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1. Introduction

There is evidence of conditional heteroskedasticity in the residuals of many estimated dynamic regression

models in finance and in macroeconomics (see, e.g., Engle 1982; Bollerslev 1986; Weiss 1988). This

evidence is particularly strong for regressions involving monthly, weekly and daily data. Standard

residual-based bootstrap methods of inference for autoregressions treat the error term as independent

and identically distributed (i.i.d.) and are invalidated by conditional heteroskedasticity. In this paper,

we analyze two main proposals for dealing with conditional heteroskedasticity of unknown form in

autoregressions.

The first proposal is very easy to implement. It involves an application of the wild bootstrap (WB)

to the residuals of the dynamic regression model. The WB method allows for regression errors that

follow martingale difference sequences (m.d.s.) with possible conditional heteroskedasticity. We inves-

tigate both the fixed-design and the recursive-design implementation of the WB for autoregressions.

We prove their first-order asymptotic validity for the autoregressive parameters (and smooth func-

tions thereof) under fairly general conditions including, for example, stationary ARCH, GARCH and

stochastic volatility error processes (see, e.g., Bollerslev 1986, Shephard 1996).

There are several fundamental differences between this paper and earlier work on the WB in regres-

sion models. First, existing theoretical work has largely focused on providing first-order and second-

order theoretical justification for the wild bootstrap in the classical linear regression model (see, e.g.,

Wu 1986, Liu 1988, Mammen 1993, Davidson and Flachaire 2001). Second, the previous literature has

mainly focused on the problem of unconditional heteroskedasticity in cross-sections, whereas we focus

on the problem of conditional heteroskedasticity in time series. Third, much of the earlier work has

dealt with models restricted under the null hypothesis of a test, whereas we focus on the construction

of bootstrap confidence intervals from unrestricted regression models (see Davidson and Flachaire 2001,

Godfrey and Orme 2001).

The work most closely related to ours is Kreiss (1997). Kreiss established the asymptotic validity of a

fixed-design WB for stationary autoregressions with known finite lag order when the error term exhibits

a specific form of conditional heteroskedasticity. We provide a generalization of this result to m.d.s.
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errors with possible conditional heteroskedasticity of unknown form. Our results cover as special cases

the N-GARCH, t-GARCH and asymmetric GARCH models, as well as stochastic volatility models.

Kreiss (1997) also proposed a recursive-design WB, under the name of “modified wild bootstrap”,

but he did not establish the consistency of this bootstrap proposal for autoregressive processes with

conditional heteroskedasticity. We prove the first-order asymptotic validity of the recursive-design WB

for finite-order autoregressions with m.d.s. errors subject to possible conditional heteroskedasticity of

unknown form. The proof holds under slightly stronger assumptions than the proof for the fixed-design

WB.

Tentative simulation evidence shows that the recursive-design WB scheme works well in practice

for a wide range of models of conditional heteroskedasticity. In contrast, conventional residual-based

resampling schemes for autoregressions based on the i.i.d. error assumption may be very inaccurate

in the presence of conditional heteroskedasticity. Moreover, the accuracy of the recursive-design WB

method is comparable to that of the recursive-design i.i.d. bootstrap when the true errors are i.i.d.

The recursive-design WB method is typically more accurate in small samples than the fixed-design WB

method. It also tends to be more accurate than the Gaussian large-sample approximation based on

robust standard errors.

The second proposal for dealing with conditional heteroskedasticity of unknown form involves the

pairwise resampling of the observations. This method was originally suggested by Freedman (1981) for

cross-sectional models. We establish the asymptotic validity of this method in the autoregressive context

and compare its performance to that of the fixed-design and of the recursive-design WB. The pairwise

bootstrap is less efficient than the residual-based WB, but - like the fixed-design WB - it remains valid

for a broader range of GARCH processes than the recursive-design WB, including EGARCH, AGARCH

and GJR-GARCH processes, which have been proposed specifically to capture asymmetric responses

to shocks in asset returns (see, e.g., Engle and Ng (1993) for a review). We find in Monte Carlo

simulations that the pairwise bootstrap is typically more accurate than the fixed-design WB method,

but in small samples tends to be somewhat less accurate than the recursive-design WB when the data

are persistent. For large samples these differences vanish, and the pairwise bootstrap is as accurate as

2



the recursive-design WB.

A third proposal for dealing with conditional heteroskedasticity of unknown form is the resampling of

blocks of autoregressive residuals (see, e.g., Berkowitz, Birgean and Kilian 2000). No formal theoretical

results exist that would justify such a bootstrap proposal. We do not consider this proposal for two

reasons. First, in the context of a well-specified parametric model this proposal involves a loss of

efficiency relative to the WB because it allows for serial correlation in the error term in addition to

conditional heteroskedasticity. Second, the residual-based block bootstrap requires the choice of an

additional tuning parameter in the form of the block size. In practice, results may be sensitive to the

choice of block size. Although there are data-dependent rules for block size selection, these procedures

are very computationally intensive and little is known about their accuracy in small samples. In contrast,

the methods we propose are no more computationally burdensome than the standard residual-based

algorithm and very easy to implement.

The paper is organized as follows. In section 2 we provide empirical evidence that casts doubt on

the use of the i.i.d. error assumption for autoregressions, and we highlight the limitations of existing

bootstrap and asymptotic methods of inference when the autoregressive errors are conditionally het-

eroskedastic. In section 3 we describe the bootstrap algorithms and state our main theoretical results.

Details of the proofs are relegated to the appendix. In section 4, we provide some tentative simulation

evidence for the small-sample performance of alternative bootstrap proposals. We conclude in section

5.

2. Evidence Against the Assumption of i.i.d. Errors

Standard residual-based bootstrap methods of inference for dynamic regression models treat the error

term as i.i.d. The i.i.d. assumption does not follow naturally from economic models. Nevertheless,

in many cases it has proved convenient for theoretical purposes to treat the error term of dynamic

regression models as i.i.d. This would be of little concern if actual data were well represented by models

with i.i.d. errors. Unfortunately, this is not the case in many empirical studies. One approach in applied

work has been simply to ignore the problem and to treat the error term as i.i.d. (see, e.g., Goetzmann

and Jorion 1993, 1995). An alternative approach has been to impose a parametric model of conditional
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heteroskedasticity. For example, Bollerslev (1986) models inflation as an autoregressive process with

GARCH(1,1) errors. Similarly, Hodrick (1992) and Bekaert and Hodrick (2001) postulate a VAR model

with conditionally Gaussian GARCH(1,1) errors. This approach is not without risks. First, it is not

clear whether the class of GARCH models adequately captures the conditional heteroskedasticity in the

data. Second, even when the class of GARCH models is appropriate, in practice, the precise form of the

GARCH model will be unknown and different specifications may yield different results (see Wolf 2000).

Further difficulties arise in the multivariate case. For multivariate GARCH models it is often difficult

to obtain reliable numerical estimates of the GARCH parameters. In response, researchers typically

impose ad hoc restrictions on the covariance structure of the model (see, e.g., Bollerslev, Engle and

Wooldridge 1988, Bollerslev 1990, Bekaert et. al. 1997) that call into question the theoretical validity of

the estimates (see Ledoit, Santa-Clara and Wolf 2001). For these reasons, we argue for a nonparametric

treatment of conditional heteroskedasticity in dynamic regression models.

