BT−ℓ+1,ℓ}. Let F ∗
T and t∗T denote the naive bootstrap versions of FT and tT . F

∗
T and

t∗T are computed as follows. Given a bootstrap resample w∗
t = (y∗t , x

∗′
t )

′, let β̂
∗
denote the OLS

estimate from the regression of y∗t on x∗t and let Q̂∗ = T−1
∑T

t=1 x
∗
tx

∗′
t . Let Ω̂

∗ denote the bootstrap

version of Ω̂ where v̂∗t = x∗t û
∗
t = x∗t (y

∗
t −x∗′t β̂

∗
) is used in place of v̂t. The naive bootstrap statistics

are defined as

F ∗
T = T

(
Rβ̂

∗ − r∗
)′ [

RQ̂∗−1Ω̂∗Q̂∗−1R′
]−1 (

Rβ̂
∗ − r∗

)
/q (5)

where r∗ = Rβ̂, and in the case of q = 1,

t∗T =

√
T
(
Rβ̂

∗ − r∗
)

√
RQ̂∗−1Ω̂∗Q̂∗−1R′

. (6)

Although the bootstrap statistics obviously depend on ℓ, we do not index them by ℓ to simplify

notation. These bootstrap statistics are naive in the sense that they are computed with standard

errors that are of the same form as those used in computing FT and tT using the resampled data

in place of the original data. The empirical distributions of F ∗
T and t∗T can be accurately estimated

using simulations.

As a benchmark for the simulations in the next section, we also consider the version of the MBB

proposed by Götze and Künsch (1996) which we label the GK-MBB. The GK bootstrap statistics

take the same form as in (5) and (6) except that r∗ is replaced by

r∗GK = Rβ̃,

where

β̃ =

[
E∗
(

T∑

t=1

x∗tx
∗′
t

)]−1

E∗
(

T∑

t=1

x∗t y
∗
t

)

=

(
1

T − ℓ+ 1

T−ℓ+1∑

t=1

1

ℓ

ℓ−1∑

s=0

xt+sx
′
t+s

)−1
1

T − ℓ+ 1

T−ℓ+1∑

t=1

1

ℓ

ℓ−1∑

s=0

xt+syt+s

=

(
T−ℓ+1∑

t=1

ℓ−1∑

s=0

xt+sx
′
t+s

)−1 T−ℓ+1∑

t=1

ℓ−1∑

s=0

xt+syt+s,
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and Ω̂∗ is replaced with

Ω̃∗
GK = k−1

0

k0∑

i=1


ℓ−1/2

ℓ∑

j=1

v̂∗(i−1)ℓ+j



(
ℓ−1/2

ℓ∑

t=1

v̂∗(i−1)ℓ+j

)′

.

Note that β̃ and Ω̃∗
GK reflect the impact of the block structure of the resampled data on the mean

and variance of β̂
∗
. Recentering and rescaling with r∗GK and Ω̃∗

GK have the effect of making the

Edgeworth expansions of the original and bootstrap statistics close to each other.

3 Finite Sample Performance

In this section we use simulations to compare and contrast the finite sample performance of the

standard asymptotic approximation, the fixed-b asymptotic approximation and the naive and GK

bootstraps. We first present results for the simple location model followed by results for a stationary

regression model with four regressors. The simple location model simulations illustrate interesting

patterns in the relative performance of the different asymptotic approximations. Theoretical results

that can explain some of these patterns are provided by the higher order asymptotic theory in

Section 5. The simulations for the regression model show that the patterns seen in the simple

location model continue to hold in the regression context. A theoretical link between the naive

MBB and fixed-b asymptotics suggested by both sets of simulations is formally established in

Section 4 for regression models.

Consider the simple location model,

yt = β1 + ut, (7)

where

ut = ρut−1 +
(
1− ρ2

)1/2
εt, (8)

{εt} ∼ i.i.d.N(0, 1) and u1 = 0. We consider testing the null hypothesis that β1 ≤ 0 against the

alternative that β1 > 0 at a nominal level of 5% using

tβ̂1
=

β̂1

se
(
β̂1

) ,

where se
(
β̂1

)
is the HAC standard error estimate. We focus on a one-sided test because the

theoretical results developed in Section 5 apply to one-sided tests. The true parameter, β1, is

set equal to zero and we consider three values for the AR parameter ρ: 0.0, 0.5 and 0.9. In the

simulations, 10, 000 random samples are generated for the sample size T = 50. Similar patters were

found for other sample sizes. We consider the Bartlett and the QS kernels (results for other kernels

are available from the authors) and report results across 25 different values of the bandwidth:
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M = 2, 4, . . . , 48, 50. We reject the null hypothesis whenever tβ̂1
> tc, where tc is a critical value.

The methods differ in the way in which the critical value is calculated. In particular, tc = 1.645

is used for the standard asymptotic approximation, whereas for the fixed-b approximation tc is

the 95% percentile of the fixed-b asymptotic distribution derived by Kiefer and Vogelsang (2005).

Given the sample size of 50, the values of M implicitly determine the corresponding values of

b = 0.02, 0.04, ..., 0.98, 1.0 in the fixed-b distribution theory. For the naive MBB and the GK-MBB

tc is the 95% bootstrap percentile of the respective bootstrap t-statistics. The bootstrap tests are

based on 999 replications for each sample. We report results for the block lengths ℓ = {1, 5} where

obviously ℓ = 1 is the i.i.d. bootstrap. Following a recommendation by Götze and Künsch (1996)

we also implement both bootstraps using ℓ =M .

We also report rejection probabilities using the Edgeworth approximation for tc derived by

Velasco and Robinson (2001). Using tz to denote the right-tail N(0, 1) critical value, the Edgeworth

critical value is given by

tedge = tz +
1

2
δt2z + f(tz)

M

T
, (9)

where

f(x) =

(
2

∫ 1

0
k(s)2ds+

∫ 1

0
k(s)ds

)
x

2
+

(∫ 1

0
k(s)2ds

)(
x3 − 3x

4

)
,

and δ = M−1Ω−1
∞∑

j=−∞
|j|Γj for the Bartlett kernel and δ = 18

125π
2M−2Ω−1

∞∑

j=−∞
j2Γj for the QS

kernel. Given the AR(1) structure in the simulations, the formulas for δ simplify to 2ρ
M(1−ρ2)

and
36π2ρ

M2(1−ρ)2 respectively for the Bartlett and QS kernels2.

We implement the Edgeworth approximation in two ways. In the first, we make the unreal-

istic assumptions (from the perspective of practice) that it is known that the errors are AR(1)

and that the value of ρ is known. This provides an infeasible benchmark. In the second, we re-

place Ω with Ω̂ and we replace

∞∑

j=−∞
|j|Γj and

∞∑

j=−∞
j2Γj with estimators

T−1∑

j=−(T−1)

k( j
M ) |j| Γ̂j and

T−1∑

j=−(T−1)

k( j
M )j2Γ̂j where k(x) and M are the same as used to construct Ω̂. This feasible approach

preserves the nonparametric nature of the test in that we are not assuming any knowledge about

the form of the autocovariance structure.

Figures 1 and 2 contain results for the Bartlett kernel whereas Figures 3 and 4 contain results

for the Quadratic Spectral (QS) kernel. Each figure contains three panels corresponding to the

three values of ρ. Each panel depicts the empirical null rejection probabilities as a function of the

bandwidth and implicitly as a function of b = M/T . Figures 1 and 3 focus on the naive MBB

whereas Figures 2 and 4 provide comparisons between the naive MBB and the GK-MBB.

Looking at Figures 1 and 3 several interesting patterns emerge. The naive MBB (NB1, NB5) is
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(almost) always more accurate than the N(0, 1) asymptotic approximation and often substantially

so. The improvement of the naive MBB over the N(0, 1) approximation holds for both kernels and

the improvement is larger for the QS kernel as compared to the Bartlett kernel. The larger the

bandwidth, the greater the improvement. The i.i.d. bootstrap (NB1) tends to closely follow the

fixed-b asymptotics across all DGP’s, bandwidths, sample sizes and kernels, despite the presence of

autocorrelation. This pattern strongly suggests a systematic relationship between the naive block

bootstrap and the fixed-b asymptotic approximation. In addition it is interesting to note that as ρ

increases (e.g. ρ = 0.9), increasing the block size to 5 helps in further reducing the size distortions3.

In this situation, ignoring the serial correlation in the model and using the i.i.d. bootstrap is inferior

to using blocking. From a theoretical perspective this finite sample pattern suggests that the naive

block bootstrap may offer an asymptotic refinement over the i.i.d. bootstrap/fixed-b asymptotics

with careful choice of the block length. Such a theoretical investigation would be very difficult and

is not considered here.

The performance of the Edgeworth approximations are interesting. The most relevant pattern

is that neither Edgeworth approximation closely follows the naive MBB suggesting that theoretical

explanations for the patterns displayed by the naive MBB will not be found using Edgeworth

arguments. This is not surprising given the theoretical arguments made by Davison and Hall

(1993) and Götze and Künsch (1996) about the naive MBB. When the errors are i.i.d. (ρ = 0),

the infeasible Edgeworth (EdgeInf) is more accurate than the N(0, 1) approximation but is less

accurate than the naive MBB or fixed-b approximations. The differences become more apparent

as the bandwidth increases. The feasible Edgeworth (EdgeFeas) gives rejections between the

N(0, 1) and the infeasible Edgeworth. When there is serial correlation in the errors (ρ = 0.5, 0.9),

the feasible Edgeworth consistently is more accurate than the N(0, 1) but is less accurate than

the naive MBB or fixed-b. The infeasible Edgeworth behaves much differently in the presence of

serial correlation. When the bandwidth is small, the infeasible Edgeworth tends to under-reject,

especially when ρ = 0.9. When the bandwidth is large and the Bartlett kernel is used, the infeasible

Edgeworth has rejections very similar to the naive MBB but it tends to over-reject more than those

tests when the QS kernel is used. Overall it is interesting to note that the feasible and infeasible

Edgeworth approximations do not seem systematically linked to each other.

Looking at Figures 2 and 4 it is apparent that the naive MBB and GK-MBB exhibit different

patterns. When the block length is set to 5, the naive bootstrap clearly follows the fixed-b rejections

whereas the GK bootstrap clearly follows theN(0, 1) rejections. Not surprisingly, the GK bootstrap

reduces the over-rejection problem of the N(0, 1) approximation. Comparing the naive and GK

bootstraps indicates that the naive bootstrap tends to deliver rejections closer to 0.05 than the

GK bootstrap when ℓ = 5 for all three values of ρ, and as M increases, the naive bootstrap

has rejections much closer to 0.05 than the GK bootstrap. When setting ℓ = M , both bootstraps
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perform reasonably well when ℓ andM are small but they become erratic as ℓ andM become large.

This is to be expected given that theoretical results in the MBB literature (this paper included)

require the block length to be of smaller order than the sample size.

To show that many of the patterns in the simple location model continue to hold in a regression

setting, we now report results for a stationary regression model with four regressors using the

well-studied setup of Andrews (1991). We consider the linear regression model

yt = β1 + β2xt2 + β3xt3 + β4xt4 + β5xt5 + ut

where {ut} is given by (8) and

xti = ρxt−1,i +
(
1− ρ2

)1/2
vti, x0i = 0, i = 2, . . . , 5;

where vti are generated as i.i.d. N(0, 1) errors that are independent of each other and independent

with ut. We used 2, 000 replications.

We consider testing the null hypothesis that β2 = 0 against the alternative that β2 6= 0 at a

nominal level of 5%. The test statistic is

tβ̂2
=

β̂2

se
(
β̂2

) ,

where se
(
β̂2

)
is a HAC standard error estimate. Because tβ̂2

is exactly invariant to the values of

the other regression parameters, we set them to zero without loss of generality. We reject the null

hypothesis whenever
∣∣∣tβ̂2

∣∣∣ > tc, where tc is a critical value. We use the same setup as in the simple

location model except that we report results for a wider range of block lengths ℓ ∈ {1, 5, 10, 25}.
We do not report Edgeworth results because formal Edgeworth expansions do not appear available

for regression models. We consider a two-sided test in the regression case to show that many of the

patterns seen for the one-sided test in the simple location model carry over to two-sided tests.

