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Abstract

The main contribution of this paper is to propose bootstrap methods for realized volatility-like
estimators defined on pre-averaged returns. In particular, we focus on the pre-averaged realized
volatility estimator proposed by Podolskij and Vetter (2009). This statistic can be written (up to a
bias correction term) as the (scaled) sum of squared pre-averaged returns, where the pre-averaging
is done over all possible non-overlapping blocks of consecutive observations. Pre-averaging reduces
the influence of the noise and allows for realized volatility estimation on the pre-averaged returns.
The non-overlapping nature of the pre-averaged returns implies that these are asymptotically un-
correlated, but possibly heteroskedastic. This motivates the application of the wild bootstrap in
this context. We provide a proof of the first order asymptotic validity of this method for percentile
and percentile-t intervals. Our Monte Carlo simulations show that the wild bootstrap can improve
the finite sample properties of the existing first order asymptotic theory provided we choose the
external random variable appropriately. We use empirical work to illustrate its use in practice.

Keywords: High frequency data, realized volatility, pre-averaging, market microstructure noise,
wild bootstrap.

1 Introduction

The increasing availability of financial return series measured over higher and higher frequencies (e.g.

every minute or every second) has revolutionized the field of financial econometrics over the last decade.

Researchers and practitioners alike now routinely rely on high frequency data to estimate volatility

(and functionals of it, such as regression and correlation coefficients).
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One earlier popular estimator was realized volatility, computed as the sum of squared intraday

returns. This is a consistent estimator of integrated volatility (a measure of the ex-post variation of

asset prices over a given day) under quite general assumptions on the volatility process. However, one

important assumption underlying the consistency of realized volatility is the assumption that markets

are frictionless (so that asset prices are observed without any error). This assumption does not hold

in practice. As the sampling frequency increases, market microstructure effects such as the existence

of bid-ask bounds, rounding errors, discrete trading prices, etc, contribute to a discrepancy between

the true efficient price process and the price observed by the econometrician (known as the market

microstructure noise).

The negative impact of market microstructure effects on realized volatility is now an accepted fact

in the econometrics literature of high frequency data. A number of alternative estimators have been

proposed that take into account these effects (see e.g. Zhou (1996), Zhang et al. (2005), Hansen and

Lunde (2006), Bandi and Russell (2008), Barndorff-Nielsen et al. (2008), Podolskij and Vetter (2009)

and Jacod et al. (2009)). Although these estimators rely on a large number of high frequency returns,

finite sample distortions associated with the first order normal approximation may persist even at

large sample sizes, as shown by our simulations.

In this paper, we consider the bootstrap as an alternative method of inference. We focus on

the pre-averaging approach of Podolskij and Vetter (2009), where we first “average” the observed

noisy returns over given blocks of non-overlapping observations, and then apply the standard realized

volatility estimator to the pre-averaged returns. By averaging returns, the impact of the market

microstructure noise is lessened, thus justifying realized volatility-like estimation on the pre-averaged

returns. The class of statistics that we consider can be written (up to a bias term) as the (scaled)

sum of squared pre-averaged returns (using an appropriate weighting function) computed over non-

overlapping intervals. Our proposal is to bootstrap the pre-averaged returns.

Jacod et al. (2009) propose a generalization of the pre-averaging approach of Podolskij and Vetter

(2009) which entails the use of overlapping intervals and the use of a more general weighting function for

the pre-averaging of returns over these intervals. In this paper, we consider the case of non-overlapping

returns only. The main reason is that the structure of dependence of the pre-averaged returns is much

simpler in this case as compared to the overlapping case, which simplifies inference significantly. In

the non-overlapping case, the pre-averaged returns are uncorrelated asymptotically (as the number of

blocks increases) but possibly heteroskedastic (due to stochastic volatility). Thus, this motivates the

application of the wild bootstrap in this context. In contrast, overlapping pre-averaged returns (as in

Jacod et al. (2009)) are very strongly dependent because they rely on common returns. Therefore,

the wild bootstrap is not appropriate and more sophisticated bootstrap methods are required. In

particular, Hounyo, Gonçalves and Meddahi (2013) show that a combination of the wild bootstrap

with the blocks of blocks bootstrap of Bühlmann and Künsch (1995) (see also Künsch (1989), Politis

and Romano (1992)) is asymptotically valid when applied to the pre-averaging estimator of Jacod et
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al. (2009).

Our main contribution is to provide a proof of the validity of the wild bootstrap. Specifically,

we follow the literature and model the observed price process as the sum of the true but latent price

process (defined as a Brownian semimartingale process subject to stochastic volatility of a general

nonparametric form) plus a noise term which captures the market microstructure noise. As in Podolskij

and Vetter (2009), the noise is assumed i.i.d. Under these assumptions, the pre-averaged returns are

asymptotically uncorrelated and play the role of the original returns in the realized volatility estimator

when no market microstructure noise exists. Therefore, the proof of the validity of the wild bootstrap

in the present context where market microstructure effects exist parallels the proof of the validity of

the wild bootstrap in the context of Gonçalves and Meddahi (2009), where the wild bootstrap was

proposed for realized volatility under no market microstructure effects. Nevertheless, an important

difference between these two applications is the fact that the pre-averaging estimator of integrated

volatility entails an analytical bias correction term. As it turns out, this bias correction is only

important for the proper centering of the confidence intervals and does not impact the variance of the

estimator. As a consequence, we show that no bias correction term is needed in the bootstrap world

(because we can always center the bootstrap statistic at its own theoretical mean, without affecting

the bootstrap variance). This simplifies the application of the bootstrap in this context and justifies an

approach solely based on bootstrapping the pre-averaged returns (as the bias term typically depends

on the highest available frequency returns, which we are not resampling in the proposed approach).

We first discuss conditions under which the wild bootstrap variance is a consistent estimator

of the (conditional) variance of the pre-averaged realized volatility. Specifically, we show that a

necessary condition for the consistency of the wild bootstrap variance is that µ∗4 − (µ∗2)
2 = 2

3 , where

µ∗q ≡ E |vj |q and vj denotes the external random variable used to generate the wild bootstrap pre-

averaged returns Ȳ ∗j = Ȳj · vj , where Ȳj are the pre-averaged returns. Under this condition, the

bootstrap distribution of the scaled difference between the bootstrap pre-averaged realized volatility

and its conditional mean is consistent for the (conditional) distribution of the pre-averaged realized

volatility estimator. This result justifies the asymptotic validity of bootstrap percentile intervals for

integrated volatility. Although this type of intervals does not promise asymptotic refinements over

the first-order asymptotic approximation, they are easier to implement as they do not require an

explicit estimator of the variance1. We then discuss the first-order asymptotic validity of bootstrap

percentile-t intervals. In this case, we propose a consistent bootstrap variance estimator and show that

the studentized bootstrap statistic based on this estimator is asymptotically normal for any choice of

the external random variable, provided we center and scale the bootstrap statistic appropriately.

1In the univariate context considered here, the estimator of the variance of the pre-averaged realized volatility estimator
is rather simple (it is given by a (scaled) version of the realized quarticity of pre-averaged returns), but this is not
necessarily the case for other applications. For instance, for realized regression and realized correlation coefficients
defined by the pre-averaging approach, the variance estimator is obtained by the delta method (whose finite sample
properties are often poor) and the bootstrap percentile method could be useful in that context.
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We provide a set of Monte Carlo experiments that compare the finite sample performance of the

bootstrap with the existing mixed normal approximation. Our results show that the choice of the

external random variable is rather important in finite samples. In particular, percentile intervals

that do not satisfy the moment condition µ∗4 − (µ∗2)
2 = 2

3 behave quite poorly in finite samples,

confirming our theoretical result. In contrast, asymptotically valid percentile intervals behave similarly

to the asymptotic theory-based intervals and both are dominated by percentile-t bootstrap intervals.

Although percentile-t intervals are asymptotically valid for any choice of the external random variable,

their finite sample performance is also influenced by this choice. Our results show that matching the

first four cumulants (including the variance but also the mean, the skewness and the kurtosis) of

the studentized statistic is important for good coverage properties. The optimal choice proposed by

Gonçalves and Meddahi (2009) fails to do so when the sample size is small and therefore does not

work very well in the simulations. This suggests that a different choice may be optimal in the present

context. Deriving such a choice would require the development of an Edgeworth expansion for the

studentized statistic based on the pre-averaged realized volatility estimator and is outside the scope

of this paper. This is a non-trivial exercise given that the presence of the bias correction in the pre-

averaged realized volatility estimator has an impact on the higher order cumulants, as our simulations

shows. Instead, we show by simulation that a specific choice of the external random variable that does

well in mimicking the first four cumulants of the statistic of interest has good finite sample coverage

properties in the context of our Monte Carlo design.