Whereas the failure of the i.i.d. assumption is well-documented in empirical finance, it is less well

known that many monthly macroeconomic variables also exhibit evidence of conditional heteroskedas-

ticity. In fact, both the ARCH and the GARCH model were originally motivated by macroeconometric

applications (see Engle 1982; Bollerslev 1986). The workhorse model of empirical macroeconomics is

the linear autoregression. Table 1 illustrates that the errors of monthly autoregressions typically cannot

be treated as i.i.d. It shows the results of LM tests of the null of no ARCH in the errors of six univari-

ate monthly autoregressive models (see Engle 1982). The data are the growth rate of U.S. industrial

output, M1 growth, CPI inflation, the real 3-month T-Bill rate, the nominal Federal Funds rate and the

percent change in the price of oil. The data source is FRED, the sample period 1959.1-2001.8, and the

autoregressive lag orders have been selected by the AIC. The LM tests strongly reject the assumption

of conditional homoskedasticity for the errors of the AR models. Similar results are obtained for a fixed

number of 12 lags or of 24 lags.

The evidence of non-i.i.d. errors in Table 1 is important because many methods of inference devel-

oped for smooth functions of autoregressive parameters (such as impulse responses) do not allow for

conditional heteroskedasticity. For example, standard residual-based bootstrap methods for autoregres-
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sions rely on the i.i.d. error assumption and are invalid in the presence of conditional heteroskedas-

ticity, as we will show in the next section. Similarly, the grid bootstrap of Hansen (1999) is based

on the assumption of an autoregression with i.i.d. errors. Likewise, standard asymptotic methods for

inference in autoregressions rely if not on the i.i.d. assumption, then on the assumption of conditional

homoskedasticity. For example, the closed-form solutions for the asymptotic normal approximation of

impulse response distributions proposed by Lütkepohl (1990) are based on the assumption of conditional

homoskedasticity and hence will be inconsistent in the presence of conditional heteroskedasticity.

In this paper we study several easy-to-implement bootstrap methods that allow inference in autore-

gressions with possible conditional heteroskedasticity of unknown form. Unlike the standard residual-

based bootstrap for models with i.i.d. innovations these bootstrap methods remain valid under the

much weaker assumption of m.d.s. innovations, and they do not require the researcher to take a stand

on the existence or specific form of conditional heteroskedasticity. For expository purposes we focus on

univariate autoregressive models. Analogous results for the multivariate case are possible at the cost of

additional notation.

3. Theory

Let (Ω,F , P ) be a probability space and {Ft} a sequence of increasing σ-fields of F . The sequence of

martingale differences {εt, t ∈ Z} is defined on (Ω,F , P ), where each εt is assumed to be measurable

with respect to Ft. We observe a sample of data {y−p+1, . . . , y0, y1, . . . , yn} from the following data

generating process (DGP) for the time series yt,

φ (L) yt = εt, (3.1)

where φ (L) = 1 − φ1L − φ2L
2 − . . . − φpL

p, φp 6= 0, is assumed to have all roots outside the unit

circle and the lag order p is finite and known. φ =
(
φ1, . . . , φp

)′ is the parameter of interest, which we

estimate by ordinary least squares (OLS) using observations 1 through n:

φ̂ =

(
n−1

n∑

t=1

Yt−1Y
′
t−1

)−1

n−1
n∑

t=1

Yt−1yt,
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where Yt−1 = (yt−1, . . . , yt−p)
′. In this paper we focus on bootstrap confidence intervals for φ that are

robust to the presence of conditional heteroskedasticity of unknown form in the innovations {εt}. More

specifically, we assume the following condition:

Assumption A

(i) E (εt|Ft−1) = 0, almost surely, where Ft−1 = σ (εt−1, εt−2, . . .) is the σ-field generated by {εt−1, εt−2, . . .} .

(ii) E
(
ε2
t

)
= σ2 < ∞.

(iii) limn→∞ n−1
∑n

t=1 E
(
ε2
t |Ft−1

)
= σ2 > 0 in probability.

(iv) τ r,s ≡ σ−4E
(
ε2
t εt−rεt−s

)
is uniformly bounded for all t, r ≥ 1, s ≥ 1; τ r,r > 0 for all r.

(v) limn→∞ n−1
∑n

t=1 εt−rεt−sE
(
ε2
t |Ft−1

)
= σ4τ r,s in probability for any r ≥ 1, s ≥ 1.

(vi) E |εt|4r is uniformly bounded, for some r > 1.

Assumption A replaces the usual i.i.d. assumption on the errors {εt} by the less restrictive martingale

difference sequence assumption. In particular, Assumption A allows for dependent, but uncorrelated

errors. It does not impose conditional homoskedasticity on the sequence {εt}, although it requires {εt}

to be covariance stationary. Assumption A covers a variety of conditionally heteroskedastic models

such as ARCH, GARCH, EGARCH and stochastic volatility models (see, e.g. Deo (2000), who shows

that a stronger version of Assumption A is satisfied for stochastic volatility and GARCH models).

Assumptions (iv) and (v) restrict the fourth-order cumulants of εt.

Recently, Kuersteiner (2001) derived the asymptotic distribution of efficient instrumental variables

estimators in the context of ARMA models with martingale difference errors that are strictly stationary

and ergodic, and that satisfy a summability condition on the fourth order cumulants. His result also

applies to the OLS estimator in the AR model as a special case. In Theorem 3.1, we provide an

alternative derivation of the asymptotic distribution of the OLS estimator of the AR model under

the slightly less restrictive Assumption A. We use Kuersteiner’s (2001) notation to characterize the

asymptotic covariance matrix of φ̂. Using φ−1 (L) =
∑∞

j=0 ψjL
j , we let bj =

(
ψj−1, . . . , ψj−p

)′ with
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ψ0 = 1 and ψj = 0 for j < 0. The coefficients ψj satisfy the recursion ψs − φ1ψs−1 − . . .− φpψs−p = 0

for all s > 0 and ψ0 = 1. We let ⇒ denote convergence in distribution throughout.

Theorem 3.1. Under Assumption A,
√

n
(
φ̂− φ

)
⇒ N (0, C), where

C = A−1BA−1,

A = σ2
∞∑

j=1

bjb
′
j and B = σ4

∞∑

i=1

∞∑

j=1

bib
′
jτ i,j .

The asymptotic covariance matrix of φ̂ is of the traditional “sandwich” form, where

A = E
(
n−1

∑n
t=1 Yt−1Y

′
t−1

)
and B = V ar

(
n−1/2

∑n
t=1 Yt−1εt

)
. Under conditional homoskedastic-

ity, B = σ2A. In particular, by application of the law of iterated expectations, we have that τ i,i ≡

σ−4E
(
ε2
t ε

2
t−i

)
= σ−4E

(
ε2
t−iE

(
ε2
t |Ft−1

))
= σ−4E

(
ε2
t−iσ

2
)

= 1 for all i = 1, 2, . . . . Similarly, we can

show that τ i,j = 0 for all i 6= j. Thus, for instance in the AR(1) case, the asymptotic variance of φ̂ = φ̂1

simplifies to C =
(
σ2

∑∞
i=0 ψ2

i

)−2 (
σ4

∑∞
i=0 ψ2

i

)
= 1− φ2

1.