Results for the naive bootstrap are given in Figures 5 and 7. As in the simple location model,

we see that the i.i.d. bootstrap (NB1) closely follows the rejections of the fixed-b approximation

and both are usually more accurate than the N(0, 1) approximation. When the serial correlation

in the errors is strong (ρ = 0.9) increasing the block length to 5 (NB5) and 10 (NB10) can further

increase the accuracy of the approximation. Making the block length too big relative to the sample

size and the strength of the serial correlation (ρ = 0, 0.5) can result in substantial over-rejections

and the naive bootstrap can be a worse approximation than the N(0, 1) when M small to medium

in size. In this regression setting we see that the choice of block length matters. Using a small block

length, including the i.i.d. bootstrap, does show improvement over the N(0, 1) approximation and

the link to the fixed-b rejections is strong. But, it is clear that further improvements are possible

by using a larger block length when the serial correlation is strong as long the block length isn’t

9



too large. Again we see that refinements over the fixed-b approximation are potentially possible

with the naive bootstrap with judicious choice of block length.

Figures 6 and 8 allow comparisons of the naive and GK bootstraps with ℓ = 10 and ℓ = M .

Focusing on the case of ℓ = 10, we see that the naive bootstrap performs better than both the

N(0, 1) and fixed-b approximations. AsM increases, rejections become close to 0.05 for both kernels

and all three values of ρ. The GK bootstrap shows different patterns. It tends to under-reject with

M is small and tends to over-rejects whenM is large although is also performs better than both the

N(0, 1) and fixed-b approximations. With ℓ =M both bootstraps have similar rejections when ℓ,M

are small and both are improvements over the asymptotic approximations. But, as ℓ,M increase,

the similarity of the bootstraps begins to break down and both bootstraps become erratic as ℓ,M

become large.

In unreported simulations we computed finite sample power4 of the tests over a grid of values for

β1 in the location model and β2 in the regression model. We found that power of the naive bootstrap

closely follows power when using the fixed-b critical value. As M increases, power of both the naive

MBB and fixed-b decrease and this pattern is consistent with local asymptotic power calculations

reported by Kiefer and Vogelsang (2005). Power using the N(0, 1) approximation is often higher

but this is largely due to the substantial over-rejection problem of the normal approximation under

the null.

The patterns in the simulations in both the simple location and regression models suggest that

the fixed-b approximation and the naive MBB are systematically related and that they may provide

an improvement over the N(0, 1) approximation. Careful choice of the block length may provide

an improvement over the fixed-b approximation. Comparisons to the GK-MBB suggest that the

naive and GK bootstraps are not systematically related. Obtaining theoretical results that explain

all of these patterns is a very challenging research program. In the next section we establish the

asymptotic equivalence of the fixed-b approximation and the naive MBB in stationary regression

models. We then focus on the simple location model and show that the naive MBB theoretically is

more accurate than the N(0, 1) approximation when the Bartlett kernel is used. The very difficult

question as to whether with careful choice of the block length the naive bootstrap can improve

upon the fixed-b approximation is beyond the scope of this paper.

4 Fixed-b Bootstrap Asymptotics

In this section we derive the asymptotic distribution of naive block bootstrap HAC robust tests

under the fixed-b asymptotics. In particular, for linear regression models we show that t∗T and

F ∗
T have the same limiting fixed-b distribution as tT and FT . Define S[rT ] =

∑[rT ]
t=1 vt, where [rT ]

denotes the integer part of rT with r ∈ [0, 1]. Let XT (r) = T−1/2S[rT ] be the corresponding partial

sum process. Similarly, define QT (r) = T−1
∑[rT ]

t=1 xtx
′
t. Following Kiefer and Vogelsang (2005) we

10



make the following two high level assumptions:

A1. XT (r) ⇒ ΛWs (r), with Ω = ΛΛ′ = limT→∞ V ar
(
T−1/2

∑T
t=1 vt

)
.

A2. supr∈[0,1] |QT (r)− rQ| → 0 in probability.

Here, we assume in addition that the statistic of interest, AT , is such that:

A3. AT can be written as

AT = g (XT (r) , QT (r) ,DT (r)) ,

where g is a continuous functional of (XT (r) , QT (r) ,DT (r)), and DT (r) is a vector of

deterministic functions of T and r such that DT (r) → D (r) as T → ∞, uniformly in r.

Condition A3 is a general way of expressing statistics that includes tT and FT . The function

DT (r) reflects the choice of kernel. Using the arguments of Kiefer and Vogelsang (2005), it follows

that Ω̂ is a continuous functional of the processes XT (r) , QT (r) , and DT (r), where DT (r) is a

function of k (r). If k′′ (r) exists, then we can show that limT→∞DT (r) = b−2k′′ (r/b), in which

case D (r) = b−2k′′ (r/b). For kernels that truncate to zero for |x| ≥ 1, DT (r) is a 2 × 1 vector

and D(r) has elements given by b−2k′′ (r/b) for |r| ≤ b and b−1k′−(1), where k
′
−(1) is the first

derivative of k(x) from the left evaluated at x = 1. For the Bartlett kernel we have DT (r) = b and

D(r) = b. Thus, A3 holds for a wide class of kernels including the Bartlett kernel. See Kiefer and

Vogelsang (2005) for additional details on how DT (r) is constructed.

Under conditions A1 through A3, an application of the continuous mapping theorem (CMT)

implies that as T → ∞,

AT ⇒ g (ΛWs (r) , rQ,D (r)) ≡ G.

Suppose that the random variable G is pivotal, i.e. its distribution is invariant to Λ and Q. For

example, this is the case for FT and tT as indicated by (3). The goal in this section is to provide a

set of primitive conditions on {xt} and {vt} under which the naive block bootstrap test, F ∗
T , weakly

converges to G, in which case the naive bootstrap and the fixed-b approximation will be equivalent

in a first order sense. Note that results for t∗T follow as an obvious corollary.

We now need to introduce some additional notation. Given a bootstrap resample
{
w∗
t = (y∗t , x

∗′
t )

′},
let v∗0t = x∗t (y

∗
t − x∗′t β) ≡ x∗tu

∗
0t, and let v∗t = x∗t

(
y∗t − x∗′t β̂

)′
≡ x∗tu

∗
t . In order to simplify

the notation, we omit T in the definition of the bootstrap variables, e.g., we write v∗t instead of

v∗Tt. Notice that v∗t (and not v∗0t) is the bootstrap analogue of vt as it replaces β with β̂. Let

S∗
[rT ] =

∑[rT ]
t=1 v

∗
t and define the bootstrap partial sum process X∗

T (r) = T−1/2S∗
[rT ]. Similarly,

define Q∗
T (r) = T−1

∑[rT ]
t=1 x

∗
tx

∗′
t . As usual in the bootstrap literature, P ∗ denotes the probability

measure induced by the bootstrap resampling, conditional on a realization of the original time
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series. We use the following notation for the bootstrap asymptotics (see Chang and Park (2003)

for similar notation and for several useful bootstrap asymptotic properties): Let Z∗
T be a sequence

of bootstrap statistics. We write Z∗
T = oP ∗ (1) in probability, or Z∗

T →P ∗

0 in probability, if for any

ε > 0, δ > 0, limT→∞ P [P ∗ (|Z∗
T | > δ) > ε] = 0. Similarly, we write Z∗

T = OP ∗ (1) in probability if

for all ε > 0 there exists aMε <∞ such that limT→∞ P [P ∗ (|Z∗
T | > Mε) > ε] = 0. Finally, we write

Z∗
T ⇒P ∗

Z in probability if, conditional on the sample, Z∗
T weakly converges to Z under P ∗, for

all samples contained in a set with probability converging to one. Specifically, we write Z∗
T ⇒P ∗

Z

in probability if and only if E∗ (f (Z∗
T )) → E (f (Z)) in probability for any bounded and uniformly

continuous function f .

Suppose the bootstrap processes X∗
T (r) and Q∗

T (r) satisfy the following assumptions, in prob-

ability:

A1∗. X∗
T (r) ⇒P ∗

Λ∗Ws (r) , for some Λ∗.

A2∗. supr∈[0,1] |Q∗
T (r)− rQ∗| →P ∗

0 for some Q∗.

In this section we study the asymptotic behavior of naive bootstrap statistics, i.e., we suppose

that

A3∗. The bootstrap statistic A∗
T can be written as

A∗
T = g (X∗

T (r) , Q∗
T (r) ,DT (r)) ,

where g and DT (r) are as defined in A3.

According to condition A3∗, the bootstrap statistic is equal to the exact same function as the

original statistic, but replaces the bootstrap data for the real data. This is the sense in which the

bootstrap statistic is naive. It is a very straightforward algebraic calculation to show that t∗T and

F ∗
T satisfy condition A3∗. In particular, note that the recentering of β̂

∗
around β̂ ensures that the

bootstrap statistics can be expressed as the same functionals of X∗
T (r) , Q∗

T (r) and DT (r) as the

original statistics. It is clear that under Assumptions A1∗-A3∗, by an application of the CMT, we

have that

A∗
T ⇒P ∗

g (Λ∗Ws (r) , rQ
∗,D (r)) ,

in probability. Because the random variable g (·, ·, ·) is pivotal (as in the case of t and F tests), the

limiting distribution of A∗
T coincides with the limiting distribution of AT , independently of Λ∗ and

Q∗. Thus, the asymptotic equivalence between A∗
T and AT depends crucially on the conditions A1∗

and A2∗. Next, we provide primitive conditions on {xt} and {vt} that are sufficient for A1∗ and

A2∗.
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We derive results under the assumptions that {xt} and {vt} are near epoch dependent (NED) on

an underlying mixing process {εt}. NED processes allow for very general forms of dependence and

contain mixing processes as a special case. For a general time series {wt}, we view each coordinate

wt as a measurable function of the potentially infinite history of another underlying process {εt},
i.e. wt (. . . , εt−1, εt, εt+1, . . .) . Let F t

s ≡ σ (εs, . . . , εt) for any s ≤ t be the sigma-field generated by

εs, . . . , εt, and let Et
s denote the expectation conditional on F t

s.We say {wt} is Lq-NED on {εt}, q ≥
1, if ‖wt‖q <∞ and νk0 = supt

∥∥∥wt − Et+k0
t−k0

wt

∥∥∥
q
→ 0 as k0 → ∞. Here and in what follows, ‖w‖q =

(
∑

iE |wi|q)1/q denotes the Lq-norm of a random vector w. Similarly, we let |·| denote the Euclidean
norm of the corresponding vector or matrix. If the NED coefficients νk0 are such that νk0 =

O
(
k−a−δ
0

)
for some δ > 0, we say {wt} is Lq-NED of size −a. We assume {εt} is strong mixing.

The strong mixing coefficients are αk0 = supm sup{A∈Fm
−∞

,B∈F∞

m+k0
} |P (A ∩B)− P (A)P (B)|; we

require αk0 → 0 as k0 → ∞ suitably fast.

We impose the following assumptions on {xt} and {vt}:

Assumption 1

1a. For some p > 2, ‖xt‖2p ≤ ∆ <∞ for all t = 1, 2, . . . .

1b. {xt} is a weakly stationary sequence L2-NED on {εt} with NED coefficients of size −2(p−1)
p−2 .

1c. ‖vt‖p ≤ ∆ <∞, and E (vt) = 0 for all t = 1, 2, . . . .

1d. {vt} is a weakly stationary sequence L2-NED on {εt} with NED coefficients of size −1
2 .

1e. {εt} is an α-mixing sequence with αk0 of size − 2p
p−2 .

1f. Ω = limT→∞ V ar
(
T−1/2

∑T
t=1 vt

)
is positive definite.

We can show that Assumption 1 is a sufficient assumption for the high level conditions A1 and

A2. Note that under Assumption 1, Ω = limT→∞ V ar
(
T−1/2ST

)
exists. We further assume Ω is

positive definite, which ensures the existence of a matrix Λ such that Ω = ΛΛ′. Next, we show that

the following strengthened version of Assumption 1 is sufficient to ensure that conditions A1∗ and

A2∗ hold.

Assumption 1′

1c′. For some p > 2 and δ > 0, ‖vt‖p+δ ≤ ∆ <∞, and E (vt) = 0 for all t = 1, 2, . . . .

1d′. {vt} is a weakly stationary sequence L2+δ-NED on {εt} with NED coefficients of size −1.