The remainder of this paper is organized as follows. In Section 2, we introduce the basic model

and the main assumptions. Furthermore, we review the existing first-order asymptotic theory. We

also introduce the Monte Carlo design underlying all simulations in the paper and discuss the coverage

probability results for the first-order asymptotic approach for nominal 95% two-sided symmetric inter-

vals. In Section 3, we introduce our resampling method and prove its first-order asymptotic validity.

In Section 4 we discuss the Monte Carlo results for bootstrap two-sided intervals. Section 5 contains

an empirical application and Section 6 concludes. In the Appendix we give some technical results and

present tables that illustrate the finite sample properties of the proposed procedures.

2 Setup, assumptions and review of existing results

2.1 Setup and assumptions

Let X denote the unobservable efficient log-price process defined on a probability space (Ω,F , P )

equipped with a filtration (Ft)t≥0 . We model X as a Brownian semimartingale process defined by the

equation

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs, t ≥ 0, (1)
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where µ is a predictable locally bounded drift term, σ is an adapted càdlàg spot volatility process and

W a standard Brownian motion. The object of interest is the quadratic variation of X given by∫ T

0
σ2sds,

also known as the integrated volatility. Without loss of generality, we let T = 1 and define IV ≡∫ 1
0 σ

2
sds as the integrated volatility of X over a given time interval [0, 1], which we think of as a given

day.

The presence of market frictions such as price discreteness, rounding errors, bid-ask spreads, grad-

ual response of prices to block trades, etc, prevent us from observing the true efficient price process

X. Instead, we observe a noisy price process Y , given by

Yt = Xt + εt,

where εt represents the noise term that collects all the market microstructure effects. We assume that

εt is i.i.d. and that εt is independent of Xt. Assumption 1 below collects these assumptions.

Assumption 1

(i) The noise component εt is i.i.d.
(
0, ω2

)
with E |εt|8+ε <∞ for some ε > 0.

(ii) εt is independent from the latent log-price Xt.

Assumption 1 is standard in the literature on market microstructure noise robust estimators of

integrated volatility (see, among others, Zhang et al. (2005), Barndorff-Nielsen et al. (2008), Podolskij

and Vetter (2009)). Nevertheless, empirically the i.i.d. assumption on ε and the independence between

X and ε may be too strong a set of assumptions, especially at the highest frequencies. See e.g. Hansen

and Lunde (2006), Zhang et al. (2011), Diebold and Strasser (2012) for more on this issue. We will

investigate the impact of autocorrelated noise on the bootstrap performance in Section 4.

Although for consistency of the pre-averaging estimator, 4 + ε moments of εt suffice (see, in partic-

ular, Theorem 1 of Podolskij and Vetter (2009) with r = 2 and 0), here we impose a stronger moment

condition that requires the existence of 8 + ε moments. This is because we are interested in approxi-

mating the entire distribution of the studentized statistic based on the pre-averaging realized volatility

estimator and we need a consistent estimator of its conditional variance. Consistency of the variance

estimator requires this strenghtening of the moment condition (see again Theorem 1 of Podolskij and

Vetter (2009) with r = 4 and l = 0). Note that in contrast to Podolskij and Vetter (2009), we do

not need to impose a Gaussianity assumption on ε, nor do we need to restrict the volatility process

σ to be a Brownnian semi-martingale. These assumptions are needed when studying the asymptotic

properties of bipower or multipower pre-averaging statistics but can be dispensed with in the case of

squared averaged returns (see Vetter (2008), p.49, for more details on this).
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2.2 The pre-averaging approach

Suppose we observe Y at regular time points i
n , for i = 0, . . . , n, from which we compute n intraday

returns at frequency 1
n ,

ri ≡ Y i
n
− Y i−1

n
, i = 1, . . . , n.

Given that Y = X + ε, we can write

ri =
(
X i

n
−X i−1

n

)
+
(
ε i
n
− ε i−1

n

)
≡rei + ∆εi,

where rei = X i
n
−X i−1

n
denotes the 1

n -frequency return on the efficient price process.

We can show that

ri = rei + ∆εi = OP

(
1√
n

)
+OP (1) . (2)

Since X follows a stochastic volatility model given by (1), rei is (conditionally on the path of σ and

µ) uncorrelated and heteroskedastic with (conditional) variance given by
∫ i/n
(i−1)/n σ

2
sds. The order of

magnitude of rei is thus OP

(
1√
n

)
. In contrast, under Assumption 1, the difference ∆εi ≡ ε i

n
− ε i−1

n
is

an MA (1) process whose order of magnitude is OP (1).

The decomposition in (2) shows that the noise completely dominates the observed return process

as n→∞. This in turn implies that the usual realized volatility estimator is biased and inconsistent.

Moreover, even though the efficient returns rei are conditionally uncorrelated, this is no longer

the case for the observed returns. More specifically, the i.i.d. assumption on εt implies that the

autocorrelation of order one of the observed returns ri is non-zero due to the MA (1) structure induced

by the i.i.d. noise process.

Several approaches have been considered in the literature. Zhang et al. (2005) proposed a subsam-

pling approach and derived the two times scale realized volatility estimator. This estimator amounts

to using a linear combination of realized volatility estimators computed on subsamples (the slow scale)

and an analytical bias correction term that relies on a realized volatility computed on a fast scale.

Barndorff-Nielsen et al. (2008) proposed the realized kernel estimators, where linear combinations

of autocovariances are considered. More recently, Podolskij and Vetter (2009) introduced the pre-

averaging approach based on non-overlapping blocks. This was further generalized in Jacod et al.

(2009) to allow for overlapping blocks.

In this paper we focus on bootstrapping the pre-averaged realized volatility estimator of Podolskij

and Vetter (2009). As we mentioned before, our proposal is to bootstrap the pre-averaged returns.

By focusing only on non-overlapping intervals, we can apply the wild bootstrap method to the pre-

averaged returns. The dependence structure of the pre-averaged returns becomes much stronger

under overlapping intervals and invalidates the use of the wild bootstrap. See Hounyo, Gonçalves and

Meddahi (2013) for a bootstrap method that is valid in this context and which combines the wild

bootstrap with a blocks of blocks bootstrap.
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Next we describe the pre-averaging approach of Podolskij and Vetter (2009). This approach de-

pends on two tuning parameters K and L, which denote two different block sizes. Specifically, let K

denote the size of a block of K consecutive 1
n -horizon returns. Within each non-overlapping block of

size K, we consider the set of all overlapping blocks of size L, where L is a fraction of K. For a given

(non-overlapping) block of size K, there will be such K − L+ 1 blocks of size L.

Assume that n/K is an integer so that the number of non-overlapping blocks of size K is n/K.

For j = 1, . . . , n/K, the pre-averaged return Ȳj is obtained as follows:

Ȳj =
1

K − L+ 1

jK−L∑
i=(j−1)K

(
L∑
l=1

rl+i

)
.

This amounts to computing the sum of 1
n -horizon returns over each block of size L and then averaging

the result over all possible such overlapping blocks. An alternative expression for Ȳj is as follows:

Ȳj =
K∑
i=1

g (i,K,L) ri+(j−1)K ,

where for every i = 1, . . . ,K, the weighting function g (i,K,L) is defined as

g (i,K,L) =


i

K−L+1 , if i ∈ {1, . . . , L}
L

K−L+1 , if i ∈ {L+ 1, . . . ,K − L}
K−i+1
K−L+1 , if i ∈ {K − L+ 1, . . . ,K}

,

and where we can show that
∑K

i=1 g (i,K,L) = L.

The effect of pre-averaging is to reduce the impact of the noise in the pre-averaged return. Specif-

ically, we can show that by pre-averaging returns over blocks of size K in this particular manner, we

reduce the variance by a factor of about 1
K . To be more precise, Podolskij and Vetter (2009) show

that

Ȳj = r̄ej + ∆ε̄j = OP

(√
L

n

)
+OP

(
1√

K − L

)
, (3)

where r̄ej and ∆ε̄j denote the pre-averaged versions of the efficient returns and the difference of the

noise process, respectively. Thus, comparing (2) with (3), we see that pre-averaging manages to reduce

the impact of the noise from OP (1) to OP

(
1√
K−L

)
. Since L is a fraction of K, i.e. L ∼ 1

c2
K, for

some c2 > 1, the order of magnitude of the noise in (3) is OP

(
1√
K

)
. The overall implication is that

we can compute a realized volatility-like estimator on the pre-averaged returns Ȳj . This is the essence

of the pre-averaging approach.