The validity of any bootstrap method in the context of autoregressions with conditional het-

eroskedasticity depends crucially on the ability of the bootstrap to allow consistent estimation of the

asymptotic covariance matrix C. The standard residual-based bootstrap method fails to do so by not

correctly mimicking the behavior of the fourth-order cumulants of εt in the conditionally heteroskedastic

case, as we now show. Let ε̂∗t be resampled with replacement from the centered residuals. The standard

residual-based bootstrap builds y∗t recursively from ε̂∗t according to

y∗t = Y ∗′
t−1φ̂ + ε̂∗t , t = 1, . . . , n,

where Y ∗
t−1 =

(
y∗t−1, . . . , y

∗
t−p

)′, given appropriate initial conditions. The recursive-design i.i.d. boot-

strap analogues of A and B are A∗riid = n−1
∑n

t=1 E∗ (
Y ∗

t−1Y
∗′
t−1

)
and B∗

riid = V ar∗
(
n−1/2

∑n
t=1 Y ∗

t−1ε̂
∗
t

)
,

respectively. Because ε̂∗t is i.i.d.
(
0, σ̂2

)
, where σ̂2 = n−1

∑n
t=1

(
ε̂t − ε̂

)2, ε̂∗t and Y ∗
t−1 are (conditionally)

independent, and

B∗
riid = n−1

n∑

t=1

E∗ (
Y ∗

t−1Y
∗′
t−1ε̂

∗2
t

)
= n−1

n∑

t=1

E∗ (
Y ∗

t−1Y
∗′
t−1

)
E∗ (

ε̂∗2t

)
= σ̂2A∗riid.
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Thus, the bootstrap analogue of C, C∗
riid ≡ A∗−1

riidB∗
riidA

∗−1
riid = σ̂2A∗−1

riid , converges in probability to σ2A−1,

implying that the limiting distribution of the recursive i.i.d. bootstrap is N
(
0, σ2A−1

)
. As Theorem 3.1

shows, σ2A−1, however, is not the correct asymptotic covariance matrix of φ̂ without imposing further

conditions, e.g., that εt is conditionally homoskedastic. In the general, conditionally heteroskedastic

case, B depends on σ4τ i,j . The recursive-design i.i.d. bootstrap implies E∗ (
ε̂∗t−iε̂

∗
t−j ε̂

∗2
t

)
= σ̂4 when

i = j and zero otherwise, and thus implicitly sets τ i,j = 1 for i = j and 0 for i 6= j.

Given the failure of the standard-residual based bootstrap, we are interested in establishing the

first-order asymptotic validity of three alternative bootstrap methods in this environment. Two of the

bootstrap methods we study rely on an application of the wild bootstrap (WB). The WB has been

originally developed by Wu (1986), Liu (1988) and Mammen (1993) in the context of static linear

regression models with (unconditionally) heteroskedastic errors. We consider both a recursive-design

and a fixed-design version of the WB. The third method is a natural generalization of the pairwise

bootstrap for linear regression first suggested by Freedman (1981) for cross-sectional data.

Recursive-design wild bootstrap

The recursive-design WB is a simple modification of the usual recursive-design bootstrap method

for autoregressions (see, e.g., Bose 1988) which consists of replacing Efron’s i.i.d. bootstrap by the wild

bootstrap when bootstrapping the errors of the AR model. More specifically, the recursive-design WB

bootstrap generates a pseudo time series {y∗t } according to the autoregressive process:

y∗t = Y ∗′
t−1φ̂ + ε̂∗t , t = 1, . . . , n,

where ε̂∗t = ε̂tηt, with ε̂t = φ̂ (L) yt, and where ηt is an i.i.d. sequence with mean zero and variance one

such that E∗ |ηt|4 ≤ ∆ < ∞. We let y∗t = 0 for all t ≤ 0. Kreiss (1997) suggested this method in the

context of autoregressive models with i.i.d. errors, but did not investigate its theoretical justification in

more general models. Here, we will provide conditions for the asymptotic validity of the recursive-design

WB proposal for finite-order autoregressive processes with possibly conditionally heteroskedastic errors.

Establishing the validity of the recursive-design WB requires a strengthening of Assumption A.

Specifically, we need Assumption A′ below in order to ensure convergence of the bootstrap estimator
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of the asymptotic covariance matrix C to its correct limit. In contrast, the fixed-design WB and the

pairwise bootstrap to be discussed later are valid under the less restrictive Assumption A.

Assumption A′

(iv′) E
(
ε2
t εt−rεt−s

)
= 0 for all r 6= s, for all t, r ≥ 1, s ≥ 1.

(vi′) E |εt|4r is uniformly bounded for some r ≥ 2 and for all t.

Assumption A′ restricts the class of conditionally heteroskedastic autoregressive models in two

dimensions. First, Assumption A′ (iv′) requires τ r,s = 0 for all r 6= s. Milhøj (1985) shows that

this assumption is satisfied for the ARCH(p) model with innovations having a symmetric distribution.

Bollerslev (1986) and He and Teräsvirta (1999) extend the argument to the GARCH(p, q) case. In

addition, Deo (2000) shows that this assumption is satisfied by certain stochastic volatility models.

Assumption A′ (iv′) excludes some non-symmetric parametric models such as asymmetric EGARCH.

Second, we now require the existence of at least eight moments for the martingale difference sequence

{εt} as opposed to only 4r moments, for some r > 1, as in Assumption A. A similar moment condition

was used by Kreiss (1997) in his Theorem 4.3, which shows the validity of the recursive-design WB for

possibly infinite-order AR processes with i.i.d. innovations.

The strengthening of Assumption A is crucial to showing the asymptotic validity of the recursive-

design WB in the martingale difference context. In particular, conditional on the data, and given the

independence of {ηt},
{
Y ∗

t−1ε̂
∗
t ,F∗t

}
can be shown to be a vector m.d.s., where F∗t = σ

(
ηt, ηt−1, . . . , η1

)
.

We use Assumption A′ (vi′) to ensure convergence of n−1
∑n

t=1 Y ∗
t−1Y

∗′
t−1ε̂

∗2
t to B∗

rwb ≡

V ar∗
(
n−1/2

∑n
t=1 Y ∗

t−1ε̂
∗
t

)
, thus verifying one of the conditions of the CLT for m.d.s. Assumption

A′ (iv′) ensures convergence of the recursive-design WB variance B∗
rwb to the correct limiting variance

of n−1/2
∑n

t=1 Yt−1εt. More specifically, letting Y ∗
t−1 ≡

∑t−1
j=1 b̂j ε̂

∗
t−j with b̂j ≡

(
ψ̂j−1, . . . , ψ̂j−p

)′
, ψ̂0 = 1

and ψ̂j = 0 for j < 0, it follows by direct evaluation that

B∗
rwb = n−1

n∑

t=1

t−1∑

j=1

t−1∑

i=1

b̂j b̂
′
iE

∗ (
ε̂∗t−j ε̂

∗
t−iε̂

∗2
t

)
,
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where E∗ (
ε̂∗t−j ε̂

∗
t−iε̂

∗2
t

)
= ε̂2

t−iε̂
2
t for i = j and zero otherwise. We can rewrite B∗

rwb as
∑n−1

j=1 b̂j b̂
′
jn
−1

∑n
t=1+j ε̂2

t ε̂
2
t−j , which converges in probability to B̃ ≡ ∑∞

j=1 bjb
′
jσ

4τ jj under Assumption A. Without

Assumption A′ (iv′) an asymptotic bias term appears in the estimation of B ≡ σ4
∑∞

i=1

∑∞
j=1 bib

′
jτ i,j ,

which is equal to −σ4
∑

i6=j bib
′
jτ i,j . Assumption A′ (iv′) sets τ i,j equal to zero for i 6= j, and thus

ensures that the recursive-design WB consistently estimates B.

Theorem 3.2 formally establishes the asymptotic validity of the recursive-design WB for finite-order

autoregressions with conditionally heteroskedastic errors. Let φ̂
∗
rwb denote the recursive-design WB

OLS estimator, i.e., φ̂
∗
rwb =

(
n−1

∑n
t=1 Y ∗

t−1Y
∗′
t−1

)−1
n−1

∑n
t=1 Y ∗

t−1y
∗
t .

Theorem 3.2. Under Assumption A strengthened by Assumption A′ (iv′) and (vi′), it follows that

sup
x∈Rp

∣∣∣P ∗
(√

n
(
φ̂
∗
rwb − φ̂

)
≤ x

)
− P

(√
n

(
φ̂− φ

)
≤ x

)∣∣∣ P→ 0,

where P ∗ denotes the probability measure induced by the recursive-design WB.