1e′. {εt} is an α-mixing sequence of size − (2+δ)(p+δ)
p−2 .
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Lemma 4.1 Under Assumption 1 strengthened by Assumption 1′, it follows that,

a) For any fixed ℓ such that 1 ≤ ℓ < T, as T → ∞,

X∗
T (r) ⇒P ∗

ΛℓWs (r) , (10)

in probability, where Λℓ is the square root matrix of Ωℓ ≡ Γ0 +
∑ℓ

j=1

(
1− j

ℓ

)(
Γj + Γ′

j

)
.

b) Let ℓ = ℓT → ∞ as T → ∞ such that ℓ2/T → 0. Then

X∗
T (r) ⇒P ∗

ΛWs (r) , (11)

in probability, where Λ is the square root matrix of Ω.

c) Under both sets of assumptions on ℓ, it follows that

sup
r∈[0,1]

|Q∗
T (r)− rQ| →P ∗

0,

in probability.

Parts a) and b) of Lemma 4.1 provide functional central limit theorems (FCLT) for the bootstrap

partial sum process of the bootstrap scores X∗
T (r) = T−1/2

∑[rT ]
t=1 v

∗
t . To prove these results, we ap-

ply a bootstrap FCLT (Lemma A.3 given in the Appendix) for Z∗
T (r) = T−1/2

∑[rT ]
t=1 (X

∗
t −E∗ (X∗

t )),

when {X∗
t } is a MBB resample of {Xt}, a NED process on a mixing process. Lemma A.3 is a mul-

tivariate extension of an univariate bootstrap FCLT given in Paparoditis and Politis (2003) for

stationary mixing processes to the NED case.

We consider two cases: a) one where ℓ is fixed as T → ∞, and b) another where ℓ → ∞
as T → ∞. Note that the first case includes the i.i.d. bootstrap as a special case. According

to Lemma 4.1, the bootstrap partial sum process X∗
T (r) weakly converges to a Brownian motion

with the “right” covariance matrix Ω only if the block size ℓ increases with the sample size at an

appropriate rate. When ℓ is fixed, the limiting covariance matrix is Ωℓ, which is different from Ω

under general autocorrelation. This reflects the well-known fact that the MBB with fixed block

size (and therefore the i.i.d. bootstrap) achieves only partial correction of dependence (cf. Liu and

Singh (1992)).

Our first formal theoretical result is as follows.

Theorem 4.1 Let b ∈ (0, 1] be a constant and suppose M = bT . Let Assumption 1 strengthened

by Assumption 1′ hold, and let k (x) be the Bartlett kernel or let k(x) be such that k′′ (x) exists and

is continuous everywhere with the possible exception of |x| = 1. Suppose the block size ℓ is either

fixed as T → ∞, or ℓ→ ∞ as T → ∞ such that ℓ2/T → 0. Then, under H0 : Rβ = r, as T → ∞,

F ∗
T ⇒P ∗

Wq (1)
′Qq (b)

−1Wq (1) /q,
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in probability, where Qq (b) is a random matrix defined in Definition 1 of Kiefer and Vogelsang

(2005).

Theorem 4.1 shows that the naive bootstrap F test statistic has asymptotically the same distribu-

tion of FT derived under the fixed-b asymptotics nesting of Kiefer and Vogelsang (2005). A similar

result holds for t∗T . The first implication of Theorem 4.1 is that a naive bootstrap is as accurate

to first order as the first order fixed-b asymptotics of Kiefer and Vogelsang (2005). The second

implication is that a simple i.i.d. bootstrap is asymptotically valid (and equivalent to first order to

the fixed-b asymptotic limit), even in the presence of serial correlation. This result is a consequence

of the asymptotic pivotalness of the F statistic.

5 Higher-order results

In this section we provide an upper bound on the rate of convergence of the error implicit in the

naive i.i.d. bootstrap approximation and show that it can be smaller than the error of the N(0, 1)

approximation even for dependent data. We focus on the t-statistic in the simple location model

given by (7), i.e. we assume xt ≡ 1 for all t. Here the score vector vt is equal to the scalar ut. We

derive results for the Bartlett kernel because Ω̂ can be expressed as a relatively simple function of

XT (r) in this case. We expect our results to naturally extend to other kernels although the details

are likely to be very tedious.

In this section we assume ut is a linear process. This is a more restrictive dependence assumption

than our previous NED Assumption 1. To prove our results, we will rely on the method of strong

approximations (see below for more details on this method), available for linear processes, and this

is the main reason why we restrict attention to the special class of linear processes. We are unaware

of such results for NED sequences. Thus, we let

ut = π (L) εt =

∞∑

j=0

πjεt−j ,

with π (z) =
∑∞

j=0 πjz
j , and make the following additional assumptions.

Assumption 2

a) εt are i.i.d. with E (εt) = 0, E
(
ε2t
)
= σ2 and E |εt|p <∞ for some p > 2.

b) π (z) 6= 0 for all |z| ≤ 1 and
∑∞

i=0 |i| |πi| <∞.

Under Assumption 2, the FCLT for linear processes (cf. Theorem 3.4, Phillips and Solo, 1992)

implies that

W 0
T (r) ≡ T−1/2

[Tr]∑

t=1

ut ⇒ ΛW1 (r) ,
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where Ω = Λ2 ≡ π2 (1) σ2 is the long run variance under Assumption 2. To establish our results

we need a result stronger than this invariance principle. In particular, we need specific rates of

convergence of the partial sum process for its limiting process. This can be achieved through the

method of strong approximations. Recently, Park (2003) uses strong approximations to show that

the bootstrap provides an asymptotic refinement for unit root tests. Similarly, Park (2006) relies

on this method to show asymptotic refinements of the bootstrap in the context of weakly integrated

processes. Our methods of proof will closely follow those of Park (2006).

Consider the following probabilistic embedding of the partial sum process of ut:

WT (r) =d T
−1/2

[Tr]∑

t=1

ut,

where =d denotes equality in distribution. WT is a stochastic process on D [0, 1] having the same

distribution as W 0
T . In what follows, we will not make a distinction between WT and its distribu-

tionally equivalent copy W 0
T . Therefore we will interpret the distributional equality =d as the usual

equality. The Skohorod representation theorem guarantees that there exists a probability space

(Ω,F , P ) supporting WT and W1 such that WT → ΛW1 a.s. uniformly in [0, 1]. Moreover, we can

state the following result, which follows from a strong approximation result due to Akonom (1993)

(Theorem 3, p. 74).

Lemma 5.1 Under Assumption 2, we have that

a) sup
r∈[0,1]

|WT (r)− ΛW1 (r)| = OP

(
T−1/2+1/p

)
.

b) For any ǫ > 0, P
(
supr∈[0,1] |WT (r)− ΛW1 (r)| ≥ T−1/2+3/(2p)

)
= o

(
T
− 1

2
+ 3

2p
+ǫ
)
.

Part a) of Lemma 5.1 shows that the stochastic order of supr∈[0,1] |WT (r)− ΛW1 (r)| is equal to
OP

(
T−1/2+1/p

)
. As we will show next, the t-statistic can be written as a functional of WT (r) (or

of its distributionally equivalent copy T−1/2
∑[Tr]

t=1 ut). Thus, we can use part a) to determine the

stochastic order of the error term in the stochastic expansion of the t-statistic. Part b) shows that

WT can be approximated by ΛW1 with an error that is distributionally5 of order O
(
T−1/2+3/(2p)

)
.

Thus, although the approximation error of WT with ΛW1 is of order OP

(
T−1/2+1/p

)
, its effect is

distributionally of a larger order of magnitude, namely O
(
T−1/2+3/(2p)

)
. We will rely on this result

to derive the error of the fixed-b asymptotic approximation.

16



5.1 Asymptotic expansion of the t-statistic

We first provide an asymptotic expansion for the t-statistic. The t-statistic can be written as

follows:

tβ̂1
=

√
T
(
β̂1 − β1

)

√
Ω̂

,

where β̂1 = y and

Ω̂ = Γ̂0 + 2

M∑

j=1

(
1− j

M

)
Γ̂j, with Γ̂j = T−1

T∑

t=j+1

ûtût−j .

Thus, Ω̂ is the Bartlett kernel variance estimator of Ω = limT→∞ V ar
(
T−1/2

∑T
t=1 ut

)
= σ2π2 (1).

The bandwidth is equal to M = bT , where b is a fixed constant. Following Kiefer and Vogelsang

(2005), we can write

Ω̂ = 2b−1T−2
T−1∑

t=1

Ŝ2
t − 2b−1T−2

T−[bT ]−1∑

t=1

ŜtŜt+[bT ],

where Ŝt =
∑t

i=1 ûi and Ŝt = St −
(
t
T

)
ST , with St =

∑t
i=1 ui.

Lemma 5.2 Under Assumption 2, and for any fixed b ∈ (0, 1], we have

Ω̂ = ΩQ1 (b) +OP

(
T−1/2+1/p

)
,

with Q1(b) given by (4).

Lemma 5.2 provides an asymptotic expansion for Ω̂ with remainderOP

(
T−1/2+1/p

)
. The leading

term of this expansion is the distribution derived by Kiefer and Vogelsang (2005). The rate of

convergence of Ω̂ increases with p, the number of finite moments of ε. If all moments of ε exist, we

can set p = ∞ and get the parametric convergence rate of OP

(
T−1/2

)
. Our next result provides

the asymptotic expansion for the t-statistic.

Theorem 5.1 Under Assumption 2, and for any fixed b ∈ (0, 1], we have

tβ̂1
=

W1 (1)√
Q1 (b)

+OP

(
T−1/2+1/p

)
,

where tβ̂1
and Q1 (b) are defined as above.

The leading term of the expansion for tβ̂1
is the fixed-b first-order asymptotic distribution

derived by Kiefer and Vogelsang (2005). Using Lemma 5.1. b) and following Park (2003, Corollary

3.8) we can prove the following corollary to Theorem 5.1.
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Corollary 5.1 Under Assumption 2, and for any fixed b ∈ (0, 1], we have

P
(
tβ̂1

≤ x
)
= P

(
W1 (1)√
Q1 (b)

≤ x

)
+ o

(
T−1/2+3/(2p)+ǫ

)
,

uniformly in x ∈ R, for any ǫ > 0.

Corollary 5.1 gives an upper bound on the rate at which the true sampling distribution of

tβ̂1
converges to the fixed-b asymptotic approximation. When all moments exist (as in the Gaussian

case considered in our simulations), p = ∞, then the bound on the error of the fixed-b asymptotic

approximation is of order o
(
T−1/2+ǫ

)
for any ǫ > 0. For general linear GMM regression models, Sun

and Phillips (2009) show that the error of the normal approximation for one-sided tests is of order

O
(
T−1/2

)
+ O

(
M
T

)
+ O

(
M−1

)
for the case of the Bartlett kernel (cf. their equation (41)). This

result is derived from an Edgeworth expansion of the finite sample distribution of the test statistic

and hence it provides a sharp bound on each of the three terms involved. The order of the error

depends on the rate of the bandwidth. Suppose M = cT δ for some constant c. When δ ∈ (0, 12),

the dominant term is the O
(
M−1

)
term, and it is larger than O

(
T−1/2

)
. When δ ∈ (12 , 1), the

dominant term is the O
(
M
T

)
term which is also larger than O

(
T−1/2

)
. Only for δ = 1

2 do the

three terms balance and equal O
(
T−1/2

)
. Thus, any rate for M that is either larger or smaller

than O
(√

T
)
implies a normal approximation error of magnitude larger than O

(
T−1/2

)
. This is

unequivocally larger than our upper bound when p = ∞; when p < ∞, it can be larger or smaller

than our upper bound depending on the particular value of p and how it relates to the rate of

M . For instance, p > 9 suffices if M = O
(
T 1/3

)
, which is the rate of the conventional MSE-

optimal bandwidth parameter choice for the Bartlett kernel. As Sun and Phillips (2009) show, the

MSE-optimal bandwidth choice is suboptimal if the goal is to minimize the coverage probability

error of a confidence interval. In this case, choosing M = O
(√

T
)

yields the smallest possible

coverage error of order O
(
T−1/2

)
for the normal approximation. Because our upper bound is no

smaller than O
(
T−1/2

)
and is O

(
T−1/2

)
only when p = ∞, our upper bound is uninformative

when M = O
(√

T
)
and makes no prediction about the relative accuracy of the normal and fixed-b

approximations.

We should point out that stronger results than Corollary 5.1 have been obtained in some recent

work if it assumed that ut is Gaussian. Jansson (2004) has established that (the bound on) the

error of the fixed-b asymptotic approximation is O
(
log T
T

)
for the case of the Bartlett kernel with

b = 1. This result has been refined to O(T−1) and extended to a general class of kernels and wider

range of b by Sun et al. (2008). In contrast, our bound is of order O
(
T−1/2

)
when ut is Gaussian,

implying that the method of strong approximations does not deliver a sharp bound in the Gaussian

case. While the error rate results of Jansson (2004) and Sun et al. (2008) are stronger than ours,

it is not known whether they continue to hold without the Gaussian assumption. Because the
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Gaussian assumption cannot hold for the bootstrap, the methods of proof used by Jansson (2004)

and Sun et al. (2008) cannot be directly applied to the bootstrap.