To give the explicit formula of the pre-averaging realized volatility estimator of Podolskij and

Vetter (2009), we need to introduce some additional notation. In particular, we let

L =

⌊
1

c2
K

⌋
, (4)
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with c2 > 1, and

K =
⌊
c1c2
√
n
⌋
, (5)

where c1 > 0, and c1 and c2 are two tuning parameters that need to be chosen. These choices of K

and L imply that the two terms in (3) are balanced and equal to OP
(
n−1/4

)
.

Under Assumption 1, and assuming that K and L satisfy the conditions (4) and (5), respectively,

Podolskij and Vetter (2009) [cf. Theorem 1] show that

p lim
n→∞

n/K∑
j=1

Ȳ 2
j

 =
ν1
c1c2

∫ 1

0
σ2sds+

ν2
c1c2

ω2,

where ω2 = V ar (εi) and where

ν1 =
c1

(
3c2 − 4 + max

(
(2− c2)3 , 0

))
3 (c2 − 1)2

, ν2 =
2 (min ((c2 − 1) , 1))

c1 (c2 − 1)2
.

Two implications can be obtained from this result. First, the particular weighting scheme induced by

the pre-averaging approach introduces a scaling factor given by ν1
c1c2

when estimating
∫ 1
0 σ

2
sds. This

implies that we need to scale
n/K∑
j=1

Ȳ 2
j by c1c2

ν1
. Second, although the pre-averaging approach reduces

the order of magnitude of the noise, it does not completely eliminate its influence. In particular,

p lim
n→∞

c1c2
ν1

n/K∑
j=1

Ȳ 2
j

 =

∫ 1

0
σ2sds+

ν2
ν1
ω2︸ ︷︷ ︸

Bias term

,

where the bias term is proportional to the variance of the noise ω2. A consistent estimator of ω2 is

given by the realized volatility estimator computed on the n highest frequency returns ri, divided by

2n, i.e.

ω̂2 =

∑n
i=1 r

2
i

2n
→P ω2.

This suggests the following consistent estimator of integrated volatility:

PRVn =
c1c2
ν1

n/K∑
j=1

Ȳ 2
j︸ ︷︷ ︸

RV -like estimator

− ν2
ν1
ω̂2︸ ︷︷ ︸

bias correction term

.

2.3 First-order asymptotic distribution theory

Under Assumption 1, and assuming that K and L are chosen according to (4) and (5), Podolskij and

Vetter (2009) (cf. Corollary 1) show that

n1/4
(
PRVn −

∫ 1
0 σ

2
sds
)

√
V

→st N(0, 1), (6)
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where→st denotes stable convergence (see Christensen and al. (2010), p. 119, for a definition of stable

convergence), and

V =
2c1c2
ν21

∫ 1

0

(
ν1σ

2
s + ν2ω

2
)2
ds

is the conditional variance of PRVn.

By Theorem 1 of Podolskij and Vetter (2009), a consistent estimator of V is given by

V̂n =
2c21c

2
2

3ν21

√
n

n/K∑
j=1

∣∣Ȳj∣∣4 .
This estimator has the form of a realized quarticity estimator applied to the pre-averaged returns Ȳj .

Together with the CLT result (6), it implies that (cf. equation (3.19) in Podolskij and Vetter (2009))

Tn ≡
n1/4

(
PRVn −

∫ 1
0 σ

2
sds
)

√
V̂n

→d N(0, 1).

We can use this feasible asymptotic distribution result to build confidence intervals for integrated

volatility. In particular, a two-sided feasible 100(1− α)% level interval for
∫ 1
0 σ

2
sds is given by:

ICFeas,1−α =

(
PRVn − z1−α/2n−1/4

√
V̂n, PRVn + z1−α/2n

−1/4
√
V̂n

)
,

where z1−α/2 is such that Φ
(
z1−α/2

)
= 1 − α/2, and Φ (·) is the cumulative distribution function of

the standard normal distribution. For instance, z0.975 = 1.96 when α = 0.05.

2.4 Finite sample properties of the feasible asymptotic approach

In this section we assess by Monte Carlo simulation the accuracy of the feasible asymptotic theory of the

pre-averaging approach of Podolskij and Vetter (2009). We find that this approach leads to important

coverage probability distortions when returns are not sampled too frequently. This motivates the

bootstrap as an alternative method of inference in this context.

We consider two data generating processes in our simulations. First, following Zhang et al. (2005),

we use the one-factor stochastic volatility (SV1F) model of Heston (1993) as our data-generating

process, i.e.

dXt = (µ− νt/2) dt+ σtdBt,

and

dνt = κ (α− νt) dt+ γ (νt)
1/2 dWt,

where νt = σ2t , B and W are two Brownian motions, and we assume Corr(B,W ) = ρ. The parameter

values are all annualized. In particular, we let µ = 0.05/252, κ = 5/252, α = 0.04/252, γ = 0.05/252,

ρ = −0.5. For i = 1, . . . , n, we let the market microstructure noise be defined as ε i
n
∼ i.i.d.N

(
0, ω2

)
.

The size of the noise is an important parameter. We follow Barndorff-Nielsen et al. (2009) and model

the noise magnitude as ξ2 = ω2/
√∫ 1

0 σ
4
sds. We fix ξ2 be equal to 0.0001, 0.001 and 0.01, and let
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ω2 = ξ2
√∫ 1

0 σ
4
sds. These values are motivated by the empirical study of Hansen and Lunde (2006),

who investigate 30 stocks of Dow Jones Industrial Average.

We also consider the two-factor stochastic volatility (SV2F) model analyzed by Barndorff-Nielsen

et al. (2009), where 2

dXt = µdt+ σtdBt,

σt = s-exp (β0 + β1τ1t + β2τ2t) ,

dτ1t = α1τ1tdt+ dB1t,

dτ2t = α2τ2tdt+ (1 + φτ2t) dB2t,

corr (dWt, dB1t) = ϕ1, corr (dWt, dB2t) = ϕ2.

We follow Huang and Tauchen (2005) and set µ = 0.03, β0 = −1.2, β1 = 0.04, β2 = 1.5, α1 = −0.00137,

α2 = −1.386, φ = 0.25, ϕ1 = ϕ2 = −0.3. We initialize the two factors at the start of each interval

by drawing the persistent factor from its unconditional distribution, τ10 ∼ N
(

0, −12α1

)
, by starting the

strongly mean-reverting factor at zero.

We simulate data for the unit interval [0, 1] and normalize one second to be 1/23400, so that [0, 1]

is thought to span 6.5 hours. The observed Y process is generated using an Euler scheme. We then

construct the 1
n -horizon returns ri ≡ Yi/n − Y(i−1)/n based on samples of size n.

The pre-averaging approach requires the choice of the tuning parameters c1 and c2. Podolskij and

Vetter (2009) give the optimal values of c1 and c2 that minimize the conditional variance V of the

PRVn estimator when the volatility process is constant. In our simulations, we followed Podolskij

and Vetter (2009) and let c2 = 1.6 and c1 = 1. These choices may not be optimal under stochastic

volatility, but since we will compute the bootstrap statistics using these same values, they allow for

a meaningful comparison of the different intervals for integrated volatility (asymptotic theory-based

and bootstrap intervals). Moreover, we have checked the robustness of our results to different choices

of L and K and they are fairly robust to these choices.

Table 1 gives the actual rates of 95% confidence intervals of integrated volatility for the SV1F

and the SV2F models, respectively, computed over 10,000 replications. Results are presented for eight

different samples sizes: n = 23400, 11700, 7800, 4680, 1560, 780, 390 and 195, corresponding to “1-

second”, “2-second”, “3-second”, “5-second”, “15-second”, “30-second”, “1-minute” and “2-minute”

frequencies (this table also includes results for the bootstrap methods but those results will be discussed

later in Section 4.)

For the two models, all intervals tend to undercover. The degree of undercoverage is especially

large for smaller values of n, when sampling is not too frequent. The SV2F model exhibits overall

larger coverage distortions than the SV1F model, for all sample sizes. Results are not very sensitive

2The function s-exp is the usual exponential function with a linear growth function splined in at high values of its
argument: s-exp(x) = exp(x) if x ≤ x0 and s-exp(x) = exp(x0)√

x0−x20+x2
if x > xo, with x0 = log(1.5).
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to the noise magnitude.

3 The bootstrap

In this section we provide a bootstrap method for inference on integrated volatility based on the pre-

averaging approach of Podoslkij and Vetter (2009). Our proposal is to bootstrap the pre-averaged

returns Ȳj , j = 1, . . . , n/K. Because non-overlapping intervals are used, the pre-averaged returns

Ȳj are asymptotically uncorrelated, as n → ∞. In fact, we can show that they are one-dependent

(conditionally on X), i.e. Ȳj is independent of Ȳm whenever |m− j| > 1. Moreover, the amount of

dependence between two consecutive squared pre-averaged returns is very small and it is only due to

edge effects. Specifically, Cov
(
Ȳ 2
j , Ȳ

2
j+1

)
= O

(
1
n2

)
= o (1) as n→∞.