Fixed-design wild bootstrap

The fixed-design WB generates {y∗t }n
t=1 according to the equation

y∗t = Y ′
t−1φ̂ + ε̂∗t , t = 1, . . . , n, (3.2)

where ε̂∗t = ε̂tηt, ε̂t = φ̂ (L) yt, and where ηt is an i.i.d. sequence with mean zero and variance

one such that E∗ |ηt|2r ≤ ∆ < ∞, for some r > 1. The fixed-design WB estimator is φ̂
∗
fwb =

(
n−1

∑n
t=1 Yt−1Y

′
t−1

)−1
n−1

∑n
t=1 Yt−1y

∗
t . The fixed-design WB corresponds to a regression-type boot-

strap method in that (3.2) is a fixed-design regression model, conditional on the original sample. A

similar “fixed-regressor bootstrap” has also been proposed by Hansen (2000) in the context of testing

for structural change in regression models. The fixed-design WB was originally suggested by Kreiss

(1997). Kreiss’ (1997) Theorem 4.2 proves the first-order asymptotic validity of the fixed-design WB

for finite-order autoregressions with conditional heteroskedasticity of a specific form. More specifically,

he postulates a DGP of the form yt =
∑p

i=1 φiyt−i + σ (yt−1) vt, where vt is i.i.d.(0, 1) with finite fourth

moment. The i.i.d. assumption on the rescaled innovations vt is violated if for instance the condi-

tional moments of vt depend on past observations. We prove the first-order asymptotic validity of the
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fixed-design WB of Kreiss (1997) under a broader set of regularity conditions, namely Assumption A.

Theorem 3.3. Under Assumption A,

sup
x∈Rp

∣∣∣P ∗
(√

n
(
φ̂
∗
fwb − φ̂

)
≤ x

)
− P

(√
n

(
φ̂− φ

)
≤ x

)∣∣∣ P→ 0,

where P ∗ denotes the probability measure induced by the fixed-design WB.

In contrast to the recursive-design WB, the ability of the fixed-design WB to estimate consis-

tently the variance, and hence the limiting distribution, of φ̂ does not require a strengthening of As-

sumption A. Specifically, the variance of the limiting conditional bootstrap distribution of φ̂
∗
fwb is

given by A∗−1
fwbB

∗
fwbA

∗−1
fwb, where A∗fwb = n−1

∑n
t=1 Yt−1Y

′
t−1 and B∗

fwb ≡ V ar∗
(
n−1/2

∑n
t=1 Yt−1ε̂

∗
t

)
=

n−1
∑n

t=1 Yt−1Y
′
t−1ε̂

2
t . Under Assumption A one can show that A∗fwb

P→ A and B∗
fwb

P→ B, thus ensuring

that A∗−1
fwbB

∗
fwbA

∗−1
fwb

P→ A−1BA−1 ≡ C.

Pairwise bootstrap

Another bootstrap method that captures the presence of conditional heteroskedasticity in autore-

gressive models consists of bootstrapping “pairs”, or tuples, of the dependent and the explanatory

variables in the autoregression. This method is an extension of Freedman’s (1981) bootstrap method

for the correlation model to the autoregressive context. In the AR(p) model, it amounts to resam-

pling with replacement from the set of tuples
(
yt, Y

′
t−1

)
= (yt, yt−1, . . . , yt−p), t = 1, . . . , n. Let

{(
y∗t , Y ∗′

t−1

)
=

(
y∗t , y∗t−1, . . . , y

∗
t−p

)
, t = 1, . . . , n

}
be an i.i.d. resample from this set. Then the pair-

wise bootstrap estimator is defined by φ̂
∗
pb =

(
n−1

∑n
t=1 Y ∗

t−1Y
∗′
t−1

)−1
n−1

∑n
t=1 Y ∗

t−1y
∗
t . The bootstrap

analogue of φ is φ̂, since φ̂ is the parameter value that minimizes E∗
[(

y∗t − Y ∗′
t−1φ

)2
]
. The following

theorem establishes the asymptotic validity of the pairwise bootstrap for the AR(p) process with m.d.s.

errors satisfying Assumption A.

Theorem 3.4. Under Assumption A, it follows that

sup
x∈Rp

∣∣∣P ∗
(√

n
(
φ̂
∗
pb − φ̂

)
≤ x

)
− P

(√
n

(
φ̂− φ

)
≤ x

)∣∣∣ P→ 0,

where P ∗ denotes the probability measure induced by the pairwise bootstrap.
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Asymptotic validity of bootstrapping the studentized slope parameter

Corollary 3.1 below establishes the asymptotic validity of bootstrapping the t-statistic for the ele-

ments of φ. To conserve space, we let φ̂
∗

denote the OLS estimator of φ obtained under any of the three

robust bootstrap resampling schemes studied above. Similarly, we use (y∗t , Y ∗′
t−1) to denote bootstrap

data in general. In particular, we implicitly set Y ∗
t−1 = Yt−1 for the fixed-design WB.

For a typical element φj a bootstrap percentile-t confidence interval is based on t
φ̂
∗
j

=
√

n(φ̂
∗
j−φ̂j)√
Ĉ∗jj

, the

bootstrap analogue of the t-statistic tφ̂j
=

√
n(φ̂j−φj)√

Ĉjj

. In the context of (conditional) heteroskedasticity,

Ĉjj and Ĉ∗
jj are the heteroskedasticity-consistent variance estimators evaluated on the original and on

the bootstrap data, respectively. Specifically, for the bootstrap t-statistic let

Ĉ∗ = Â∗−1B̂∗Â∗−1, with

Â∗ = n−1
n∑

t=1

Y ∗
t−1Y

∗′
t−1 and B̂∗ = n−1

n∑

t=1

Y ∗
t−1Y

∗′
t−1ε̃

∗2
t ,

where ε̃∗t = y∗t − φ̂
∗′
Y ∗

t−1 are the bootstrap residuals.

Corollary 3.1. Assume Assumption A holds. Then, for the fixed-design WB and the pairwise boot-

strap, it follows that

sup
x∈R

∣∣∣P ∗
(
t
φ̂
∗
j
≤ x

)
− P

(
tφ̂j

≤ x
)∣∣∣ P→ 0, j = 1, . . . , p.

If Assumption A is strengthened by Assumption A′ (iv′) and (vi′), then the above result also holds for

the recursive-design WB.

4. Simulation Evidence

In this section, we study the accuracy of the bootstrap approximation proposed in section 3 for sample

sizes of interest in applied work. We focus on the AR(1) model as the leading example of an autore-

gressive process. The DGP is yt = φ1yt−1 + εt with φ1 ∈ {0, 0.9}. In our simulation study we allow

for GARCH(1,1) errors of the form εt =
√

htvt, where vt is i.i.d. N (0, 1) and ht = ω + αε2
t−1 + βht−1,

t = 1, . . . , n. We normalize the unconditional variance of εt to one. In addition to conditional N(0,1)

innovations we also consider GARCH models with conditional t5-errors (suitably normalized to have
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unit variance). For β = 0 this model reduces to an ARCH(1) model. For α = 0 and β = 0 the error

sequence reduces to a sequence of (possibly non-Gaussian) i.i.d errors. We allow for varying degrees

of volatility persistence modeled as GARCH processes with α + β ∈ {0, 0.5, 0.95, 0.99}. The parameter

settings for α and β are similar to settings found in applied work. In addition, we consider AR(1)

models with exponential GARCH errors (EGARCH), asymmetric GARCH errors (AGARCH) and with

the GJR-GARCH errors proposed by Glosten, Jaganathan and Runkle (1993). Our parameter settings

are based on Engle and Ng (1993).