5.2 Asymptotic expansion of the naive i.i.d. bootstrap t-statistic

Next, we provide an asymptotic expansion for the naive i.i.d. bootstrap statistic. Let

u∗t ∼ i.i.d. {ût = yt − ȳ : t = 1, · · · , T}

be an i.i.d. bootstrap sample. Note that u∗t = y∗t − ȳ, where y∗t is an i.i.d. bootstrap observation

drawn from {yt} . The naive i.i.d. bootstrap t−statistic is defined as

t
β̂
∗

1

=

√
T
(
β̂
∗
1 − β̂1

)

√
Ω̂∗

,

where β̂
∗
1 = y∗ and Ω̂∗ is of the same form as Ω̂ but evaluated with the bootstrap data:

Ω̂∗ = 2b−1T−2
T−1∑

t=1

Ŝ∗2
t − 2b−1T−2

T−[bT ]−1∑

t=1

Ŝ∗
t Ŝ

∗
t+[bT ],

where Ŝ∗
t = S∗

t −
(
t
T

)
S∗
T , S∗

t ≡∑t
i=1 u

∗
i .

Let Ω∗
T = V ar∗

(
T−1/2

∑T
t=1 u

∗
t

)
.We can show that Ω∗

T = T−1
∑T

t=1 V ar
∗ (u∗t ) = T−1

∑T
t=1 û

2
t ,

and

Ω∗ ≡ p limΩ∗
T = E

(
u2t
)
= σ2

∞∑

i=1

π2i 6= σ2π2 (1) = Ω,

so the i.i.d. bootstrap does not consistently estimate the long run variance of β̂1. However, we

will show that the i.i.d. bootstrap can still provide an asymptotic refinement over the N(0, 1)

approximation.

By a bootstrap FCLT,

W 0∗
T (r) = T−1/2

[Tr]∑

t=1

u∗t ⇒d∗ Ω∗1/2W1 (r) ,

in probability, where W1 denotes a standard Brownian motion independent of the realization of

ut. As above, we can find a process W ∗
T that has the same distribution as W 0∗

T , conditional on the

original sample, and such that the following result follows. We write

W ∗
T (r) = T−1/2

[Tr]∑

t=1

u∗t ,

in probability, where the equality is to be interpreted as an equality in distribution under the

bootstrap measure. The following result is a strong approximation for the bootstrap partial sum

process.
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Lemma 5.3 Under Assumption 2, we have

a) sup
r∈[0,1]

∣∣∣W ∗
T (r)− Ω∗1/2W1 (r)

∣∣∣ = OP ∗

(
T−1/2+1/p

)
, in probability.

b) For any ǫ > 0, P ∗
(
supr∈[0,1]

∣∣W ∗
T (r)− Ω∗1/2W1 (r)

∣∣ ≥ T−1/2+3/(2p)
)
= oP

(
T−1/2+3/(2p)+ǫ

)
.

The next result gives an expansion for Ω̂∗ and is the bootstrap analogue of Lemma 5.2.

Lemma 5.4 Under Assumption 2, we have

Ω̂∗ = Ω∗Q1 (b) +OP ∗

(
T−1/2+1/p

)
,

in probability, where Q1 (b) is as defined previously.

Given Lemma 5.4, we can derive the following asymptotic expansion for the naive i.i.d. boot-

strap t-statistic.

Theorem 5.2 Under Assumption 2, we have

t
β̂
∗

1

=
W1 (1)

(Q1 (b))
1/2

+OP ∗

(
T−1/2+1/p

)
,

in probability.

The following corollary to Theorem 5.2 shows that the effect of the remainder term in the

asymptotic expansion of t
β̂
∗

1

is distributionally of order O
(
T−1/2+3/(2p)

)
.

Corollary 5.2 Under Assumption 2, we have

P ∗
(
t
β̂
∗

1

≤ x
)
= P

(
W (1)

(Q (b))1/2
≤ x

)
+ oP

(
T−1/2+3/(2p)+ǫ

)
,

uniformly in x ∈ R, for any ǫ > 0.

It then follows from Corollaries 5.1 and 5.2 that

sup
x∈R

∣∣∣P ∗
(
t
β̂
∗

1

≤ x
)
− P

(
tβ̂1

≤ x
)∣∣∣ = oP

(
T−1/2+3/(2p)+ǫ

)
, (12)

uniformly in x ∈ R, for any ǫ > 0.

The result in (12) shows that the bound on the i.i.d. bootstrap error is of the same order

of magnitude as the bound on the error implied by the fixed-b asymptotic approximation. In

particular, if p = ∞ the i.i.d. bootstrap error bound is arbitrarily close to oP
(
T−1/2+ǫ

)
, smaller

than the error implied by the normal approximation when M = cT δ, and δ 6= 1/2. In particular,

the i.i.d. bootstrap error is smaller than the error associated with the normal approximation when
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the optimal MSE bandwidth is used to compute the HAC Bartlett kernel estimator whenever p > 9.

When M = O
(√

T
)
, the optimal-ERP bandwidth, the bound on the i.i.d. bootstrap error is of

the same magnitude as the normal error when p = ∞ and it is larger when p < ∞. Therefore, no

conclusions can be obtained in this case because our bound results are not sharp.

The reason why the i.i.d. bootstrap can provide a refinement in this context is that it replicates

the fixed-b distribution. This is true even when the data are dependent, as we showed more generally

before.

6 Heuristic Comparisons of Edgeworth and Fixed-b

While rigorous comparisons of the Edgeworth approximations with fixed-b approximations are well

beyond the scope of this paper, some heuristic comparisons can be instructive for guiding future

work. In deriving formal Edgeworth approximations, Velasco and Robinson (2001) approximate

the bias and variance of the HAC variance estimator under the traditional assumption that M/T

shrinks to zero. In the simple location model we have from Velasco and Robinson (2001) for the

QS kernel

bias(
Ω̂

Ω
) = E(

Ω̂

Ω
)− 1 ≈ − 18

125
π2M−2Ω−1

∞∑

j=−∞
j2Γj −

M

T

∫ 1

0
k(s)ds

= − 18

125
π2M−2Ω−1

∞∑

j=−∞
j2Γj −

M

T

5

4
,

V ar(
Ω̂

Ω
) ≈

(
M

T

)
2

∫ 1

0
k(s)2ds = 2

M

T
.

Although the Bartlett kernel does not satisfy the assumptions used by Velasco and Robinson (2001),

existing results in the spectral analysis literature give for the Bartlett kernel

bias(
Ω̂

Ω
) ≈ −M−1Ω−1

∞∑

j=−∞
jΓj −

M

T

∫ 1

0
k(s)ds = −M−1Ω−1

∞∑

j=−∞
jΓj −

M

T
,

V ar(
Ω̂

Ω
) ≈

(
M

T

)
2

∫ 1

0
k(s)2ds =

4

3

M

T
.

Notice that the Edgeworth approximation (9) is a function of these moments.

Alternatively, the fixed-b approximation approximates the entire distribution of Ω̂:

Ω̂

Ω
≈ Q1(b).

The bias of Ω̂/Ω can be approximated by E(Q1(b)− 1). It is interesting to compare E(Q1(b)− 1)

and V ar(Q1(b)) with the traditional bias and variance formulas. For the Bartlett kernel (see Kiefer
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and Vogelsang (2005))

E(Q1(b)− 1) = −b+ 1

3
b2

V ar(Q1(b)) =
4

3
b− 7

3
b2 +

14

15
b3 +

2

9
b4 for b ≤ 1

2
.

Recalling that b =M/T we see that the moments of the fixed-b asymptotic distribution match the

traditional moments for terms of order M/T . The differences between the two approximations are

that the fixed-b approximation does not include the −M−1Ω−1
∞∑

j=−∞
jΓj bias term because it is

o(1) under fixed-b asymptotics, but the fixed-b approximation includes terms of order (M/T )2 and

higher.

These heuristic observations can shed some light on some of the patterns observed in Fig-

ures 1-4. In the case of i.i.d. errors, the bias term of order M−1 is exactly zero (because
∞∑

j=−∞
|j|Γj =

∞∑

j=−∞
j2Γj = 0) and the main difference between the fixed-b approximation and

the Edgeworth approximation are the higher order terms in the bias and variance formulas for the

fixed-b approximation. WhenM is small, the difference between the Edgeworth and fixed-b approx-

imations are negligible whereas for large M , the fixed-b approximation is slightly more accurate.

When ρ = 0.3, the Edgeworth approximation is more accurate whenM is small because it picks up

the M−1 term whereas for larger M , the fixed-b approximation is more accurate. These differences

become more apparent when ρ = 0.9.

An intriguing possibility is apparent. Because of the asymptotic equivalence between fixed-b

asymptotics and the naive i.i.d. bootstrap, it appears the i.i.d. bootstrap captures the influence

of the bias and variance of Ω̂ to higher orders than the Edgeworth approximation with respect to

terms that depend on powers of M/T , but the i.i.d. bootstrap does not capture the bias term

that depends on
∞∑

j=−∞
|j|Γj or

∞∑

j=−∞
j2Γj . With careful choice of block length, the naive block

bootstrap could capture these bias term while continuing to capture the M/T and higher order

terms terms. The simulations reported in Figures 1-4 show that when there is serial correlation in

the data, increasing the block length from 1 to 5 does improve the approximation. It is possible

this improvement is coming at least in part through the first bias term.

7 Conclusion

In this paper, we theoretically analyze the performance of the naive MBB applied to HAC robust

tests based on nonparametric kernel estimators of the long run variance. In simulations reported

here and in Kiefer and Vogelsang (2005) it was found that the naive MBB outperforms the N(0, 1)

approximation in finite samples. This improvement holds for many kernels, including the Bartlett
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kernel, and holds even for the i.i.d. bootstrap, despite the dependence in the data. These sim-

ulations suggest that the performance of the naive MBB is tightly linked to the finite sample

performance of the recently developed fixed-b (i.e. fixed bandwidth) asymptotics. We provide a

theoretical explanation for this result: we prove that the bootstrap distribution of the naive MBB

is asymptotically the same as the fixed-b asymptotic distribution. In addition, for a simple location

model we show that a naive i.i.d. bootstrap can reduce the magnitude of the error in estimating

one-sided distribution functions of robust t− statistics compared to the N(0, 1) approximation er-

ror for statistics studentized with a Bartlett kernel variance estimator depending on the bandwidth

choice and the number of finite moments in the data. Our simulations also suggest that the naive

MBB can be more accurate than the fixed-b asymptotic approximation when the block size is cho-

sen appropriately. Providing a theoretical explanation for this finding is a challenging topic of for

future research.
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Notes

1The finding that the naive bootstrap is first order equivalent to the fixed-b asymptotic distri-

bution for fixed block lengths in addition to slowly growing block lengths does not suggest that

the choice of block length does not matter. Our simulations will clearly show that the choice of

block length matters and the simulations suggest the naive bootstrap can provide refinements over

fixed-b asymptotics with suitable choice of block length. We conjecture that such refinements will

only hold for block lengths that grow at a suitable rate with fixed block lengths being insufficient.

It should also be pointed out that from the perspective of improvements over the standard normal

approximation, our results do depart from the existing literature by showing that use of small/fixed

block lengths work for the naive bootstrap. This is a positive result because it shows that a wide

range of block length choices can deliver improvements over the standard normal approximation

when the naive bootstrap is used. This is a desirable robustness.

2The regularity conditions used by Velasco and Robinson (2001) appear to exclude the Bartlett

and Parzen kernels because their spectral windows do not truncate outside the range [−π, π] al-
though our simulation results suggest that their results likely hold for the Bartlett kernel. Velasco

and Robinson (2001) conjecture that their proofs could be modified to allow kernels like the Bartlett

and Parzen.

3In unreported simulations we obtained results for the case of ρ = 0.99. As one would expect,

the tendency to over-reject increases even for the NB5 and GK5 bootstraps.

4We do not consider size-adjusted power because there is only one statistic being considered and

its size adjusted power has nothing to do with the choice of critical value. Only unadjusted power

depends on the choice of critical value.