Since pre-averaged returns are asymptotically uncorrelated but possibly heteroskedastic (due to

the fact that volatility is time-varying) a wild bootstrap approach is appropriate. The wild bootstrap

method was introduced by Wu (1986), and further studied by Liu (1988) and Mammen (1993), in

the context of cross-section linear regression models subject to unconditional heteroskedasticity in

the error term. Gonçalves and Meddahi (2009) applied the wild bootstrap method in the context of

realized volatility under no market microstructure noise. Our approach here follows Gonçalves and

Meddahi (2009), but instead of bootstrapping the 1
n -horizon raw returns ri, we propose to bootstrap

the pre-averaged returns Ȳj .

The bootstrap pseudo-data is given by

Ȳ ∗j = Ȳj · vj , j = 1, . . . , n/K,

where the external random variable vj is an i.i.d. random variable independent of the data and

whose moments are given by µ∗q ≡ E∗ |vj |q. As usual in the bootstrap literature, P ∗ (E∗ and V ar∗)

denotes the probability measure (expected value and variance) induced by the bootstrap resampling,

conditional on a realization of the original time series. In addition, for a sequence of bootstrap statistics

Z∗n, we write Z∗n = oP ∗ (1) in probability, or Z∗n →P ∗ 0, as n → ∞, in probability, if for any ε > 0,

δ > 0, limn→∞ P [P ∗ (|Z∗n| > δ) > ε] = 0. Similarly, we write Z∗n = OP ∗ (1) as n → ∞, in probability

if for all ε > 0 there exists a Mε <∞ such that limn→∞ P [P ∗ (|Z∗n| > Mε) > ε] = 0. Finally, we write

Z∗n →d∗ Z as n → ∞, in probability, if conditional on the sample, Z∗n weakly converges to Z under

P ∗, for all samples contained in a set with probability P converging to one.

The bootstrap pre-averaged realized volatility estimator is given by

PRV ∗n =
c1c2
ν1

n/K∑
j=1

Ȳ ∗2j .

Although the pre-averaged realized volatility estimator PRVn contains a bias correction term, we do

not consider bias correction in the bootstrap world. The reason is twofold. First, our goal is not

to estimate consistently the integrated volatility using the bootstrap. Instead, our goal is to use the

11



bootstrap to approximate the distribution of statistics based on PRVn, for instance we would like to

approximate the distribution of the t-statistic Tn defined in the previous section. We can easily show

that

E∗ (PRV ∗n ) = µ∗2
c1c2
ν1

n/K∑
j=1

Ȳ 2
j .

This is a biased estimator of integrated volatility, but we can correctly center our bootstrap statistics

using this theoretical bootstrap mean. Since the bias correction term does not affect the variance

of the pre-averaging estimator, as long as the bootstrap method is able to consistently estimate this

variance, no bias correction is needed in the bootstrap world. The second reason why we do not consider

bootstrap bias correction is that the bootstrap bias correction term would involve the bootstrap highest

frequency returns r∗i , which are not available under our proposed method.

We can show that

V ar∗
(
n1/4PRV ∗n

)
=
(
µ∗4 − µ∗22

) c21c22
ν21

√
n

n/K∑
j=1

∣∣Ȳj∣∣4︸ ︷︷ ︸
≡ 3

2
V̂n

.

It follows then that a sufficient condition for the bootstrap to provide a consistent estimator of the

conditional variance of n1/4PRVn is that µ∗4 − µ∗22 = 2
3 . Under this condition, the bootstrap can be

used to approximate the quantiles of the distribution of the root

n1/4
(
PRVn −

∫ 1

0
σ2sds

)
,

thus justifying the construction of bootstrap percentile confidence intervals.

These results are summarized in the following theorem.

Theorem 3.1. Suppose Assumption 1 holds and let K and L satisfy the conditions (4) and (5),

respectively. Suppose that
{
Ȳ ∗j = Ȳj · vj : j = 1, . . . , n/K

}
, where vj ∼ i.i.d. such that for any δ > 0,

µ∗2(2+δ) = E∗ |vj |2(2+δ) <∞. If µ∗4 − (µ∗2)
2 = 2

3 , then as n→∞,

(1) V ∗n ≡ V ar∗
(
n1/4PRV ∗n

) P→ V ≡ 2c21c
2
2

ν21

∫ 1
0

(
ν1σ

2
s + ν2ω

2
)2
ds.

(2) supx∈R

∣∣∣P ∗ (n1/4 (PRV ∗n − E∗ (PRV ∗n )) ≤ x
)
− P

(
n1/4

(
PRVn −

∫ 1
0 σ

2
sds
))∣∣∣ P→ 0.

An example of a random variable that satisfies the condition µ∗4 − µ∗22 = 2
3 is

vj ∼ i.i.d. N
(

0,
√

3/3
)
.

Theorem 3.1 justifies using the wild bootstrap to construct bootstrap percentile intervals for inte-

grated volatility. Specifically, a 100 (1− α) % symmetric bootstrap percentile interval for integrated

volatility based on the bootstrap is given by

IC∗perc,1−α =
(
PRVn − n−1/4p∗1−α, PRVn + n−1/4p∗1−α

)
, (7)

12



where p∗1−α is the 1− α quantile of the bootstrap distribution of
∣∣n1/4 (PRV ∗n − E∗ (PRV ∗n ))

∣∣ .
Bootstrap percentile intervals do not promise asymptotic refinements. Next, we propose a con-

sistent bootstrap variance estimator that allows us to form bootstrap percentile-t intervals. More

specifically, we can show that the following bootstrap variance estimator consistently estimates V ∗n for

any choice of the external random variable vj :

V̂ ∗n =
µ∗4 − µ∗22

µ∗4

c21c
2
2

ν21
n1/2

n/K∑
j=1

Ȳ ∗4j .

Our proposal is to use this estimator to construct a bootstrap studentized statistic,

T ∗n ≡
n1/4 (PRV ∗n − E∗ (PRV ∗n ))√

V̂ ∗n

,

the bootstrap analogue of Tn.

Theorem 3.2. Suppose Assumption 1 holds such that for any δ > 0, E |εt|2(8+δ) <∞, and let K and

L satisfy the conditions (4) and (5), respectively. Suppose that
{
Ȳ ∗j = Ȳj · vj : j = 1, . . . , n/K

}
, where

vj ∼ i.i.d. such that µ∗8 = E∗ |vj |8 <∞. It follows that as n→∞, supx∈R |P ∗ (T ∗n ≤ x)− P (Tn ≤ x)| P→
0.

Theorem 3.2 justifies constructing bootstrap percentile-t intervals. In particular, a 100 (1− α) %

symmetric bootstrap percentile-t interval for integrated volatility is given by

IC∗perc−t,1−α =

(
PRVn − q∗1−αn−1/4

√
V̂n, PRVn + q∗1−αn

−1/4
√
V̂n

)
, (8)

where q∗1−α is the (1− α)-quantile of the bootstrap distribution of |T ∗n |. The first order asymptotic

validity of the bootstrap requires a strenthening of the moment condition on εt when applied to the

feasible statistic Tn.

4 Monte Carlo results for the bootstrap

In this section, we compare the finite sample performance of the bootstrap with the first order asymp-

totic theory for confidence intervals of integrated volatility in the case of i.i.d. and autocorrelated

market microstructure noise. In our simulations, bootstrap intervals use 999 bootstrap replications

for each of the 10,000 Monte Carlo replications.

To generate the bootstrap data we use three different external random variables.

WB1 vj ∼ i.i.d. N
(
0,
√

3/3
)
, implying that µ∗2 =

√
3/3 and µ∗4 = 1.

WB2 A two point distribution vj ∼ i.i.d. such that:

vj =


(
2
3

)1/4 −1+√5
2 , with prob p =

√
5−1
2
√
5(

2
3

)1/4 −1−√5
2 , with prob 1− p =

√
5+1
2
√
5

,
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for which µ∗2 = 2
√

2/3 and µ∗4 = 10/3.

WB3 The two point distribution proposed by Gonçalves and Meddahi (2009), where vj ∼ i.i.d. such

that:

vj =

{
1
5

√
31 +

√
186, with prob p = 1

2 −
3√
186

−1
5

√
31−

√
186, with prob 1− p

,

for which we have µ∗2 = 1 and µ∗4 = 31/25.

The condition µ∗4− (µ∗2)
2 = 2

3 is satisfied for the first two choices (WB1 and WB2) but not for WB3.