Finally, we also consider the stochastic volatility model εt = vt exp(ht) with ht = λht−1 + 0.5ut,

where |λ| < 1 and (ut, vt) is a sequence of independent bivariate normal random variables with zero

mean and covariance matrix diag(σ2
u, 1). This model is a m.d.s. model and satisfies Assumption A. We

follow Deo (2000) in postulating the values (0.936, 0.424) and (0.951, 0.314) for (λ, σu). These are values

obtained by Shephard (1996) by fitting this stochastic volatility model to real exchange rate data.

We generate repeated trials of length n ∈ {50, 100, 200, 400} from these processes and conduct

bootstrap inference based on the fitted AR(1) model for each trial. All fitted models include an intercept.

For the recursive-design bootstrap methods, we generate the start-up values by randomly drawing

observations with replacement from the original data set (see, e.g. Berkowitz and Kilian 2000). The

number of Monte Carlo trials is 10,000 with 999 bootstrap replications each. The fixed-design and

recursive-design WB involve applying the WB to the residuals of the fitted model. Recall that the WB

innovation is ε̂∗t = ε̂tηt, with ε̂t = yt − φ̂0 − φ̂1yt−1, where ηt is an i.i.d. sequence with mean zero and

variance one such that E∗ |ηt|4 ≤ ∆ < ∞. In practice, there are several choices for ηt that satisfy

these conditions. In the baseline simulations we use ηt ∼ N(0, 1). Our results are robust to alternative

choices, as will be shown at the end of this section.

We are interested in studying the coverage accuracy of nominal 90% symmetric percentile-t bootstrap

confidence intervals for the slope parameter φ1. We also considered equal-tailed percentile-t intervals,

but found that symmetric percentile-t intervals of the form

(
φ̂1 − t∗0.9n

−1/2

√
Ĉ11, φ̂1 + t∗0.9n

−1/2

√
Ĉ11

)
,
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where Pr(|t
φ̂
∗
1
| ≤ t∗0.9) = 0.9, virtually always were slightly more accurate. Unlike the percentile interval,

the construction of the bootstrap-t interval requires the use of an estimate of the standard error of
√

n(φ̂
∗
1 − φ̂1). We use the heteroskedasticity-robust estimator of the covariance proposed by Nicholls

and Pagan (1983) based on work by Eicker (1963) and White (1980):

(X ′X)−1X ′diag(ε̂2
t )X(X ′X)−1,

where X denotes the regressor matrix of the AR model. We also experimented with several modified

robust covariance estimators (see MacKinnon and White 1985, Chesher and Jewitt 1987, Davidson

and Flachaire 2001). For our sample sizes, none of these estimators performed better than the basic

estimator proposed by Nicholls and Pagan (1983). Finally, virtually identical results were obtained

based on WB bootstrap standard error estimates. The latter approach involves a nested bootstrap loop

and is not recommended for computational reasons. As a benchmark we also include the coverage rates

of the Gaussian large-sample approximation based on Nicholls-Pagan robust standard errors.

The simulation results are in Tables 2-5. Starting with the results for N-GARCH errors in Table

2, several broad tendencies emerge. First, the accuracy of the standard recursive-design bootstrap

procedure based on i.i.d. resampling of the residuals is high when the model errors are truly i.i.d.,

but can be very poor in the presence of N-GARCH. In the latter case, accuracy tends to deteriorate

for large n. Second, for sample sizes of 100 or larger, conventional large-sample approximations based

on robust standard errors tend to be more accurate than the recursive-design i.i.d. bootstrap in the

presence of N-GARCH, but less accurate for models with i.i.d. errors. In either case, the coverage

rates may be substantially below the nominal level. Third, all three robust bootstrap methods tend

to be more accurate than the i.i.d. bootstrap or the conventional Gaussian approximation, when the

errors are conditionally heteroskedastic. Fourth, for persistent processes, the accuracy of the recursive-

design WB is typically higher than that of the pairwise bootstrap. For large n these differences vanish

and both methods are about equally accurate. The accuracy of the recursive-design wild bootstrap is

comparable to that of the recursive-design i.i.d. bootstrap for models with i.i.d. errors. The fixed-design

WB is typically less accurate than the recursive-design WB and the pairwise bootstrap, although the
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discrepancies diminish for large n.

The results for the AR(1) model with t5-GARCH errors in Table 3 are qualitatively similar, except

that the accuracy of the recursive-design i.i.d. bootstrap tends to be even lower than for N-GARCH

processes. In Table 4 we explore a number of additional models of conditional heteroskedasticity that

have been used primarily to model returns in empirical finance. The results for the stochastic volatility

model are qualitatively the same as for N-GARCH and t-GARCH. For the other three models, we

find that there is little to choose between the recursive-design WB and the pairwise bootstrap. Their

coverage probability for small samples and highly persistent data tends to be too low, but consistently

higher than that of any alternative method. In all other cases, both methods are highly accurate.

Neither the recursive-design i.i.d. bootstrap nor the conventional Gaussian approximation perform

well. The high accuracy of the recursive-design WB even for EGARCH, AGARCH and GJR-GARCH

error processes is surprising, given its lack of theoretical support for these DGPs. Apparently, the failure

of the sufficient conditions for the asymptotic validity of the recursive-design WB method has little effect

on its performance in small samples. Fortunately, applications in finance, for which such asymmetric

volatility models have been developed, invariably involve large sample sizes, conditions under which

pairwise resampling is just as accurate as the recursive-design WB and theoretically justified.

We conclude this section with a sensitivity analysis of the effect that the choice of ηt has on the

performance of the wild bootstrap. To conserve space, we focus on the recursive-design WB only. In

the baseline simulations we used ηt ∼ N(0, 1). Table 5 shows additional results based on the two-point

distribution ηt = −(
√

5−1)/2 with probability p = (
√

5+1)/(2
√

5) and ηt = (
√

5+1)/2 with probability

1− p, as proposed by Mammen (1993), and the two-point distribution ηt = 1 with probability 0.5 and

ηt = −1 with probability 0.5, as proposed by Liu (1988). The DGPs involve N-GARCH errors as in

Table 2. The baseline results for ηt ∼ N(0, 1) are also included for comparison. Table 5 shows that the

coverage results are remarkably robust to the choice of ηt. Moreover, none of the three WB resampling

schemes clearly dominates the others.

Given the computational costs of the simulation study, we have chosen to focus on a stylized au-

toregressive model, but have explored a wide range of conditionally heteroskedastic errors. Although
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our simulation results are necessarily tentative, they suggest that the recursive-design WB for autore-

gressions should replace conventional recursive design i.i.d. bootstrap methods in many applications.

The pairwise bootstrap provides a suitable alternative when sample sizes are at least moderately large

and the possibility of asymmetric forms of GARCH is a practical concern. Even for moderate sample

sizes the accuracy of the pairwise bootstrap is slightly higher than that of the fixed-design bootstrap.

5. Concluding Remarks

The aim of the paper has been to extend the range of applications of autoregressive bootstrap methods

in empirical finance and macroeconometrics. We analyzed the theoretical properties of three bootstrap

procedures for stationary autoregressions that are robust to conditional heteroskedasticity of unknown

form: the fixed-design WB, the recursive-design WB and the pairwise bootstrap. Throughout the paper,

we established conditions for the first-order asymptotic validity of these bootstrap procedures. We did

not attempt to address the issue of the existence of higher-order asymptotic refinements provided by the

bootstrap approximation. Arguments aimed at proving asymptotic refinements require the existence

of an Edgeworth expansion for the distribution of the estimator of interest. Establishing the existence

of such an Edgeworth expansion is beyond the scope of this paper. Moreover, the quality of the

finite-sample approximation provided by analytic Edgeworth expansions often is poor and less accurate

than bootstrap approximations. Thus, Edgeworth expansions in general are imperfect guides to the

relative accuracy of alternative bootstrap methods (see Härdle, Horowitz and Kreiss 2001). Indeed,

preliminary simulation evidence indicates that wild bootstrap methods based on two-point distributions,

which may be expected to yield asymptotic refinements in our context, do not perform systematically

better than the first-order accurate methods studied in this paper. Nevertheless, we found that the

robust bootstrap approximation is typically more accurate in small samples than the usual first-order

asymptotic approximation based on robust standard errors. Our simulation results also highlighted the

dangers of incorrectly modelling the error term in dynamic regression models as i.i.d. We found that

conventional residual-based bootstrap methods may be very inaccurate in the presence of conditional

heteroskedasticity.