5We follow Park (2003) and say that a random sequenceRT is distributionally of order o (T−a+ǫ) =

O (T−a) if P (|RT | > T−a) = O (T−a) for some ǫ > 0.
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Appendix A

This Appendix contains the proofs of the results in Section 4. Throughout this AppendixK denotes

a generic constant that may change from one usage to the next. We first state four lemmas that

are auxiliary in proving Lemma 4.1 and Theorem 4.1 in Section 4. We then provide the proofs of

our main results followed by the proofs of the auxiliary lemmas.

The following result is a maximal inequality for mixingales (see e.g. Davidson (1994) for a

definition of mixingale) due to Hansen (1991, 1992). Zero mean NED processes on a mixing

process are mixingales and we will repeatedly use this result in our proofs.

Lemma A.1 For some nondecreasing sequence of σ-fields
{
F t
}
and for some p > 1, let

{
Xt,F t

}

be an Lp-mixingale with mixingale coefficients ψm and mixingale constants ct. Then, letting Sj =∑j
t=1Xt and Ψ =

∑∞
m=1 ψm it follows that

a) If 1 < p ≤ 2, ‖maxj≤T |Sj|‖p ≤ KΨ
(∑T

t=1 c
p
t

)1/p
.
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b) For p ≥ 2, ‖maxj≤T |Sj|‖p ≤ KΨ
(∑T

t=1 c
2
t

)1/2
.

The following result gives the probability limits of the MBB variance of a scaled bootstrap

sample mean under two different assumptions on the block size ℓ: (a) when ℓ is fixed as T → ∞;

and (b) when ℓ → ∞ as T → ∞ at an appropriate rate. We state the result for a general time

series {Xt} satisfying the following assumptions:

Assumption A Let {Xt} be a weakly stationary sequence of s× 1 random vectors such that the

following hold:

(i) For some p > 2, ‖Xt‖p ≤ ∆ <∞ for all t = 1, 2, . . ..

(ii) {Xt} is L2-NED on {Vt} with NED coefficients of size −1/2.

(iii) {Vt} is α-mixing of size − p
p−2 .

Let {X∗
t : t = 1, 2, . . . , T} denote a MBB resample obtained from {Xt : t = 1, 2, . . . , T} using

block size ℓ. Let Ω∗
T = V ar∗

(
T−1/2

∑T
t=1X

∗
t

)
denote the bootstrap variance of

√
TX̄∗

T .

Lemma A.2 Suppose {Xt} satisfies Assumption A. Then,

a) For any fixed ℓ such that 1 ≤ ℓ < T, as T → ∞,

p lim
T→∞

Ω∗
T = Γ0 +

ℓ∑

j=1

(
1− j

ℓ

)(
Γj + Γ′

j

)
≡ Ωℓ,

where Γj = E
(
(Xt − µ) (Xt−j − µ)′

)
, µ = E (Xt).

b) Let ℓ = ℓT → ∞ as T → ∞ such that ℓ2/T → 0. Then

p lim
T→∞

Ω∗
T = Γ0 +

∞∑

j=1

(
Γj + Γ′

j

)
≡ Ω.

Our next result establishes a FCLT for the bootstrap partial sum process

Z∗
T (r) = T−1/2

∑[rT ]
t=1 (X

∗
t − E∗ (X∗

t )). We need to strengthen Assumption A as follows.

Assumption A′ Let {Xt} be a weakly stationary sequence of s× 1 random vectors such that the

following hold:

a) For some p > 2 and some δ > 0, ‖Xt‖p+δ ≤ ∆ <∞ for all t = 1, 2, . . ..

b) {Xt} is L2+δ-NED on {Vt} of size −1.

c) {Vt} is α-mixing of size − (2+δ)(p+δ)
p−2 .
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Lemma A.3 Suppose Assumption A′ holds and let Ωℓ and Ω as defined in Lemma A.2 be positive

definite matrices. It follows that

a) For any fixed ℓ such that 1 ≤ ℓ < T, as T → ∞,

Z∗
T (r) ⇒P ∗

ΛℓWs (r) , (13)

in probability, where Λℓ is the square root matrix of Ωℓ.

b) Let ℓ = ℓT → ∞ as T → ∞ such that ℓ2/T → 0. Then

Z∗
T (r) ⇒P ∗

ΛWs (r) , (14)

in probability, where Λ is the square root matrix of Ω.

The following result will be used in the proof of Lemma 4.1.

Lemma A.4 Suppose {Xt −E (Xt)} is a weakly stationary L2-mixingale with ‖Xt‖p ≤ ∆ < ∞
for some p > 2 such that its mixingale coefficients ψm satisfy

∑∞
m=1 ψm <∞ and its mixingale con-

stants are uniformly bounded. Let {X∗
t : t = 1, . . . , T} denote a MBB resample of {Xt : t = 1, . . . , T}

with block size ℓ satisfying either of the two following conditions: a) ℓ is fixed as T → ∞, or b)

ℓ→ ∞ as T → ∞ with ℓ = o (T ). Then, for any η > 0, as T → ∞,

P ∗


 sup

0≤r≤1

∣∣∣∣∣∣
T−1

[rT ]∑

t=1

(X∗
t − E∗ (X∗

t ))

∣∣∣∣∣∣
> η


 = oP (1) .

Proof of Lemma 4.1. We start with the proof of a) and b), which can be treated simultaneously.

Given our definitions of v∗0t and v
∗
t , we can write v∗t = v∗0t − x∗tx

∗′
t

(
β̂ − β

)
, which implies that

X∗
T (r) = T−1/2

[rT ]∑

t=1

(v∗0t − E∗v∗0t) + T−1/2

[rT ]∑

t=1

E∗ (v∗0t)− T−1/2

[rT ]∑

t=1

x∗tx
∗′
t

(
β̂ − β

)

≡ Z∗
T (r) +A∗

1T (r)−A∗
2T (r) .

An application of Lemma A.3 implies that under Assumption 1′, Z∗
T (r) ⇒P ∗

Λ∗Ws (r), in prob-

ability, where Λ∗ is the square root matrix of Ω∗ = p lim V ar∗
(
T−1/2

∑T
t=1 v

∗
0t

)
. In particular,

by Lemma A.2, Ω∗ = Ωℓ in a) and Ω∗ = Ω in b). Thus, to prove that X∗
T (r) ⇒P ∗

Λ∗Ws (r), in

probability, it suffices to show that supr |A∗
1T (r)−A∗

2T (r)| = oP ∗ (1) in probability. Adding and

subtracting T−1/2
∑[rT ]

t=1 E
∗ (x∗tx

∗′
t )
(
β̂ − β

)
, and rearranging terms yields

A∗
1T (r)−A∗

2T (r) = T−1/2

[rT ]∑

t=1

E∗
(
x∗t
(
y∗t − x∗′t β̂

))
− T−1/2

[rT ]∑

t=1

(
x∗tx

∗′
t − E∗x∗tx

∗′
t

) (
β̂ − β

)

≡ B∗
1T (r)−B∗

2T (r) .
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Next, we show that supr∈[0,1] |B∗
1T (r)| = oP ∗ (1) and supr∈[0,1] |B∗

2T (r)| = oP ∗ (1), in probability.

Note that

B∗
1T (r) = E∗

(
T−1/2

Mr∑

m=1

B∑

s=1

v̂Im+s

)
= E∗

(
T−1/2

Mr∑

m=1

ℓ∑

s=1

v̂Im+s

)
− T−1/2E∗

(
ℓ∑

s=B+1

v̂IMr+s

)

≡ b∗1T (r)− b∗2T (r) ,

whereMr, B and Im are as defined in the proof of Lemma A.3. We can show that supr∈[0,1] |b∗2T (r)| =
OP ∗

(
k
−1/2
0

)
in probability, given in particular the fact β̂ − β = OP

(
T−1/2

)
. Moreover,

b∗1T (r) =MrT
−1/2E∗

(
ℓ∑

s=1

v̂I1+s

)
=Mr

ℓ

T 1/2
E∗
(
Û∗
1

)
,

where Û∗
1 = ℓ−1

∑ℓ
s=1 v̂I1+s. Defining X̄T ≡ T−1

∑T
t=1Xt for any random variables Xt, it is well

known that E∗ (v̂∗T
)
= E∗

(
Û∗
1

)
= v̂T + OP

(
ℓ
T

)
(see e.g. Fitzenberger (1997)). Since v̂T = 0

by the FOC defining the OLS estimator, it follows that E∗
(
Û∗
1

)
= 0 + OP

(
ℓ
T

)
, and noting that

supr∈[0,1] |Mr| = k0, we have

sup
r∈[0,1]

|b∗1T (r)| = sup
r∈[0,1]

|Mr|
ℓ

T 1/2
E∗
(
Û∗
1

)
= k0

ℓ

T 1/2

(
0 +OP

(
ℓ

T

))
= OP

(
ℓ√
T

)
= oP (1) ,

under both conditions a) and b). For B∗
2T (r), note that

sup
r∈[0,1]

|B∗
2T (r)| = sup

r∈[0,1]

∣∣∣∣∣∣
T−1

[rT ]∑

t=1

(
x∗tx

∗′
t − E∗x∗tx

∗′
t

)
∣∣∣∣∣∣

∣∣∣
√
T
(
β̂ − β

)∣∣∣ .

Since
∣∣∣
√
T
(
β̂ − β

)∣∣∣ = OP (1), it suffices to show that supr∈[0,1]

∣∣∣T−1
∑[rT ]

t=1 (x
∗
tx

∗′
t − E∗x∗tx

∗′
t )
∣∣∣ =

oP ∗ (1) in probability. This follows by an application of Lemma A.4 since zt = xtx
′
t − E (xtx

′
t)

satisfies the assumptions of this lemma under Assumption 1. To prove c), note we can write

sup
r∈[0,1]

∣∣∣∣∣∣
T−1

[rT ]∑

t=1

x∗tx
∗′
t − rQ

∣∣∣∣∣∣
≤ I1 + I2 + I3,

where I1 ≡ supr∈[0,1]

∣∣∣T−1
∑[rT ]

t=1 (x
∗
tx

∗′
t − E∗ (x∗tx

∗′
t ))
∣∣∣, I2 ≡ supr∈[0,1]

∣∣∣T−1
∑[rT ]

t=1 (E
∗ (x∗tx

∗′
t )− xtx

′
t)
∣∣∣ ,

and I3 ≡ supr∈[0,1]

∣∣∣T−1
∑[rT ]

t=1 xtx
′
t − rQ

∣∣∣ . As just proven, I1 = oP ∗ (1) , in probability, and I3 =

oP (1) given Assumption 1. Next, we will show that I2 = oP (1). Adding and subtracting

µ ≡ E (xtx
′
t) yields

I2 ≤ T−1 sup
r∈[0,1]

∣∣∣∣∣∣

[rT ]∑

t=1

E∗ (x∗tx∗′t − µ
)
∣∣∣∣∣∣
+ T−1 sup

r∈[0,1]

∣∣∣∣∣∣

[rT ]∑

t=1

(
xtx

′
t − µ

)
∣∣∣∣∣∣
≡ i1 + i2.

Under Assumption 1.a)-b) and 1.e), we can show that {xtx′t − µ} is an L2-NED of size−1 on {εt} (cf.
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Davidson, 1994, Example 17.17). It then follows by Davidson’s (1994) Theorem 17.5 that {xtx′t − µ}
is an L2-mixingale of size −1 with uniformly bounded mixingale constants. Thus, i2 = OP

(
T−1/2

)

by an application of Lemma A.1. Similarly, we can show that i1 = OP

(
T−1/2

)
+OP

(
ℓ
T

)
, which is

oP (1) under our assumptions. Indeed, we can write

i1 = k−1
0 sup

r∈[0,1]

∣∣∣∣∣

Mr∑

m=1

E∗ (U∗
m)

∣∣∣∣∣+OP

(
ℓ1/2

T

)
,

where U∗
m = ℓ−1

∑ℓ
s=1

(
xIm+sx

′
Im+s − µ

)
. It follows that

k−1
0 sup

r∈[0,1]

∣∣∣∣∣

Mr∑

m=1

E∗ (U∗
m)

∣∣∣∣∣ ≤ k−1
0 k0 |E∗ (U∗

1 )| =
∣∣∣∣∣T

−1
T∑

t=1

(
xtx

′
t − µ

)
∣∣∣∣∣+OP

(
ℓ

T

)
,

because

E∗ (U∗
1 ) = E∗

(
T−1

T∑

t=1

(x∗tx
∗
t − µ)

)
= T−1

T∑

t=1

(
xtx

′
t − µ

)
+OP

(
ℓ

T

)
.