The implication is that WB1 and WB2 are valid for percentile intervals but not WB3. Note however

that all three choices of vj are asymptotically valid when used to construct bootstrap percentile-t

intervals.

4.1 i.i.d. noise

In this subsection, we simulate results for the case of i.i.d. market microstructure noise, following

the same data generating process as in Section 2.4. We consider bootstrap percentile and bootstrap

percentile-t intervals, computed at the 95% level using (7) and (8), respectively. Table 1 shows the

actual coverage probability rates of nominal 95% symmetric bootstrap intervals for integrated volatility

based on WB1, WB2 and WB3 for each of the two models (SV1F and SV2F). Results based on the

asymptotic normal distribution are also included (under the label CLT). As already discussed in

Section 2.4, results are not very sensitive to the choice of ξ2 and distortions are larger (both based on

asymptotic theory and on the bootstrap) for the SV2F than for the SV1F model. These trends are

also present for the bootstrap.

Starting with the bootstrap percentile intervals, we see that these are close to the CLT-based

intervals for WB1 and WB2 (when the condition µ∗4− (µ∗2)
2 = 2

3 is satisfied) whereas coverage rates

for percentile intervals based on WB3 are systematically much lower than 95% even for the largest

sample sizes. This confirms the theoretical prediction of asymptotic invalidity for these intervals.

The results also confirm that the bootstrap percentile intervals do not outperform the asymptotic

theory-based intervals. Nevertheless, choosing vj to match the variance of the pre-averaging estimator

may result in better percentile-t intervals, as a comparison of the different bootstrap methods shows

for this type of intervals. Specifically, although WB2 and WB3 both undercover for smaller sample

sizes, WB2 outperforms WB3 significantly for the smaller samples sizes. For instance, for SV1F, when

ξ2 = 0.0001, WB3 covers IV 81.41% of the time when n = 195 whereas WB2 does so 91.05%. These

rates decrease to 71.89% and 86.78% for the SV2F model, respectively. In contrast, the WB1 method

covers IV with a rate equal to 97.91% for SV1F and 94.72% for SV2F, when n = 195. In general,

the results show that percentile-t intervals based on WB1 are too conservative, yielding coverage rates

larger than 95%, especially for the SV1F model. WB2 intervals tend to be closer to the desired nominal
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level than the WB3 method, without being conservative. Overall, the results suggest that the choice

of vj is important in finite samples.

In order to gain further insight into why the different choices of vj matter in finite samples, we

computed the first four cumulants of Tn and of its bootstrap analogue T ∗n . The results are presented

in Table 2, which also reports the coverage rates of symmetric intervals based on these studentized

statistics. Results are only given for ξ2 = 0.01. For Tn, we report the mean, the standard error, the

excess skewness and the excess kurtosis across the 10,000 simulations. For T ∗n , the numbers correspond

to the average value (across the 10,000 simulations) of the bootstrap mean, standard error, excess

skewness and excess kurtosis computed for each simulation across the 999 bootstrap replications.

Starting with Tn, the results show that this statistic is centered at a negative value across the

different sample sizes. The negative bias decreases as n increases, but it can be quite large when

n is small. Since the asymptotic normal distribution is centered at zero, it completely misses this

downward bias. We can also see that the finite sample distribution of Tn is more dispersed than the

N (0, 1) distribution (its standard error is larger than 1), and that it is strongly negatively skewed (the

excess skewness is very negative) and fat-tailed (the excess kurtosis is positive). All these features

explain the undercoverage of the CLT approach. In contrast, the bootstrap cumulants of T ∗n replicate

to a better degree the finite sample patterns of the four cumulants of Tn depending on the choice of

vj . Specifically, we can see that the three choices of vj typically induce a negative bias as well as

negative excess skewness and positive excess kurtosis (an exception is WB3 for the smaller sample

sizes). Nevertheless, WB1 implies too strong a correction. For instance, the bias of T ∗n is more

negative than it should be on average as well as its excess skewness. This means that the bootstrap

distribution of T ∗n is on average to the left of the finite sample distribution of Tn, resulting in too

large a critical value, which explains the overcoverage problem noted in Table 1. In contrast, for the

smaller sample sizes, WB2 and WB3 imply too little a correction in terms of the bias, which implies

that these bootstrap distributions are on average centered to the right of the true distribution of Tn.

This contributes to too small a critical value and to some undercoverage.

Overall, the results suggest that WB3 does a poorer job at capturing the first four cumulants than

WB2, especially for the smaller sample sizes. This suggests that the optimal choice of vj proposed

by Gonçalves and Meddahi (2009) in the context of realized volatility without market microstructure

noise is no longer optimal in the context of pre-averaging realized volatility. The presence of the bias

correction term in the definition of PRVn implies that the Edgeworth expansions derived in Gonçalves

and Meddahi (2009) do not apply in the pre-averaging approach considered here. Thus, although bias

correction does not have an impact to first order on the asymptotic variance of PRVn, it likely has

an impact on the higher order cumulants, as our Monte Carlo simulation results suggest. Deriving

the optimal choice of the external random variable in this context is an interesting research question

which we will consider elsewhere.
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4.2 Autocorrelated noise

In a second set of experiments, we look at the case where the market microstructure noise is autocor-

related. Recently, Hautsch and Podolskij (2013) have formally developed the theory of pre-averaging

estimators in this case. While Hautsch and Podolskij’s (2013) results apply specifically to the over-

lapping pre-averaging approach, the same bias correction can also be used for the non-overlapping

pre-averaged estimator considered here. Indeed, as Podolskij and Vetter (2009) discuss in their Sec-

tion 3.1.3, relaxing the i.i.d. noise assumption to allow for q−dependence implies that their main

consistency result for non-overlapping pre-averaged estimators (cf. their Theorem 1) still holds. The

key difference is that the limit now depends on the higher order autocorrelations of the noise pro-

cess instead of depending on ω2 = V ar (εi) (in particular, ω2 is replaced by the long run variance

ρ2 = ρ (0) + 2
∑q

k=1 ρ (k), where ρ (k) = Cov (ε1, ε1+k) , and q is the order of dependence of the noise

process (εi)i≥0). The main implication is that the bias correction for pre-averaged realized volatility

must depend on an estimator of ρ2. Hautsch and Podolskij’s (2013) discuss an estimator of ρ2 given

by

ρ2n = ρn (0) + 2

q∑
k=1

ρn (k) ,

where ρn (0) , . . . , ρn (q) are obtained by a simple recursion,

ρn (q) = −γn (q + 1) ,

ρn (q − 1) = −γn (q) + 2ρn (q) ,

ρn (q − 2) = −γn (q − 1) + 2ρn (q − 1)− ρn (q) ,

where γn (k) =
1

n

n∑
i=1

riri+k, k = 0, . . . , q + 1.

This implies the following consistent estimator of integrated volatility under a q-dependent autocor-

related noise process:

PRV a
n =

c1c2
ν1

n/K∑
j=1

Ȳ 2
j︸ ︷︷ ︸

RV -like estimator

− ν2
ν1
ρ2n︸ ︷︷ ︸

new bias correction term

. (9)

As it turns out, while the asymptotic variance of PRV a
n depends on the long run variance of the noise,

the same variance estimator as the one used under i.i.d. noise (V̂n in our notation) can still be used

in the autocorrelated case (this is again a consequence of the fact that Podolskij and Vetter’s (2009)

Theorem 1 holds when εi is autocorrelated). This fact leads us to conjecture that the wild bootstrap

is valid when applied to the new bias adjusted pre-averaged volatility estimator under autocorrelated

noise. Although we do not provide a formal proof of this result, in this section we explore the finite

sample properties of the wild bootstrap under autocorrelation in εi.

In particular, we follow Kalnina (2011) and let the market microstructure noise be generated as

16



an MA(1) process (for a given frequency of the observations):

ε i
n

= u i
n

+ θu i−1
n
, u i

n
∼ i.i.d.N

(
0,

ω2

1 + θ2

)
, (10)

so that V ar (ε) = ω2. We set θ = −0.5 and chose ω2 as in the i.i.d. case discussed above, i.e. we let

ω2 = ξ2
√∫ 1

0 σ
4
sds. Because the results are not very sensitive to the value of ξ2, we only report results

for ξ2 = 0.01.