Based on the theoretical and simulation results in this paper, no single bootstrap method for deal-
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ing with conditional heteroskedasticity of unknown form will be optimal in all cases. The recursive-

design WB seems best-suited for applications in empirical macroeconomics. This method performs

well, whether the error term of the autoregression is i.i.d. or conditionally heteroskedastic, but it lacks

theoretical justification for some forms of asymmetric GARCH that have figured prominently in the

literature on high-frequency returns. When the sample size is at least moderately large and asym-

metric forms of GARCH are a practical concern, the pairwise bootstrap method provides a suitable

alternative. The fixed-design WB has the same theoretical justification as the pairwise bootstrap for

parametric models, but appears to be less accurate in practice.

There are several interesting extensions of the approach taken in this paper. One possible extension

is the development of bootstrap methods for conditionally heteroskedastic stationary autoregressions

of possibly infinite order. This extension is considered in Gonçalves and Kilian (2003). Another useful

extension would be to establish the validity of the recursive-design WB for regression parameters in I(1)

autoregressions that can be written in terms of zero mean stationary regressors, generalizing recent work

by Inoue and Kilian (2002) on I(1) autoregressive models with i.i.d. errors. Yet another useful extension

would be to establish the asymptotic validity of robust versions of the grid bootstrap of Hansen (1999).

These extensions are nontrivial and left for future research.
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Table 1. Approximate Finite-Sample P-Values of the

Engle (1982) LM Test of the No-ARCH(q) Hypothesis (in Percent)

for Monthly Autoregressions

q 1 2 3 4 5
Industrial Output Growth 1.58 2.40 3.28 1.61 1.47
M1 Growth 0.00 0.01 0.01 0.02 0.01
CPI Inflation 0.50 1.13 1.79 2.35 2.05
Real T-Bill Rate 0.08 0.18 0.29 0.37 0.34
Federal Funds Rate 3.37 0.45 0.71 0.94 0.90
Percent Change in Oil Price 2.39 3.77 5.25 4.60 6.44

SOURCE: Based on 20000 bootstrap replications under i.i.d. error null hypothesis. All data have

been filtered by a univariate AR model, the lag order of which has been selected by the AIC subject to

an upper bound of 12 lags.
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Table 2. Coverage Rates of Nominal 90% Symmetric Percentile-t Intervals for φ1

AR(1)-N-GARCH Model

DGP: yt = φ1yt−1 + εt, εt = ht
1/2vt, ht = ω + αε2

t−1 + βht−1, vt ∼ N(0, 1)
Recursive Recursive Fixed Pairwise Robust SE

iid WB WB Gaussian
n φ1 α + β α β

50 0 0 0 0 89.1 90.1 89.0 88.9 86.0
0.5 0.5 0 77.5 88.9 87.9 89.5 84.8
0.95 0.3 0.65 81.4 89.2 88.5 89.4 85.2
0.99 0.2 0.79 84.1 89.5 88.7 89.2 85.5
0.99 0.05 0.94 88.6 90.1 89.2 88.8 86.0

0.9 0 0 0 83.9 83.2 78.7 79.7 76.0
0.5 0.5 0 80.4 84.4 80.5 82.0 76.6
0.95 0.3 0.65 80.1 84.0 80.5 81.4 76.8
0.99 0.2 0.79 80.8 83.6 80.2 80.7 76.1
0.99 0.05 0.94 83.7 83.3 79.0 79.6 75.7

100 0 0 0 0 89.7 90.2 89.4 89.5 88.0
0.5 0.5 0 73.6 89.3 88.5 89.3 86.1
0.95 0.3 0.65 77.2 89.6 88.8 89.5 86.7
0.99 0.2 0.79 80.6 90.1 89.4 89.4 86.8
0.99 0.05 0.94 88.7 90.4 89.6 89.6 87.9

0.9 0 0 0 87.4 87.5 84.8 84.0 82.5
0.5 0.5 0 82.7 87.8 85.0 85.5 82.7
0.95 0.3 0.65 81.5 87.9 85.6 85.3 82.5
0.99 0.2 0.79 83.1 87.8 85.5 85.1 82.6
0.99 0.05 0.94 86.9 87.5 85.0 84.2 82.3

200 0 0 0 0 89.6 90.5 89.9 89.7 89.2
0.5 0.5 0 70.7 89.3 88.5 89.4 87.2
0.95 0.3 0.65 72.9 89.4 88.9 89.2 87.3
0.99 0.2 0.79 76.4 89.7 89.0 89.6 87.8
0.99 0.05 0.94 87.9 90.4 89.6 89.6 88.9

0.9 0 0 0 89.3 88.9 87.0 87.1 86.4
0.5 0.5 0 83.6 88.6 87.0 88.1 86.7
0.95 0.3 0.65 79.9 89.4 88.3 88.1 86.5
0.99 0.2 0.79 81.2 89.8 88.5 88.5 86.9
0.99 0.05 0.94 88.0 89.3 87.3 87.3 86.4

400 0 0 0 0 90.3 90.8 90.6 90.2 89.8
0.5 0.5 0 68.5 90.0 89.4 89.9 88.3
0.95 0.3 0.65 68.6 90.2 89.8 90.0 88.4
0.99 0.2 0.79 72.2 90.6 90.0 90.0 88.7
0.99 0.05 0.94 87.4 90.8 90.3 90.0 89.7

0.9 0 0 0 90.0 89.7 88.3 88.6 88.2
0.5 0.5 0 83.4 89.3 88.2 89.6 88.5
0.95 0.3 0.65 76.2 89.5 88.8 89.5 88.2
0.99 0.2 0.79 76.8 89.7 89.0 89.6 88.6
0.99 0.05 0.94 87.9 89.7 88.6 89.0 88.5
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Table 3. Coverage Rates of Nominal 90% Symmetric Percentile-t Intervals for φ1

AR(1)-t5-GARCH Model

DGP: yt = φ1yt−1 + εt, εt = ht
1/2vt, ht = ω + αε2

t−1 + βht−1, vt ∼ t5
Recursive Recursive Fixed Pairwise Robust SE

iid WB WB Gaussian
n φ1 α + β α β

50 0 0 0 0 90.6 89.1 88.2 89.5 86.0
0.5 0.5 0 75.5 87.6 86.3 89.4 83.1
0.95 0.3 0.65 80.9 88.2 86.9 89.5 83.9
0.99 0.2 0.79 83.5 88.4 87.3 89.1 84.2
0.99 0.05 0.94 89.5 89.1 87.9 89.4 85.9

0.9 0 0 0 84.5 83.8 80.0 81.1 77.4
0.5 0.5 0 79.5 84.3 81.0 83.0 77.4
0.95 0.3 0.65 79.4 84.4 80.8 82.9 77.2
0.99 0.2 0.79 80.7 84.3 80.3 82.5 76.9
0.99 0.05 0.94 84.3 83.6 80.0 81.0 76.9

100 0 0 0 0 90.3 89.7 89.0 89.5 88.0
0.5 0.5 0 70.6 88.0 87.8 89.0 84.8
0.95 0.3 0.65 75.3 88.7 88.3 88.9 86.1
0.99 0.2 0.79 78.1 89.0 88.7 88.8 86.4
0.99 0.05 0.94 88.3 89.5 89.2 89.2 87.8