This completes the proof because T−1
∑T

t=1 (xtx
′
t − µ) = OP

(
T−1/2

)
.

Proof of Theorem 4.1. The proof follows from Lemma 4.1, using the same arguments as in

Kiefer and Vogelsang (2005).

Proof of Lemma A.2. As is well known, the MBB variance Ω∗
T is equal to the Bartlett kernel

variance estimator of
√
TX̄T , up to a term of order OP

(
ℓ2

T

)
(see e.g. Fitzenberger (1997, p. 252)).

Note that this term vanishes in probability under both sets of conditions on ℓ. Result b) follows by

de Jong and Davidson (2000) Theorem 2.1. Result a) follows by an argument similar to Liu and

Singh (1992) and Fitzenberger (1997), under our more general dependence Assumption A.

Proof of Lemma A.3. These results are multivariate versions of a univariate FCLT given in

Paparoditis and Politis (2003) (henceforth PP (2003)). Whereas PP (2003) assume a mixing

condition on {Xt}, here we allow for the more general NED condition. Note that we assume

throughout that E (Xt) = 0 for all t without loss of generality given that {Xt} is stationary. Since

Assumption A′ implies Assumption A, it follows by Lemma A.2 that p limT→∞Ω∗
T = Ω∗, where Ω∗

is equal to Ωℓ in a) and equal to Ω in b). Since by assumption both Ωℓ and Ω are positive definite,

Ω
∗−1/2
T exists in probability for all T sufficiently large. By the functional Cramer-Wold device,

it suffices to show that λ′Ω∗−1/2
T Z∗

T (r) ⇒P ∗

λ′Ws (r) in probability for any λ such that λ′λ = 1.

Following PP (2003), for any r ∈ [0, 1] , we can write

W ∗
T (r) ≡ λ′Ω∗−1/2

T Z∗
T (r) = λ′Ω∗−1/2

T T−1/2
Mr∑

m=1

B∑

s=1

(
XIm+s − E∗ (XIm+s

))
,

where Mr = [([rT ]− 1) /ℓ] + 1 and B = min {ℓ, [rT ]− (m− 1) ℓ}. Here, I1, . . . , Ik0 are i.i.d.

uniformly distributed on {0, 1, . . . , T − ℓ}. Notice that for r ∈ [0, 1] , Mr ∈ {1, . . . , k0} and
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B ∈ {1, . . . , ℓ}. As in PP (2003), we can write

W ∗
T (r) = λ′Ω∗−1/2

T T−1/2
Mr∑

m=1

ℓ∑

s=1

(
XIm+s − E∗ (XIm+s

))

−λ′Ω∗−1/2
T T−1/2

ℓ∑

s=B+1

(
XIMr+s − E∗ (XIMr+s

))
≡W ∗

1T (r)−W ∗
2T (r) .

The proof consists of two steps: (1) Show that supr∈[0,1] |W ∗
2T (r)| = OP ∗

(
k
−1/2
0

)
in probability;

and (2) Show that W ∗
1T (r) ⇒P ∗

W1 (r) in probability.

We start with (1). Since Ω∗
T → Ω∗ in probability, and Ω∗ is p.d., it follows that Ω∗−1/2

T = OP (1).

Thus, it suffices to show that

E∗
(

sup
r∈[0,1]

∣∣∣∣∣T
−1/2

ℓ∑

s=B+1

(
XIMr+s − E∗XIMr+s

)
∣∣∣∣∣

)
= OP

(
k
−1/2
0

)
, (15)

by Markov’s inequality. Since k0 = T/ℓ, k0 → ∞ as T → ∞ under both set of conditions on ℓ,

which implies that supr |W ∗
2T (r)| = oP ∗ (1) in probability. An application of triangle’s inequality

and Jensen’s inequality implies that

E∗
(

sup
r∈[0,1]

∣∣∣∣∣T
−1/2

ℓ∑

s=B+1

(
XIMr+s − E∗XIMr+s

)
∣∣∣∣∣

)
≤ 2E∗

(
sup

r∈[0,1]

∣∣∣∣∣T
−1/2

ℓ∑

s=B+1

XIMr+s

∣∣∣∣∣

)
. (16)

Since IMr ∼ i.i.d. Uniform {0, . . . , T − ℓ}, we have that

E∗
(

sup
r∈[0,1]

∣∣∣∣∣T
−1/2

ℓ∑

s=B+1

XIMr+s

∣∣∣∣∣

)
=

1

T − ℓ+ 1

T−ℓ∑

j=0

sup
r∈[0,1]

∣∣∣∣∣T
−1/2

ℓ∑

s=B+1

Xj+s

∣∣∣∣∣ . (17)

By Markov’s inequality, (15) follows from E
(
k
1/2
0 E∗

(
supr∈[0,1]

∣∣∣T−1/2
∑ℓ

s=B+1XIMr+s

∣∣∣
))

= O (1).

Recall that for r ∈ [0, 1], B ∈ {1, . . . , ℓ}. Thus,

k
1/2
0 E

(
sup

r∈[0,1]

∣∣∣∣∣T
−1/2

ℓ∑

s=B+1

Xj+s

∣∣∣∣∣

)
≤ k

1/2
0 T−1/2E


max

1≤i≤ℓ

∣∣∣∣∣∣

j+ℓ∑

s=j+i

Xs

∣∣∣∣∣∣


 ≤ k

1/2
0 T−1/2

∥∥∥∥∥∥
max
1≤i≤ℓ

∣∣∣∣∣∣

j+ℓ∑

s=j+i

Xs

∣∣∣∣∣∣

∥∥∥∥∥∥
2

.

(18)

We now apply Lemma A.1. Under Assumption A′, {Xt} is an L2+δ-mixingale (hence an L2-

mixingale) with mixingale coefficients ψm of size −1, hence Ψ =
∑∞

m=1 ψm <∞. In particular, we

apply Theorem 17.5 of Davidson (1994), with r = p+ δ, p = 2+ δ, b = 1 and a = (2+δ)(p+δ)
p−2 . Under

our assumptions, the NED constants dt can be set equal to 1, which implies that the mixingale

constants ct ≤ max
(
‖Xt‖p+δ , 1

)
< ∆ < ∞ for all t. Thus,

∥∥∥max1≤i≤ℓ

∣∣∣
∑j+ℓ

s=j+iXs

∣∣∣
∥∥∥
2
≤ Kℓ1/2,

and from (18) we have that k
1/2
0 E

(
supr∈[0,1]

∣∣∣T−1/2
∑ℓ

s=B+1Xj+s

∣∣∣
)
≤ K uniformly in j, given that

k0 = T/ℓ. This completes the proof of (1).
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Next we show step (2). As in PP (2003), we consider the asymptotically equivalent statistic

k
−1/2
0

[rk0]+1∑

m=1

λ′Ω∗−1/2
T

(
ℓ−1/2

ℓ∑

s=1

(
XIm+s −E∗XIm+s

)
)

≡ k
−1/2
0

[rk0]+1∑

m=1

V ∗
m,

where V ∗
m = λ′Ω∗−1/2

T U∗
m, with U∗

m = ℓ−1/2
∑ℓ

s=1

(
XIm+s − E∗XIm+s

)
. Note that {V ∗

m : m = 1, . . . , [rk0] + 1}
is an array of independent variables with E∗ (V ∗

m) = 0 and V ar∗ (V ∗
m) = λ′Ω∗−1/2

T V ar∗ (U∗
m)Ω

∗1/2
T λ =

1, where the last equality holds because we can show that V ar∗ (U∗
m) = Ω∗

T . We now apply a FCLT

for martingale difference arrays (cf. Billingsley, 1968, p. 194). In particular, let ξTm = 1√
k0
V ∗
m and

note that ξTm is a martingale array with respect to the σ-field F∗
T,m−1 = σ (I1, . . . , Im−1) given

the independence of V ∗
m. For each r ∈ [0, 1],

∑[rk0]+1
m=1 V ar∗ (ξTm) =

∑[rk0]+1
m=1

1
k0

= [rk0]+1
k0

→ r

as k0 → ∞, which verifies Billingsley’s (1968, p. 194) condition (18.3). Next we verify that

the Lindeberg condition (cf. Billingsley, 1968, eq. (18.4)) holds in probability. For this, it suf-

fices that
∑[k0r]+1

m=1 E∗ |ξTm|2+δ → 0 in probability. Since Ω
∗−1/2
T = OP (1), we need to show that

k
− 2+δ

2

0

∑[k0r]+1
m=1 E∗ |U∗

m|2+δ → 0 in probability. By definition of U∗
m, we have that

E
(
E∗ |U∗

m|2+δ
)
≤ Kℓ−

2+δ
2

1

T − ℓ+ 1

T−ℓ∑

j=0

E



∣∣∣∣∣

ℓ∑

s=1

Xj+s

∣∣∣∣∣

2+δ

 .

An application of Lemma A.1 yields E

(∣∣∣
∑ℓ

s=1Xj+s

∣∣∣
2+δ
)

≤ Kℓ
2+δ
2 uniformly in j, which implies

that E
(
E∗ |U∗

m|2+δ
)

= O (1) , showing that k
− 2+δ

2

0

∑[k0r]+1
m=1 E∗ |U∗

m|2+δ = OP

(
k
−δ/2
0

)
= oP (1)

since k
− δ

2

0 = (ℓ/T )
δ
2 → 0 under both sets of conditions on ℓ.

Proof of Lemma A.4. As in the proof of Lemma A.3, we can write

T−1

[rT ]∑

t=1

(X∗
t − E∗ (X∗

t )) = T−1
Mr∑

m=1

ℓ∑

s=1

(XIm+s − E∗ (XIm+s)) + T−1
ℓ∑

s=B+1

(
XIMr+s − E∗ (XIMr+s

))

≡ A∗
1T (r) +A∗

2T (r) .

Let U∗
m =

∑ℓ
s=1 (XIm+s − E∗XIm+s) and note that S∗

j =
∑j

m=1 U
∗
m is a martingale array with

respect to F∗
T,j = σ (I1, . . . , Ij) . Thus, by an application of Markov’s inequality first, and of Doob’s

inequality second, we have that

P ∗
(

sup
r∈[0,1]

|A∗
1T (r)| > η

)
≤ 1

η2T 2
E∗


 sup

r∈[0,1]

∣∣∣∣∣

Mr∑

m=1

U∗
m

∣∣∣∣∣

2

 =

1

η2T 2
E∗
(

max
1≤j≤k0

∣∣S∗
j

∣∣2
)

≤ KT−2E∗
(∣∣S∗

k0

∣∣2
)
.

Adding and subtracting µ = E (Xt),

E∗
(∣∣S∗

k0

∣∣2
)
= k0E

∗ (U∗2
1

)
= k0E

∗



(

ℓ∑

s=1

(XI1+s − µ− E∗ (XI1 − µ))

)2

 ≤ Kk0E

∗



∣∣∣∣∣

ℓ∑

s=1

(XI1+s − µ)

∣∣∣∣∣

2

 ,
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for some constant K. Using the properties of the MBB and Lemma A.1, we can show that

E

(
E∗
(∣∣∣
∑ℓ

s=1 (XI1+s − µ)
∣∣∣
2
))

= O (ℓ) , which implies E∗
(∣∣S∗

k0

∣∣2
)

= O (T ) , and thus

P ∗
(
supr∈[0,1] |A∗

1T (r)| > η
)
= OP

(
T−1

)
= oP (1). Similarly, we can show that E∗ (sup0≤r≤1 |A∗

2T (r)|
)
=

OP

(
ℓ1/2

T

)
= oP (1) under both a) and b).
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Appendix B

This Appendix contains the proofs of the results in Section 5. We first present two useful lemmas.

We then present the proofs of the main results, followed by the proofs of the auxiliary lemmas.

Throughout this Appendix, we let Ω = π2 (1)σ2, Λ = π (1) σ, and W̃ (r) ≡ ΛW1 (r).