Our aim here is to evaluate by Monte Carlo simulation the performance of the wild bootstrap when

applied to the statistic that relies on the new bias correction of Hautsh and Podoskij (2013), which is

robust to noise autocorrelation. We consider three types of intervals as before (intervals based on the

asymptotic normal distribution, bootstrap percentile and bootstrap percentile-t intervals), computed

at the 95% level. More specifically, we consider the following intervals,

ICFeas,0.95 =

(
PRV a

n − 1.96n−1/4
√
V̂n, PRV

a
n + 1.96n−1/4

√
V̂n

)
, (11)

IC∗perc,0.95 =
(
PRV a

n − n−1/4p∗0.95, PRV a
n + n−1/4p∗0.95

)
, and (12)

IC∗perc−t,0.95 =

(
PRV a

n − q∗0.95n−1/4
√
V̂n, PRV

a
n + q∗0.95n

−1/4
√
V̂n

)
. (13)

Whereas (11) corresponds to an asymptotic theory-based interval, (12) and (13) correspond to boot-

strap percentile and percentile-t intervals, respectively. Note that in the latter case, the bootstrap

quantiles (p∗0.95 and q∗0.95) are computed exactly as in the i.i.d. case (they are based on the absolute

value of n1/4 (PRV ∗n − E∗ (PRV ∗n )) and of T ∗n , whose form is unaffected by the new bias adjustment

used in PRV a
n ).

Table 3 contains the results. Two sets of results are presented. First, we present results for intervals

based on PRVn, the non-robust pre-averaged estimator discussed for the i.i.d. case (top part of the

table). Then, we present results for intervals based on PRV a
n , the robust estimator based on the new

bias correction of Hautsch and Podolskij (2013) (bottom part). The results show that intervals based

on PRVn are more distorted when there is autocorrelation in εi than otherwise. The main reason for

the distortions is the fact that PRVn is not correctly centered under autocorrelation. For instance, for

the SV1F model, when n = 195, the CLT-based interval has a coverage probability equal to 75.58%

under autocorrelated noise whereas its coverage rate (from Table 1) is equal to 77.93% under i.i.d.

noise. Although the difference is not very large for the smaller sample sizes, it gets much bigger for

larger values of n. For n = 23, 400, these rates equal 89.33% and 93.4%, respectively. Thus, the

problem does not disappear with increasing sample sizes. The differences between the two intervals

are larger for the SV2F model. For instance, the rates for n = 195 are equal to 70.17% under i.i.d.

noise and equal to 66.13% under MA(1) errors. For n = 23, 400, they are equal to 90.13% and 83.86%,

respectively.

However, if we rely on PRV a
n as a point estimator of integrated volatility, the corresponding
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intervals (both asymptotic and bootstrap) are better centered and the distortions are smaller and

closer to their values under the i.i.d. noise. For instance, the CLT-based intervals for SV1F now have

coverage rates equal to 78.51% and 93.89% when n = 195 and n = 23, 400, respectively. A similar

pattern is observed for the SV2F model, although the rates are overall smaller (they are equal to

69.62% and 90.15%, respectively).

When the wild bootstrap method WB2 is used to compute critical values for the t-test based on

PRVn and the error is MA(1), coverage rates are usually smaller than those obtained when the noise

is i.i.d (and therefore distortions are larger). As for the CLT-based intervals, the larger differences

occur for the larger sample sizes (for instance, for the SV1F model, the rate is equal to 91.44% under

MA(1) error when n = 23, 400, whereas it is equal to 94.75% under i.i.d. error). For the smaller

sample sizes, the difference in coverage probability between the two types of errors is much smaller. It

is almost negligible for the SV1F model, although it is slighly larger for the SV2F model. As for the

CLT-based intervals, using the wild bootstrap to compute critical values for the t-statistic based on

PRV a
n essentially eliminates the difference in coverage probabilities observed between the i.i.d. and

the MA(1) errors. When compared to WB1 and WB3, the wild bootstrap intervals based on WB2

seem to do best overall. In particular, the comparison between the three methods is similar to what

we observed for the i.i.d. noise case when they are used to compute critical values for the t-statistic

based on PRV a
n .

In summary, the results in Table 3 show that under autocorrelated noise the statistic based on the

bias correction of Hautsch and Podolskij (2013) works well and that the coverage rates of 95% nominal

level intervals based on either the asymptotic mixed Gaussian distribution or the wild bootstrap

proposed in this paper are similar to those obtained under i.i.d. noise.

5 Empirical results

As a brief illustration, in this section we implement the proposed wild bootstrap method on real high

frequency data, and compare it to the existing feasible asymptotic procedure of Podolskij and Vetter

(2009). The data consists of transaction log prices of General Electric (GE) shares carried out on

the New York Stock Exchange (NYSE) in December 2011. For each day, we consider data from the

regular exchange opening hours from time stamped between 9:30 a.m. until 4 p.m. Our procedure for

cleaning the data is exactly identical to that used by Barndorff-Nielsen et al. (2008).

We implement the pre-averaged realized volatility estimator of Podolskij and Vetter (2009) (pos-

sibly corrected for autocorrelation in the noise) on returns recorded every S transactions, where S is

selected each day so that there are approximately 1493 observations a day. This means that on average

these returns are recorded roughly every 15 seconds. Table 4 in the Appendix provides the number

of transactions per day, the sample size for the pre-averaged returns, and the dependent-noise robust

version of the pre-averaged realized volatility estimator using (9) (for q = 0, 1 and 2). We also report

18



the optimal value of q (the number of non-vanishing covariances) using the decision rule proposed

by Hautsch and Podolskij (2013). The pre-averaged realized volatility estimator is implemented with

c2 = 1.6 and c1 = 1. As the results in Table 4 show, there are some days on our sample for which

there is evidence of significant serial correlation in the noise process.

We consider bootstrap percentile-t intervals, computed at the 95% level using (13), where vj

is generated using WB2 (our best choice according to the Monte Carlo simulations). The results

are displayed in Figure 1 in terms of daily 95% confidence intervals (CIs) for integrated volatility.

Two types of intervals are presented: our proposed wild bootstrap method and the existing feasible

asymptotic procedure Podolskij and Vetter (2009) (corrected by the Hautsch and Podolskij (2013) bias

formula when q > 0). In particular, the pre-averaged realized volatility estimate is computed using

(9) with the optimal value of q, and is in the center of both confidence intervals by construction.

The confidence intervals for integrated volatility based on the bootstrap method are usually wider

than the confidence intervals using the feasible asymptotic theory. Nevertheless, as our Monte Carlo

simulations showed, the latter typically have undercoverage problems whereas the bootstrap intervals

have coverage rates closer to the desired level. Therefore, if the goal is to control the coverage prob-

ability, shorter intervals are not necessarily better. The figure also shows a lot of variability in the

daily estimate of integrated volatility.

6 Conclusion

In this paper, we propose the wild bootstrap as a method of inference for integrated volatility in the

context of the pre-averaged realized volatility estimator proposed by Podolskij and Vetter (2009). The

wild bootstrap is motivated by the fact that non-overlapped pre-averaged returns are asymptotically

uncorrelated but possibly heteroskedastic (in the context of stochastic volatility models). We provide

a set of conditions under which this method is asymptotically valid to first order. Both percentile and

percentile-t bootstrap intervals are considered. Our Monte Carlo simulations show that the bootstrap

can improve upon the mixed Gaussian inference derived by Podolskij and Vetter (2009) provided we

choose the external random variable appropriately.

An important question for future research is the optimal choice of the external random variable

in this context. This is not an easy question because it requires developing Edgeworth expansions

for the statistics of interest in the original sample and the bootstrap samples. Since the pre-averaged

realized volatility estimator depends on a bias correction term, its Edgeworth expansion will reflect

the contribution of this term at higher orders and render the analysis rather complex. We plan on

investigating this issue in future work.
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Appendix A

Table 1. Coverage rate of nominal 95 % intervals under i.i.d. noise

SV1F SV2F
—————————————————————————– —————————————————————————–

WB1 WB2 WB3 WB1 WB2 WB3
—————— —————— —————— —————— —————— ——————

n CLT Perc Perc-t Perc Perc-t Perc Perc-t CLT Perc Perc-t Perc Perc-t Perc Perc-t

ξ2 = 0.0001

195 77.54 77.49 97.91 76.42 91.05 61.11 81.41 69.49 69.38 94.72 68.51 86.78 55.51 71.89
390 84.85 84.47 98.42 83.51 93.71 66.76 90.20 77.97 77.64 96.17 76.89 89.88 62.87 82.42
780 86.82 86.11 98.43 85.41 93.94 67.73 92.91 80.61 80.19 96.24 79.09 90.17 63.36 85.87
1560 88.89 88.13 98.36 87.74 93.93 69.58 94.36 83.36 82.89 96.63 82.03 90.87 65.16 89.07
4680 91.49 90.65 98.63 90.78 94.69 72.56 96.59 86.17 85.59 96.76 85.41 91.74 67.71 91.92
7800 92.78 92.04 98.56 92.34 95.12 73.24 96.97 89.50 88.66 97.46 88.59 93.33 70.11 94.21
11700 93.01 92.41 98.35 92.63 95.11 73.40 97.16 89.05 88.34 97.09 88.27 93.15 70.23 94.15
23400 93.48 92.85 98.06 93.09 94.89 74.26 97.56 89.89 89.06 96.86 89.33 92.81 71.13 94.67