0.9 0 0 0 88.6 88.0 84.0 85.5 82.7
0.5 0.5 0 82.3 88.7 85.3 86.9 83.2
0.95 0.3 0.65 81.4 88.7 85.4 86.1 83.2
0.99 0.2 0.79 82.3 88.2 85.3 85.9 83.4
0.99 0.05 0.94 87.3 87.9 84.4 85.0 83.0

200 0 0 0 0 90.6 90.3 89.5 89.6 88.8
0.5 0.5 0 66.2 88.8 88.0 89.8 85.5
0.95 0.3 0.65 70.6 89.1 88.5 89.6 86.9
0.99 0.2 0.79 74.1 89.4 88.9 89.8 87.2
0.99 0.05 0.94 87.2 90.1 88.8 89.4 88.0

0.9 0 0 0 89.4 89.0 87.2 87.2 86.6
0.5 0.5 0 80.7 89.4 87.7 89.0 86.6
0.95 0.3 0.65 77.3 88.8 88.1 88.4 86.8
0.99 0.2 0.79 78.7 89.0 87.9 88.2 86.6
0.99 0.05 0.94 87.6 89.1 87.2 87.4 86.4

400 0 0 0 0 90.1 90.1 89.3 90.1 88.8
0.5 0.5 0 61.2 89.3 87.7 90.5 85.9
0.95 0.3 0.65 64.6 89.8 88.5 90.4 87.0
0.99 0.2 0.79 68.4 89.7 89.1 90.3 87.8
0.99 0.05 0.94 84.6 90.1 89.7 90.4 88.9

0.9 0 0 0 89.5 89.5 88.6 88.7 88.4
0.5 0.5 0 79.2 89.9 88.4 89.9 87.7
0.95 0.3 0.65 72.5 89.7 88.8 90.3 87.8
0.99 0.2 0.79 74.0 89.6 89.0 89.8 88.1
0.99 0.05 0.94 85.6 89.6 88.8 89.2 88.3
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Table 4. Coverage Rates of Nominal 90% Symmetric Percentile-t Intervals for φ1

(a) AR(1)-EGARCH Model (Engle and Ng 1993)

DGP: yt = φ1yt−1 + εt, εt = ht
1/2vt, ln(ht) = −0.23 + 0.9ln(ht−1) + 0.25[|v2

t−1| − 0.3vt−1]
vt ∼ N(0, 1)

Recursive Recursive Fixed Pairwise Robust SE
iid WB WB Gaussian

n φ1

50 0 79.4 88.7 88.2 89.6 85.3
0.9 79.5 84.6 81.2 82.3 77.4

100 0 73.8 90.0 89.3 89.4 86.1
0.9 80.1 87.4 85.1 86.6 83.3

200 0 68.7 89.7 89.1 90.0 87.3
0.9 78.3 88.7 87.4 88.6 86.6

400 0 63.8 89.8 89.1 90.2 88.0
0.9 74.5 89.3 88.3 89.4 88.2

(b) AR(1)-AGARCH Model (Engle 1990)

DGP: yt = φ1yt−1 + εt, εt = ht
1/2vt, ht = 0.0216 + 0.6896ht−1 + 0.3174[εt−1 − 0.1108]2

vt ∼ N(0, 1)
Recursive Recursive Fixed Pairwise Robust SE

iid WB WB Gaussian
n φ1

50 0 80.7 89.2 88.4 89.8 85.6
0.9 80.3 84.5 81.2 82.6 77.4

100 0 74.8 89.8 89.3 89.5 86.2
0.9 79.8 87.4 85.6 86.5 83.8

200 0 68.5 90.0 89.3 90.0 87.5
0.9 76.5 88.9 87.8 88.7 86.8

400 0 62.0 89.8 89.1 89.8 87.9
0.9 68.8 89.3 88.6 90.0 88.2

(c) AR(1)-GJR GARCH Model (Glosten, Jaganathan and Runkle 1993)

DGP: yt = φ1yt−1 + εt, εt = ht
1/2vt, ht = 0.005 + 0.7ht−1 + 0.28[|εt−1| − 0.23εt−1]2

vt ∼ N(0, 1)
Recursive Recursive Fixed Pairwise Robust SE

iid WB WB Gaussian
n φ1

50 0 81.8 89.3 88.5 90.0 85.8
0.9 80.0 84.4 81.4 82.3 77.4

100 0 75.8 90.2 89.6 89.3 86.2
0.9 79.7 87.7 85.4 86.3 83.6

200 0 70.1 90.2 89.5 89.9 87.8
0.9 77.2 89.0 87.8 89.0 87.0

400 0 64.1 90.1 89.5 90.2 88.5
0.9 70.5 89.6 88.9 90.2 88.8
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Table 4 (contd.)

(d) AR(1)-Stochastic Volatility Model (Shephard 1996)
DGP: yt = φ1yt−1 + εt, εt = vtexp(ht), ht = λht−1 + 0.5ut, (ut, vt) ∼ N [0, diag(σ2

u, 1)]
Recursive Recursive Fixed Pairwise Robust SE

iid WB WB Gaussian
n φ1 λ σu

50 0 0.936 0.424 82.3 88.0 87.2 89.3 85.8
0.951 0.314 84.9 89.9 87.8 89.4 85.8

0.9 0.936 0.424 80.5 84.4 80.7 83.0 77.4
0.951 0.314 82.0 83.9 80.2 81.8 77.4

100 0 0.936 0.424 78.2 89.5 88.8 89.7 86.2
0.951 0.314 81.5 89.8 88.9 89.6 86.2

0.9 0.936 0.424 82.0 87.7 85.7 86.3 83.6
0.951 0.314 83.5 87.6 85.1 85.8 83.6

200 0 0.936 0.424 73.0 89.7 89.0 89.4 87.8
0.951 0.314 78.1 89.7 89.2 89.6 87.4

0.9 0.936 0.424 79.6 89.2 87.5 88.4 87.0
0.951 0.314 82.2 89.0 87.5 88.0 87.0

400 0 0.936 0.424 69.3 89.8 89.2 90.0 88.5
0.951 0.314 74.7 90.0 89.5 89.6 88.5

0.9 0.936 0.424 76.4 89.7 89.0 89.4 88.8
0.951 0.314 79.9 89.5 88.7 89.2 88.8
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Table 5. Coverage Rates of Nominal 90% Symmetric Percentile-t Intervals for φ1

AR(1)-N-GARCH Model

DGP: yt = φ1yt−1 + εt, εt = ht
1/2vt, ht = ω + αε2

t−1 + βht−1, vt ∼ N(0, 1)
Alternative recursive-design WB schemes

N(0,1) Mammen Liu
n φ1 α + β α β

50 0 0 0 0 90.1 89.2 88.9
0.5 0.5 0 88.9 88.9 88.6
0.95 0.3 0.65 89.2 88.9 88.7
0.99 0.2 0.79 89.5 89.1 88.8
0.99 0.05 0.94 90.1 89.1 88.7

0.9 0 0 0 83.2 83.8 84.3
0.5 0.5 0 84.4 85.2 85.4
0.95 0.3 0.65 84.0 84.0 84.6
0.99 0.2 0.79 83.6 83.7 84.3
0.99 0.05 0.94 83.3 83.7 84.3

100 0 0 0 0 90.2 90.0 89.4
0.5 0.5 0 89.3 89.3 88.7
0.95 0.3 0.65 89.6 89.4 89.2
0.99 0.2 0.79 90.1 89.4 89.1
0.99 0.05 0.94 90.4 89.8 89.4