Lemma A.5 Under Assumption 2, and for any fixed b ∈ (0, 1], we have

a) T−1/2
T∑

t=1

ut = ΛW1 (1) +OP

(
T−1/2+1/p

)
.

b) T−2
T−1∑

t=1

S2
t = Ω

∫ 1

0
W 2

1 (r) dr +OP

(
T−1/2+1/p

)
.

c) T−3/2
T−1∑

t=1

(
t

T

)
St = Λ

∫ 1

0
rW1 (r) dr +OP

(
T−1/2+1/p

)
.

d) T−3/2

T−[bT ]−1∑

t=1

(
t

T

)
St = Λ

∫ 1−b

0
rW1 (r) dr +OP

(
T−1/2+1/p

)
.

e) T−3/2

T−[bT ]−1∑

t=1

(
t

T

)
St+[bT ] = Λ

∫ 1−b

0
rW1 (r + b) dr +OP

(
T−1/2+1/p

)
.

f) T−3/2

T−[bT ]−1∑

t=1

[bT ]

T
St = bΛ

∫ 1−b

0
W1 (r) dr +OP

(
T−1/2+1/p

)
.

g) T−2

T−[bT ]−1∑

t=1

StSt+[bT ] = Ω

∫ 1−b

0
W1 (r)W1 (r + b) dr +OP

(
T−1/2+1/p

)
.

Lemma A.6 Under Assumption 2, with probability approaching one, we have that

a) T−1/2
T∑

t=1

u∗t = Λ∗W1 (1) +OP ∗

(
T−1/2+1/p

)
.

b) T−2
T−1∑

t=1

S∗2
t = Ω∗

∫ 1

0
W 2

1 (r) dr +OP ∗

(
T−1/2+1/p

)
.

c) T−3/2
T−1∑

t=1

(
t

T

)
S∗
t = Λ∗

∫ 1

0
rW1 (r) dr +OP ∗

(
T−1/2+1/p

)
.

d) T−3/2

T−[bT ]−1∑

t=1

(
t

T

)
S∗
t = Λ∗

∫ 1−b

0
rW1 (r) dr +OP ∗

(
T−1/2+1/p

)
.
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e) T−3/2

T−[bT ]−1∑

t=1

(
t

T

)
S∗
t+[bT ] = Λ∗

∫ 1−b

0
rW1 (r + b) dr +OP ∗

(
T−1/2+1/p

)
.

f) T−3/2

T−[bT ]−1∑

t=1

[bT ]

T
S∗
t = bΛ∗

∫ 1−b

0
W1 (r) dr +OP ∗

(
T−1/2+1/p

)
.

g) T−2

T−[bT ]−1∑

t=1

S∗
t S

∗
t+[bT ] = Ω∗

∫ 1−b

0
W1 (r)W1 (r + b) dr +OP ∗

(
T−1/2+1/p

)
.

where Ω∗ = σ2
∑∞

i=1 π
2
i and Λ∗ = Ω∗1/2.

Proof of Lemma 5.1. Theorem 3 of Akonom (1993) implies that under our assumptions

P

(
sup

r∈[0,1]

∣∣∣WT (r)− W̃ (r)
∣∣∣ > cT

)
≤ C2T

1−p/2c−p
T E |εt|p ,

for any sequence cT such that T−1/2+1/p ≤ cT ≤ C1 (log T )
1/2, where C1 and C2 are constants

independent of T . Part a) follows by letting cT = cT−1/2+1/p, for some constant c, whereas part b)

follows by setting cT = cT−1/2+3/2p.

Proof of Lemma 5.2. Write Ω̂ = J1−J2, with J1 = 2b−1T−2
∑T−1

t=1 Ŝ
2
t and J2 = 2b−1T−2

∑T−[bT ]−1
t=1 ŜtŜt+[bT ].

We can write J1 = 2I1 − 4I2 + 2I3, where by Lemma A.5, I1 = T−2
∑T−1

t=1 S
2
t = Ω

∫ 1
0 W

2
1 (r) dr +

OP

(
T−1/2+1/p

)
;

I2 = T−2
T−1∑

t=1

(
t

T

)
StST =

(
T−3/2

T−1∑

t=1

(
t

T

)
St

)(
T−1/2ST

)

=

(
Λ

∫ 1

0
rW1 (r) dr +OP

(
T−1/2+1/p

))(
ΛW1 (1) +OP

(
T−1/2+1/p

))

= Ω

∫ 1

0
rW1 (r)W1 (1) dr +OP

(
T−1/2+1/p

)
;

and

I3 = T−2
T−1∑

t=1

(
t

T

)2

S2
T = T−1

T−1∑

t=1

(
t

T

)2 (
T−1/2ST

)2

=

(
1

3
+O

(
T−1

))(
ΛW1 (1) +OP

(
T−1/2+1/p

))2
=

1

3
ΩW 2

1 (1) +OP

(
T−1/2+1/p

)
,

since T−1
∑T−1

t=1

(
t
T

)2
= 1

6
2T 2−3T+1

T 2 = 1
3 +O

(
T−1

)
. Thus,

J1 = Ω

[
2

b

∫ 1

0
(W1 (r)− rW1 (1))

2 dr

]
+OP

(
T−1/2+1/p

)
.
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Next we analyze J2. Notice that we can write

ŜtŜt+[bT ] =

(
St −

t

T
ST

)(
St+[bT ] −

t+ [bT ]

T
ST

)

= StSt+[bT ] −
t+ [bT ]

T
StST − t

T
St+[bT ]ST +

t

T

t+ [bT ]

T
S2
T ,

implying that

J2 =
2

b
T−2

T−[bT ]−1∑

t=1

StSt+[bT ] −
2

b
T−2

T−[bT ]−1∑

t=1

t+ [bT ]

T
StST

−2

b
T−2

T−[bT ]−1∑

t=1

t

T
St+[bT ]ST +

2

b
T−2

T−[bT ]−1∑

t=1

t

T

t+ [bT ]

T
S2
T

≡ A1 −A2 −A3 +A4.

By Lemma A.5, we have that

A1 =
2

b
Ω

∫ 1−b

0
W1 (r)W1 (r + b) dr +OP

(
T−1/2+1/p

)
;

A2 =
2

b
T−2

T−[bT ]−1∑

t=1

t

T
StST +

2

b
T−2

T−[bT ]−1∑

t=1

[bT ]

T
StST

=
2

b

(
T−1/2ST

)

T−3/2

T−[bT ]−1∑

t=1

(
t

T

)
St


+

2

b

(
T−1/2ST

)

T−3/2

T−[bT ]−1∑

t=1

[bT ]

T
St




=
2

b
Ω

∫ 1−b

0
rW1 (r)W1 (1) dr +

2

b
bΩ

∫ 1−b

0
W1 (r)W1 (1) dr +OP

(
T−1/2+1/p

)

=
2

b
Ω

∫ 1−b

0
(r + b)W1 (r)W1 (1) dr +OP

(
T−1/2+1/p

)
;

A3 =
2

b

(
T−1/2ST

)

T−3/2

T−[bT ]−1∑

t=1

t

T
St+[bT ]


 =

2

b
Ω

∫ 1−b

0
rW1 (r + b)W1 (1) dr+OP

(
T−1/2+1/p

)
,

and

A4 =
2

b

(
T−1/2ST

)2

T−1

T−[bT ] −1∑

t=1

t

T

t+ [bT ]

T




=
2

b
ΩW 2

1 (1)

[
1

3
(1− b)3 +

1

2
b (1− b)2

]
+OP

(
T−1/2+1/p

)
.
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The last result uses the fact that

T−3

T−[bT ]−1∑

t=1

t (t+ [bT ]) = T−3

T−[bT ]−1∑

t=1

t2 + T−3

T−[bT ]−1∑

t=1

t [bT ]

=
1

3
(1− b)3 +

1

2
b (1− b)2 +O

(
T−1

)
.

The desired result follows from combining all the previous expansions.

Proof of Theorem 5.1. Write tβ̂1
= PTΩ

−1/2
1

(
Ω̂
Ω1

)−1/2
, where PT = T−1/2

∑T
t=1 ut and Ω1 =

ΩQ1 (b) is the leading term of the expansion of Ω̂. Note that by a Taylor expansion of f (x) =

(1 + x)−1/2 around 0 we can write

(
Ω̂

Ω1

)−1/2

=

(
1 +

Ω̂− Ω1

Ω1

)−1/2

= 1− 1

2

Ω̂− Ω1

Ω1
+OP

((
Ω̂− Ω1

)2)
.

Lemma 5.2 implies that Ω̂− Ω1 = OP

(
T−1/2+1/p

)
, and since Ω1 = OP (1), we get that

tβ̂1
= PTΩ

−1/2
1

(
1 +OP

(
T−1/2+1/p

))
= PTΩ

−1/2
1 +OP

(
T−1/2+1/p

)
.

Lemma A.5. a) now implies the result.

Proof of Corollary 5.1. We follow the proof of Corollary 3.8 of Park (2003). In particular,

the result follows from Lemma A4 of Park (2003) given that the error terms of the asymptotic

expansions in Lemma A.5 are distributionally of order O (T−a), with a = 1/2 − 3/ (2p), and that

the density of Ω−1
1 is bounded and all its moments are finite (which follows because Ω1 is a quadratic

form of a Brownian motion with a truncated positive definite kernel). The remainder terms for each

statistic are defined in the proof of Lemma A.5. Thus, the remainder term of part a) of Lemma

A.5 is equal to R1T = WT (1) − W̃ (1), which is distributionally of order O (T−a) given part b) of

Lemma 5.1. For part b), the remainder is R2T = R
(1)
2T +R

(2)
2T , where

∣∣∣R(1)
2T

∣∣∣ ≤ sup
∣∣∣WT (r)− W̃ (r)

∣∣∣
2

and
∣∣∣R(2)

2T

∣∣∣ ≤ 2

(
sup

∣∣∣WT (r)− W̃ (r)
∣∣∣
2
)1/2 (∫ 1

0 W̃
2 (r) dr

)1/2
. We have that

P

(
sup

∣∣∣WT (r)− W̃ (r)
∣∣∣
2
≥ T−a

)
≤ P

(
sup

∣∣∣WT (r)− W̃ (r)
∣∣∣
2
≥ T−2a

)

≤ P
(
sup

∣∣∣WT (r)− W̃ (r)
∣∣∣ ≥ T−a

)
= O

(
T−a

)
,

showing that R
(1)
2T is distributionally of order O (T−a). Since

∫ 1
0 W̃

2 (r) dr has moments finite up

to any order, Lemma A4. b) of Park (2003) implies that R
(2)
2T is also distributionally of order

O (T−a). For part c), the remainder is R3T = R
(1)
3T +R

(2)
3T , where

∣∣∣R(1)
3T

∣∣∣ ≤ sup
∣∣∣WT (r)− W̃ (r)

∣∣∣ and∣∣∣R(2)
3T

∣∣∣ ≤ sup
∣∣∣WT (r)− W̃ (r)

∣∣∣ + 1
T

∫ 1
0

∣∣∣W̃ (r)
∣∣∣ dr. Since sup

∣∣∣WT (r)− W̃ (r)
∣∣∣ is distributionally of

orderO (T−a) by Lemma 5.1. b), we only need to show that the same is true for 1
T

∫ 1
0

∣∣∣W̃ (r)
∣∣∣ dr. This

follows by an application of Markov’s inequality, given that E
∣∣∣
∫ 1
0

∣∣∣W̃ (r)
∣∣∣ dr
∣∣∣ <∞. For part d), note
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that the remainder is R4T = R
(1)
4T +R

(2)
4T , where R

(1)
4T is majorized by the same term as R3T , whereas∣∣∣R(2)

4T

∣∣∣ ≤ sup
∣∣∣WT (r)− W̃ (r)

∣∣∣+ 1
T sup

∣∣∣W̃ (r)
∣∣∣, which can be handled as R

(2)
3T . The remainder in part

e) can be decomposed as R
(1)
5T +R

(2)
5T +R

(3)
5T +R

(4)
5T +R

(5)
5T +R

(6)
5T , where R

(1)
5T and R

(5)
5T are majorized

by sup
∣∣∣WT (r)− W̃ (r)

∣∣∣; R(2)
5T and R

(6)
5T are majorized by sup

∣∣∣WT (r)− W̃ (r)
∣∣∣ + 1

T

∫ 1
0

∣∣∣W̃ (r)
∣∣∣ dr.

For R
(3)
5T and R

(4)
5T we have that for i = 3, 4,

T aP
(∣∣∣R(i)

5T

∣∣∣ ≥ T−a
)
≤ T aP

(∣∣∣T−3/2S[bT ]

∣∣∣ ≥ T−a
)
≤ T aE

∣∣S[bT ]

∣∣p

T (3/2−a)p
≤ KT a+p/2−(3/2−a)p = KT

−1− 3

2p
− p

2 ,

which is o (1) for any p > 0 and where we have used the fact that E
∣∣S[bT ]

∣∣p ≤ T p/2 by Lemma A.1,

part b). The remainders in parts f) and e) can be analyzed using similar arguments and therefore

we omit their proofs.