ξ2 = 0.001

195 77.63 77.46 97.90 76.56 90.92 61.18 81.54 69.72 69.81 94.78 68.83 86.59 55.86 71.86
390 85.02 84.48 98.50 83.66 93.75 66.71 90.38 77.95 77.73 96.14 76.97 89.93 63.17 82.57
780 86.81 86.11 98.43 85.22 93.86 67.91 92.76 80.55 80.23 96.14 79.36 90.25 63.68 85.94
1560 88.91 88.13 98.48 87.74 93.94 69.51 94.46 83.26 82.70 96.66 82.10 90.91 65.16 89.12
4680 91.47 90.76 98.67 90.78 94.78 72.55 96.59 86.33 85.66 96.68 85.37 91.94 67.86 91.93
7800 92.86 91.91 98.56 92.37 95.06 73.47 97.00 89.56 88.73 97.54 88.53 93.36 70.09 94.25
11700 92.98 92.25 98.32 92.56 95.14 73.57 97.10 88.95 88.19 97.00 88.15 93.04 70.16 94.23
23400 93.45 92.88 98.12 93.12 94.92 74.18 97.51 90.01 89.16 96.80 89.40 92.83 71.22 94.80

ξ2 = 0.01

195 77.93 77.67 97.67 76.86 91.23 61.69 81.35 70.17 70.12 94.80 69.28 86.74 56.07 72.73
390 85.09 84.57 98.35 83.61 93.59 66.85 90.28 78.59 78.46 96.42 77.43 90.00 62.89 83.60
780 86.75 86.29 98.38 85.31 93.47 67.96 92.75 81.29 80.90 96.33 79.92 90.36 63.86 86.54
1560 89.03 88.12 98.41 87.74 94.02 69.16 94.54 83.45 82.68 96.51 82.20 91.06 65.40 89.59
4680 91.42 90.54 98.78 90.66 94.62 72.39 96.64 86.78 86.04 96.57 85.67 91.97 68.07 92.17
7800 92.61 91.77 98.63 92.24 94.90 73.48 97.03 89.41 88.67 97.50 88.65 93.26 70.26 94.31
11700 93.22 92.36 98.43 92.72 94.92 73.63 97.17 89.09 88.40 96.97 88.42 92.93 70.17 94.30
23400 93.40 92.89 98.09 93.10 94.75 74.20 97.58 90.13 89.33 96.79 89.41 92.96 71.17 94.71

Notes: CLT-intervals based on the Normal; WB1 wild bootstrap intervals based on the external random variable
WB1; WB2 wild bootstrap intervals based on the external random variable WB2; WB3 wild bootstrap intervals
based on the external random variable WB3. 10,000 Monte Carlo trials with 999 bootstrap replications each.
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Table 2. Summary results for the stutentized statistic Tn and its bootstrap analogue T ∗n
SV1F SV2F

ξ2 = 0.01 Tn T ∗WB1
n T ∗WB2

n T ∗WB3
n Tn T ∗WB1

n T ∗WB2
n T ∗WB3

n

n = 195
Mean -1.109 -1.802 -0.552 -0.413 -1.798 -2.319 -0.752 -0.440
Standard error 2.356 4.526 2.135 1.298 3.921 5.867 2.466 1.264
Excess Skewness -3.717 -5.751 -3.024 -0.009 -6.000 -6.041 -2.724 0.158
Excess Kurtosis 29.279 65.763 14.765 -1.206 72.426 71.078 11.29 -1.255

Cov two-sided 77.93 97.67 91.23 81.35 70.17 94.8 86.74 72.73

n = 390
Mean -0.594 -1.275 -0.393 -0.373 -0.997 -1.676 -0.590 -0.410
Standard error 1.661 2.969 1.755 1.317 2.325 3.776 2.119 1.283
Excess Skewness -2.454 -3.940 -2.685 -0.169 -3.235 -4.218 -2.591 0.022
Excess Kurtosis 11.775 31.511 12.71 -0.991 18.615 35.287 10.775 -1.13

Cov two-sided 85.09 98.35 93.59 90.28 78.59 96.42 90.00 83.60

n = 780
Mean -0.519 -0.991 -0.297 -0.338 -0.850 -1.342 -0.482 -0.384
Standard error 1.464 2.304 1.517 1.323 1.982 2.924 1.884 1.293
Excess Skewness -1.973 -2.974 -2.235 -0.279 -2.620 -3.306 -2.391 -0.077
Excess Kurtosis 8.798 17.221 9.053 -0.767 12.026 21.371 9.370 -1.005

Cov two-sided 86.75 98.38 93.47 92.75 81.29 96.33 90.36 86.54

n = 1560
Mean -0.409 -0.788 -0.228 -0.299 -0.669 -1.094 -0.395 -0.357
Standard error 1.297 1.909 1.353 1.323 1.704 2.389 1.690 1.300
Excess Skewness -1.369 -2.381 -1.829 -0.366 -2.203 -2.672 -2.144 -0.166
Excess Kurtosis 3.714 10.773 6.193 -0.519 9.133 13.287 7.579 -0.858

Cov two-sided 89.03 98.41 94.02 94.54 83.45 96.51 91.06 89.59

n = 23400
Mean -0.191 -0.375 -0.095 -0.170 -0.334 -0.560 -0.183 -0.247
Standard error 1.064 1.277 1.085 1.281 1.225 1.490 1.247 1.295
Excess Skewness -0.592 -1.226 -0.859 -0.419 -1.117 -1.504 -1.331 -0.364
Excess Kurtosis 0.599 2.611 1.357 0.066 2.518 3.794 3.053 -0.298

Cov two-sided 93.40 98.09 94.75 97.58 90.13 96.79 92.96 94.71

Notes: Tn studentized statistic; T ∗WB1
n studentized wild bootstrap statistic based on WB1; T ∗WB2

n studentized
wild bootstrap statistic based on WB2; T ∗WB3

n studentized wild bootstrap statistic based on WB3. 10,000
Monte Carlo trials with 999 bootstrap replications each.
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Table 3. Coverage rate of nominal 95 % intervals under autocorrelated noise, θ = −0.5, ξ2 = 0.01

SV1F SV2F
—————————————————————————– —————————————————————————–

WB1 WB2 WB3 WB1 WB2 WB3
—————— —————— —————— —————— —————— ——————

n CLT Perc Perc-t Perc Perc-t Perc Perc-t CLT Perc Perc-t Perc Perc-t Perc Perc-t

ˆBias = ν2
ν1

∑n
i=1 r

2
i

2n

195 75.58 75.33 97.27 74.53 89.83 58.84 79.22 66.13 66.01 93.89 65.06 84.54 51.75 68.38
390 82.98 82.69 98.11 81.46 92.07 64.67 88.69 74.10 73.86 95.52 73.10 87.97 60.09 79.18
780 84.37 83.72 97.91 82.76 92.33 65.83 90.79 76.16 75.78 95.44 74.97 88.22 59.59 82.45
1560 86.26 85.57 98.03 85.00 92.59 66.59 93.19 78.60 78.09 95.47 77.23 88.04 61.72 85.46
4680 88.03 87.00 97.32 87.13 91.95 69.58 94.12 82.41 81.51 95.34 81.30 89.37 64.83 89.33
7800 90.34 89.52 98.03 89.69 93.08 71.68 95.85 84.57 83.80 96.44 83.40 90.78 66.58 91.62
11700 90.15 89.43 97.26 89.64 92.33 70.85 95.47 84.74 83.85 95.87 83.66 90.05 65.43 91.36
23400 89.33 88.65 96.51 89.03 91.44 69.67 95.34 83.86 82.98 94.63 83.09 88.62 65.34 91.14

ˆBias = ν2
ν1
ρ2n

195 78.51 78.31 97.62 77.29 91.05 61.84 81.94 69.62 69.71 94.81 68.47 86.44 55.21 71.83
390 85.45 85.19 98.48 83.92 93.36 66.74 90.73 78.03 78.02 96.46 76.86 89.92 62.98 82.47
780 87.15 86.55 98.44 85.73 93.62 68.40 92.65 80.18 79.91 96.45 78.86 90.53 63.28 85.84
1560 89.60 88.88 98.61 88.37 94.57 69.33 95.15 82.81 82.31 96.80 81.66 90.52 65.63 88.65
4680 91.42 90.64 98.26 90.69 94.26 72.86 96.13 87.31 86.58 96.80 86.28 92.40 69.08 92.44
7800 93.26 92.68 98.88 92.75 95.54 74.52 97.64 89.69 88.96 97.69 88.83 94.03 70.87 94.89
11700 93.44 92.70 98.36 92.99 95.15 74.74 97.35 89.87 89.08 97.56 89.10 93.60 70.83 94.99
23400 93.89 93.23 98.19 93.56 95.10 74.65 97.48 90.15 89.35 97.19 89.51 93.16 71.35 95.28

Notes: CLT-intervals based on the Normal; WB1 wild bootstrap intervals based on the external random variable
WB1; WB2 wild bootstrap intervals based on the external random variable WB2; WB3 wild bootstrap intervals

based on the external random variable WB3; ˆBias = ν2
ν1

∑n
i=1 r

2
i

2n is a consistent estimator of the bias term in

PRVn under i.i.d. noise; ˆBias = ν2
ν1
ρ2n is a consistent estimator of the bias term in PRV an under autocorrelated

noise. 10,000 Monte Carlo trials with 999 bootstrap replications each.
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Table 4: Summary statistics

Days Trans n S PRV an · 103 q∗ PRV an · 103
————————– ————
q = 0 q = 1 q = 2 q = q∗

1 Dec 11924 1491 8 0.406 0.408 0.408 1 0.408
2 Dec 11681 1461 8 0.351 0.353 0.353 0 0.351
5 Dec 10538 1506 7 0.382 0.383 0.382 0 0.382
6 Dec 12959 1440 9 0.256 0.347 0.565 5 0.665
7 Dec 11360 1420 8 0.377 0.398 0.402 5 0.509
8 Dec 10064 1438 7 0.348 0.349 0.348 0 0.348
9 Dec 12120 1515 8 0.387 0.490 0.564 5 0.601
12 Dec 12082 1511 8 0.374 0.437 0.561 5 0.598
13 Dec 10379 1483 7 0.162 0.187 0.220 5 0.305
14 Dec 12616 1577 8 0.358 0.463 0.584 5 0.595
15 Dec 10869 1553 7 0.269 0.269 0.270 0 0.269
16 Dec 12265 1534 8 0.365 0.367 0.367 0 0.365
19 Dec 11119 1589 7 0.368 0.369 0.369 0 0.368
20 Dec 12623 1578 8 0.377 0.378 0.378 0 0.377
21 Dec 13270 1475 9 0.390 0.392 0.392 0 0.390
22 Dec 14765 1476 10 0.460 0.461 0.461 0 0.460
23 Dec 10970 1568 7 0.347 0.348 0.348 0 0.347
27 Dec 10206 1458 7 0.364 0.365 0.365 0 0.364
28 Dec 9580 1597 6 0.488 0.489 0.489 0 0.488
29 Dec 10876 1554 7 0.254 0.255 0.255 0 0.254
30 Dec 9839 1406 7 0.264 0.421 0.438 5 0.528

“Trans” denotes the number of transactions, n is the sample size used to calculate the pre-averaged realized
volatility, we have sampled every Sth transaction price, so the period over which returns are calculated is roughly
15 seconds. PRV an is the dependent-noise robust version of the pre-averaged realized volatility estimator, q is
the order of autocorrelation, q∗ is the optimal value of q selected using the decision rule proposed by Hautsch
and Podolskij (2013).

Figure 1: 95% Confidence Intervals (CI’s) for the daily IV, for each regular exchange opening days in December

2011, calculated using the asymptotic theory of Podolskij and Vetter (2009) (CI’s with bars), and the

wild bootstrap method using WB2 as external random variable (CI’s with lines). The pre-averaging

realized volatility estimator is the middle of all CI’s by construction. Days on the x-axis.
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Appendix B

Proof of Theorem 3.1. For part (1), given that Ȳj
∗ =Ȳjvj , where vj are i.i.d. with µ∗q = E∗ |vj |q,

for any q > 0, we have that

V ∗n = V ar∗

n1/4 c1c2
ν1

n/K∑
j=1

Ȳj
∗2

 = V ar∗

n1/4 c1c2
ν1

n/K∑
j=1

Ȳ 2
j v

2
j


=

(
µ∗4 − (µ∗2)

2
)c21c22
ν21

n1/2
n/K∑
j=1

Ȳ 4
j = V̂n

under the condition that µ∗4 − (µ∗2)
2 = 2

3 . Thus,

V ∗n
P→ V =

2c21c
2
2

ν21

1∫
0

(
ν1σ

2
u + ν2ω

2
)2
du,

by an application of Theorem 1 of Podolskij and Vetter (2009) (where we set r = 4 and l = 0).

For part (2), let S∗n =
n/K∑
j=1

z∗j , where z∗j = c1c2
ν1
n1/4

(
Ȳj
∗2 − E∗

(
Ȳj
∗2)) . Note that E∗

(
z∗j

)
= 0 and

that

V ar∗

n/K∑
j=1

z∗j

 = V ∗n
P→ V,

by part (1). Moreover, since z∗1 , . . . , z
∗
n/K are conditionally independent, by the Berry-Esseen bound,

for some small δ > 0 and for some constant C > 0,

sup
x∈R

∣∣∣P ∗ (S∗n ≤ x)−Φ
(
x/
√
V
)∣∣∣ ≤ C n/K∑

j=1

E∗
∣∣z∗j ∣∣2+δ ,

which converges to zero in probability as n→∞. Indeed, we have that

n/K∑
j=1

E∗
∣∣z∗j ∣∣ 2+δ =

∣∣∣∣c1c2ν1
∣∣∣∣2+δ n/K∑

j=1

E∗
∣∣∣n1/4 (Ȳ ∗2j − E∗ (Ȳ ∗2j ))∣∣∣2+δ

≤ 2

∣∣∣∣c1c2ν1
∣∣∣∣2+δ n (2+δ)

4

n/K∑
j=1

E∗
∣∣Ȳ ∗2j ∣∣ 2+δ

≤ 2

∣∣∣∣c1c2ν1
∣∣∣∣2+δ E∗ |v1|2(2+δ) n− δ4

n (1+δ)
2

n/K∑
j=1

∣∣Ȳ 2
j

∣∣ 2+δ
= Op

(
n−

δ
4

)
= op (1) ,

since E |v1| 2(2+δ) ≤ ∆ < ∞ by assumption, and given that by Theorem 1 of Podolskij and Vetter

(2009)

n
(1+δ)

2

n/K∑
j=1

∣∣Y j

∣∣2(2+δ) P→
µ2(2+δ)

c1c2

1∫
0

(
ν1σ

2
u + ν2ω

2
)2+δ

du,

which is bounded since σ is an adapted càdlàg spot volatility process and locally bounded away from
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zero, and E(ε2t ) = ω2 < ∆ <∞.

Proof of Theorem 3.2 Given that Tn
d→ N(0, 1) (cf. Corollary 1 of Podolskij and Vetter (2009), it

suffices to show that T ∗n
d∗→ N(0, 1) in probability. Let

H∗n =
n1/4 (PRV ∗n − E∗ (PRV ∗n ))√

V ∗n
,

and note that

T ∗n = H∗n

√
V ∗n

V̂ ∗n
,

where V̂ ∗n is defined in the main text. Theorem 3.1 proved that H∗n
d∗→ N(0, 1) in probability. Thus,

it suffices to show that V̂ ∗n − V ∗n
P ∗→ 0 in probability. In particular, we show that (1) Bias∗

(
V̂ ∗n

)
= 0,

and (2) V ar∗
(
V̂ ∗n

)
P→ 0. It is easy to verify that (1) holds by the definition of V̂ ∗n and V ∗n . To prove

(2), note that

V ar∗
(
V̂ ∗n

)
= E∗

(
V̂ ∗n − V ∗n

)2
=

(
µ∗4 − (µ∗2)

2

µ∗4

)2

n
c21c

2
2

ν21
E∗

n/K∑
j=1

(
Y

4
jv

4
j − µ∗4Y

4
j

)2

=

(
µ∗4 − (µ∗2)

2

µ∗4

)2

n
c21c

2
2

ν21

n/K∑
j=1

Y
8
jE
∗ (v4j − µ∗4)2

=

(
µ∗4 − (µ∗2)

2

µ∗4

)2 (
µ∗8 − µ∗24

) c21c22
ν21

n−
1
2n

3
2

n/K∑
j=1

Y
8
j

= OP

(
n−

1
2

)
= oP (1) ,

where we have used the independence of vj over j to justify the third equality and Theorem 1 of

Podolskij and Vetter (2009) (with r = 8 and l = 0) to justify the fact that n
3
2

n/K∑
j=1

Y
8
j = OP (1). This

requires strengthening the moment condition on ε by assuming that E |ε|2(8+ε) <∞.
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