Proof of Lemma 5.3. Since u∗t are i.i.d. we can apply the strong approximation result of

Sakhanenko (1980) to W ∗
T , as in the proof of Lemma 2.4 of Park (2006). That is, we may choose

W ∗
T in the same probability space as the Brownian motion W̃ ∗ (r) = Ω∗1/2W1 (r) such that W ∗

T has

the same conditional distribution as W 0∗
T and verifies the following condition:

P ∗
(

sup
0≤r≤1

∣∣∣W ∗
T (r)− W̃ ∗ (r)

∣∣∣ > cT

)
≤ Kc−p

T T 1−p/2E∗ |u∗t |p ,

where W̃ ∗ (r) = Ω∗1/2W (r) . If we show that E∗ |u∗t |p = OP (1), the first result follows by let-

ting cT = cT−1/2+1/p for some large c > 0 whereas the second result follows by letting cT =

cT−1/2+3/(2p). Note that

E∗ |u∗t |p = T−1
T∑

t=1

|ût|p = T−1
T∑

t=1

|ut − ū|p ≤ KT−1
T∑

t=1

|ut|p → KE |ut|p <∞,

for some constant K, in probability. This proves that E∗ |u∗t |p = OP (1) .

Proof of Lemma 5.4. Given Lemma 5.3, the proof follows the same reasoning as that of

Lemma 5.2.

Proof of Theorem 5.2. Given Lemma 5.3, the proof follows the same reasoning as that of

Theorem 5.1.

Proof of Corollary 5.2. Given part b) of Lemma 5.3 and Theorem 5.2, the proof is analogous

to that of Corollary 5.2.

Proof of Lemma A.5. We follow closely the proof of Lemma 3.1 of Park (2006). For a),

note that T−1/2
∑T

t=1 ut = WT (1) = W̃ (1) + R1T , where R1T = WT (1) − W̃ (1). By Lemma

5.1.a), R1T = OP

(
T−1/2+1/p

)
, proving the result. For b), let S0 ≡ 0 and write T−2

∑T−1
t=1 S

2
t =

T−2
∑T

t=1 S
2
t−1. Note that T−1/2St−1 = T−1/2

∑t−1
i=1 ui =WT

(
t−1
T

)
. Thus,

T−2
T∑

t=1

S2
t−1 = T−1

T∑

t=1

W 2
T

(
t− 1

T

)
=

∫ 1

0
W 2

T (r) dr =

∫ 1

0
W̃ 2 (r) dr +R2T ,
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where R2T =
∫ 1
0

(
W 2

T (r)− W̃ 2 (r)
)
dr. We can write

R2T =

∫ 1

0

(
WT (r)− W̃ (r)

)2
dr + 2

∫ 1

0

(
WT (r)− W̃ (r)

)
W̃ (r) dr ≡ R

(1)
2T +R

(2)
2T .

Then, by Lemma 5.1.a),

R
(1)
2T ≤

∫ 1

0
sup

r∈[0,1]

∣∣∣WT (r)− W̃ (r)
∣∣∣
2
dr ≤

(
sup

r∈[0,1]

∣∣∣WT (r)− W̃ (r)
∣∣∣
)2

= OP

((
T−1/2+1/p

)2)
.

For R
(2)
2T , by the Cauchy-Schwartz inequality,

∣∣∣R(2)
2T

∣∣∣ ≤ 2

(∫ 1

0

(
WT (r)− W̃ (r)

)2
dr

)1/2 (∫ 1

0
W̃ 2 (r) dr

)1/2

= 2A1T ·A2T .

By Lemma 5.1.a), A1T = OP

(
T−1/2+1/p

)
and A2T =

∫ 1
0 W̃

2 (r) dr = OP (1). For c), we can write

T−3/2
T−1∑

t=1

(
t

T

)
St = T−1

T∑

t=1

t− 1

T

(
T−1/2St−1

)
= T−1

T∑

t=1

t− 1

T
WT

(
t− 1

T

)

=
T∑

t=1

∫ t/T

(t−1)/T

[Tr]

T
WT (r) dr =

∫ 1

0

[Tr]

T
WT (r) dr =

∫ 1

0
rW̃ (r) dr +R3T ,

where R3T = R
(1)
3T +R

(2)
3T , with

R
(1)
3T =

∫ 1

0
r
(
WT (r)− W̃ (r)

)
dr and R

(2)
3T =

∫ 1

0

(
[Tr]

T
− r

)
WT (r) dr.

By Lemma 5.1.a) we have that R
(1)
3T = OP

(
T−1/2+1/p

)
. For R

(2)
3T , note that

∣∣∣R(2)
3T

∣∣∣ ≤
∫ 1

0

∣∣∣∣
[Tr]

T
− r

∣∣∣∣ |WT (r)| dr ≤ 1

T

∫ 1

0
|WT (r)| dr

=
1

T

∫ 1

0

∣∣∣WT (r)− W̃ (r)
∣∣∣ dr + 1

T

∫ 1

0

∣∣∣W̃ (r)
∣∣∣ dr ≡ A3T +A4T ,

where A3T = OP

(
T−3/2+1/p

)
and A4T = OP

(
T−1

)
= OP

(
T−1/2+1/p

)
. For d), we have

T−3/2

T−[bT ]−1∑

t=1

t

T
St =

∫ 1−b

0
rW̃ (r) dr +R4T ,

where R4T ≡ R
(1)
4T + R

(2)
4T . R

(1)
4T is of the same form as R3T but with the

∫ 1
0 replaced by

∫ 1−b
0 ,

and R
(2)
4T =

∫ 1−b+b−[bT ]/T
1−b

[Tr]
T WT (r) dr. Following the proof for R3T , we can show that R

(1)
4T =
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OP

(
T−1/2+1/p

)
. R

(2)
4T can be bounded by

∫ 1−b+b−[bT ]/T

1−b

∣∣∣∣
[Tr]

T

∣∣∣∣ |WT (r)| dr ≤
∫ 1−[bT ]/T

1−b
|r| |WT (r)| dr

≤ sup
r∈[0,1]

|WT (r)|
∫ 1−[bT ]/T

1−b
1dr ≤ sup

r∈[0,1]
|WT (r)|

∣∣∣∣b−
[bT ]

T

∣∣∣∣ = OP

(
T−1

)
,

since supr∈[0,1] |WT (r)| = OP (1) and
∣∣∣b− [bT ]

T

∣∣∣ = O
(
T−1

)
. For e), write

T−3/2

T−[bT ]−1∑

t=1

t

T
St+[bT ] = T−1

T−[bT ]∑

t=1

t− 1

T

(
T−1/2St+[bT ]−1

)
= T−1

T∑

t=[bT ]+1

t− 1− [bT ]

T

(
T−1/2St−1

)

= T−1
T∑

t=[bT ]+1

t− 1

T

(
T−1/2St−1

)
− T−1

T∑

t=[bT ]+1

[bT ]

T

(
T−1/2St−1

)
≡M1T +M2T .

We analyze M1T and M2T separately. For M1T , we can write

M1T =

∫ 1

[bT ]/T

[Tr]

T
WT (r) dr =

∫ 1

b

[Tr]

T
WT (r) dr +

∫ b

[bT ]/T

[Tr]

T
WT (r) dr

=

∫ 1

b
rW̃ (r) dr +

∫ 1

b
r
(
WT (r)− W̃ (r)

)
dr +

∫ 1

b

(
[rT ]

T
− r

)
WT (r) dr +

∫ b

[bT ]/T

[Tr]

T
WT (r) dr

≡
∫ 1

b
rW̃ (r) dr +R

(1)
5T +R

(2)
5T +R

(3)
5T .

We can majorize R
(1)
5T and R

(2)
5T by the same terms that majorize R

(1)
3T and R

(2)
3T respectively. For

R
(3)
5T we have that

∣∣∣R(3)
5T

∣∣∣ ≤
∣∣∣T−1/2S[bT ]

∣∣∣
(
b− [bT ]

T

)
≤
∣∣∣T−3/2S[bT ]

∣∣∣ = OP

(
T−1/2+1/p

)
.

For M2T , we can write

M2T = −b
∫ 1

b
W̃ (r) dr − [bT ]

T

∫ b

[bT ]/T
WT (r) dr − b

∫ 1

b

(
WT (r)− W̃ (r)

)
dr −

(
[bT ]

T
− b

)∫ 1

b
WT (r) dr

≡ −b
∫ 1

b
W̃ (r) dr −R

(4)
5T −R

(5)
5T −R

(6)
5T .

We can show that
∣∣∣R(4)

5T

∣∣∣ ≤
∣∣T−3/2S[bT ]

∣∣ = OP

(
T−1/2+1/p

)
and R

(5)
5T and R

(6)
5T can also be shown to

be OP

(
T−1/2+1/p

)
by arguments similar to those used above. Thus

M1T +M2T =

∫ 1

b
(r − b) W̃ (r) dr +OP

(
T−1/2+1/p

)
=

∫ 1−b

0
rW̃ (r + b) dr +OP

(
T−1/2+1/p

)
.
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For f), letting S0 ≡ 0, we can write

T−3/2

T−[bT ]−1∑

t=1

[bT ]

T
St = T−1

T−[bT ]∑

t=1

[bT ]

T

(
T−1/2St−1

)
=

[bT ]

T

T−[bT ]∑

t=1

T−1WT

(
t− 1

T

)

=
[bT ]

T

∫ 1−b

0
WT (r) dr +

[bT ]

T

∫ (T−[bT ])/T

1−b
WT (r) dr

=
[bT ]

T

∫ 1−b

0
W̃ (r) dr +

[bT ]

T

∫ 1−b

0

(
WT (r)− W̃ (r)

)
dr +

[bT ]

T

∫ (T−[bT ])/T

1−b
WT (r) dr

≡ b

∫ 1−b

0
W̃ (r) dr +R6T ,

where R6T = R
(1)
6T +R

(2)
6T +R

(3)
6T , with

R
(1)
6T =

(
[bT ]

T
− b

)∫ 1−b

0
W̃ (r) dr = OP

(
T−1

)
;

R
(2)
6T =

[bT ]

T

∫ 1−b

0

(
WT (r)− W̃ (r)

)
dr = OP

(
T−1/2+1/p

)
;

R
(3)
6T =

[bT ]

T

∫ (T−[bT ])/T

1−b
WT (r) dr ≤ 1

T

∫ 1

0
|WT (r)| dr = OP

(
T−1

)
.

Finally, for g) write

T−2

T−[bT ]−1∑

t=1

StSt+[bT ] = T−1

T−[bT ]∑

t=1

(
T−1/2St−1

)(
T−1/2St−1+[bT ]

)

= T−1
T∑

t=1+[bT ]

(
T−1/2St−1−[bT ]

)(
T−1/2St−1

)

=

∫ 1

b
W̃ (r − b) W̃ (r) dr +R7T =

∫ 1−b

0
W̃ (r) W̃ (r + b) dr +R7T ,

where R7T = R
(1)
7T +R

(2)
7T +R

(3)
7T , with

R
(1)
7T =

∫ 1

b

(
WT (r − b)− W̃ (r − b)

)
W̃ (r) dr;

R
(2)
7T =

∫ 1

b

(
WT (r)− W̃ (r)

)
WT (r − b) dr;

R
(3)
7T =

∫ b

[bT ]/T
WT (r − b)WT (r) dr.

Using arguments similar as above, we can show that each of these terms is OP

(
T−1/2+1/p

)
, com-

pleting the proof.

Proof of Lemma A.6. The first result follows trivially from part a) of Lemma 5.3. The

remaining result follow exactly as in the proof of Lemma A.5, given Lemma 5.3.
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Figure 1: Empirical Null Rejection Probabilities, Simple Location Model, Bartlett Kernel, T = 50
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Figure 2: Empirical Null Rejection Probabilities, Simple Location Model, Bartlett Kernel, T = 50
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Figure 3: Empirical Null Rejection Probabilities, Simple Location Model, QS Kernel, T = 50
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Figure 4: Empirical Null Rejection Probabilities, Simple Location Model, QS Kernel, T = 50
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Figure 5: Empirical Null Rejection Probabilities, Linear Regression, Bartlett Kernel, T = 50
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Figure 6: Empirical Null Rejection Probabilities, Linear Regression, Bartlett Kernel, T = 50
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Figure 7: Empirical Null Rejection Probabilities, Linear Regression, QS Kernel, T = 50
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Figure 8: Empirical Null Rejection Probabilities, Linear Regression, QS Kernel, T = 50
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