0.9 0 0 0 87.5 87.0 87.3
0.5 0.5 0 87.8 87.9 88.1
0.95 0.3 0.65 87.9 87.2 87.6
0.99 0.2 0.79 87.8 87.4 87.9
0.99 0.05 0.94 87.5 87.1 87.4

200 0 0 0 0 90.5 90.3 89.9
0.5 0.5 0 89.3 89.3 89.0
0.95 0.3 0.65 89.4 89.6 89.2
0.99 0.2 0.79 89.7 89.8 89.4
0.99 0.05 0.94 90.4 90.0 89.6

0.9 0 0 0 88.9 88.9 89.0
0.5 0.5 0 88.6 89.5 89.7
0.95 0.3 0.65 89.4 89.5 89.5
0.99 0.2 0.79 89.8 89.5 89.7
0.99 0.05 0.94 89.3 89.4 89.4

400 0 0 0 0 90.8 90.4 90.1
0.5 0.5 0 90.0 89.9 89.6
0.95 0.3 0.65 90.2 90.0 89.7
0.99 0.2 0.79 90.6 90.2 89.8
0.99 0.05 0.94 90.8 90.3 90.2

0.9 0 0 0 89.7 90.0 89.7
0.5 0.5 0 89.3 90.2 90.2
0.95 0.3 0.65 89.5 90.0 90.2
0.99 0.2 0.79 89.7 90.1 90.1
0.99 0.05 0.94 89.7 90.0 90.0
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A. Appendix

Throughout this Appendix, K denotes a generic constant independent of n. We use u.i. to mean

uniformly integrable. Given an m × n matrix A, let ‖A‖ =
∑m

i=1

∑n
j=1 |aij |; for a m × 1 vector a,

let |a| =
∑m

i=1 |ai|. For any n × n matrix A, diag (a11, . . . , ann) denotes a diagonal matrix with aii,

i = 1, . . . , n in the main diagonal. Similarly, let [aij ]i,j=1,...,n denote a matrix A with typical element aij .

For any bootstrap statistic T ∗n we write T ∗n
P ∗→ 0 in probability when limn→∞ P [P ∗ (|T ∗n | > δ) > δ] = 0

for any δ > 0, i.e. P ∗ (|T ∗n | > δ) = oP (1). We write T ∗n ⇒dP∗ D, in probability, for any distribution

D, when weak convergence under the bootstrap probability measure occurs in a set with probability

converging to one.

The following CLT will be useful in proving results for the bootstrap (cf. White, 1999, p. 133; the

Lindeberg condition there has been replaced by the stronger Lyapunov condition here):

Theorem A.1 (Martingale Difference Arrays CLT). Let {Znt,Fnt} be a martingale difference

array such that σ2
nt = E

(
Z2

nt

)
, σ2

nt 6= 0, and define Z̄n ≡ n−1
∑n

t=1 Znt and σ̄2
n ≡ V ar

(√
nZ̄n

)
=

n−1
∑n

t=1 σ2
nt. If

1. n−1
∑n

t=1 Z2
nt/σ̄2

n − 1 P→ 0, and

2. limn→∞ σ̄
−2(1+δ)
n n−(1+δ)

∑n
t=1 E |Znt|2(1+δ) = 0 for some δ > 0,

then
√

nZ̄n/σ̄n ⇒ N (0, 1).

The following Lemma generalizes Kuersteiner’s (2001) Lemma A.1. Kuersteiner’s Assumption A.1

is stronger than our Assumption A in that it assumes that {εt} is strictly stationary and ergodic, and

in that it imposes a summability condition on the fourth order cumulants.

Lemma A.1. Under Assumption A, for each m ∈ N, m fixed, the vector

n−1/2
n∑

t=1

(εtεt−1, . . . , εtεt−m)′ ⇒ N (0, Ωm) ,

where Ωm = σ4 [τ r,s]r,s=1,...,m.

Lemmas A.2-A.5 are used to prove the asymptotic validity of the recursive-design WB (cf. Theorem

3.2). In these lemmas, ε̂∗t = ε̂tηt, t = 1, . . . , n, where ε̂t = yt − φ̂
′
Yt−1, and ηt is i.i.d. (0, 1) such that

E∗ |ηt|4 ≤ ∆ < ∞.

Lemma A.2. Under Assumption A, for fixed j ∈ N,
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(i) n−1
∑n

t=j+1 ε̂∗2t−j
P ∗→ σ2, in probability;

(ii) n−1
∑n

t=j+1 ε̂∗t−j ε̂
∗
t

P ∗→ 0, in probability.

If we strengthen Assumption A by A′ (vi′), then for fixed i, j ∈ N,

(iii) n−1
∑n

t=max(i,j)+1 ε̂∗t−j ε̂
∗
t−iε̂

∗2
t

P ∗→ σ4τ i,j1 (i = j), in probability, where 1 (i = j) is 1 if i = j, and 0

otherwise.

The following lemma is the WB analogue of Lemma A.1.

Lemma A.3. Under Assumption A strengthened by A(vi′), for all fixed m ∈ N,

n−1/2
n∑

t=m+1

(
ε̂∗t ε̂

∗
t−1, . . . , ε̂

∗
t ε̂
∗
t−m

)′ ⇒dP∗ N
(
0, Ω̃m

)
,

in probability, where Ω̃m ≡ σ4diag (τ1,1, . . . , τm,m) and ⇒dP∗ denotes weak convergence under the

bootstrap probability measure.

Lemma A.4. Suppose Assumption A holds. Then, n−1
∑n

t=1 Y ∗
t−1Y

∗′
t−1

P ∗→ A, in probability, where

A ≡ σ2
∑∞

j=1 bjb
′
j .

Lemma A.5. Suppose Assumption A strengthened by A(vi′) holds. Then,

n−1/2
n∑

t=1

Y ∗
t−1ε̂

∗
t ⇒dP∗ N

(
0, B̃

)
,

in probability, where B̃ =
∑∞

j=1 bjb
′
jσ

4τ j,j .

Proof of Theorem 3.1. We show that (i) A1n ≡ n−1
∑n

t=1 Yt−1Y
′
t−1

P→ A; and (ii) A2n ≡ n−1/2
∑n

t=1 Yt−1εt

⇒ N (0, B). First, notice that for any stationary AR(p) process we have yt =
∑∞

j=0 ψjεt−j , where
{
ψj

}

satisfies the recursion ψs − φ1ψs−1 − . . . − φpψs−p = 0 with ψ0 = 1 and ψj = 0 for j < 0, implying

that
∑∞

j=0 j
∣∣ψj

∣∣ < ∞. We can write Yt−1 =
(∑∞

j=0 ψjεt−1−j , . . . ,
∑∞

j=0 ψjεt−p−j

)′
=

∑∞
j=1 bjεt−j with

bj =
(
ψj−1, . . . , ψj−p

)′, where ψ−j = 0 for all j > 0. Hence, by direct evaluation,

A ≡ E
(
Yt−1Y

′
t−1

)
= E







∞∑

j=1

∞∑

i=1

bjb
′
iεt−jεt−i





 = σ2

∞∑

j=1

bjb
′
j =


σ2

∞∑

j=0

ψjψj+|k−l|




k,l=1,...,p

,

since E (εt−iεt−j) = 0 for i 6= j under the m.d.s. assumption, and
∑∞

j=0

∣∣∣ψjψj+|k−l|
∣∣∣ ≤

∑∞
j=0

∣∣ψj

∣∣ ∑∞
j=0

∣∣∣ψj+|k−l|
∣∣∣ < ∞ for all k, l. To show (i), for fixed m ∈ N, define Am

1n ≡ n−1
∑n

t=1 Yt−1,mY ′
t−1,m,

where Yt−1,m =
∑m

j=1 bjεt−j . It suffices to show: (a) Am
1n

P→ Am
1 ≡ σ2

∑m
j=1 bjb

′
j as n → ∞, for
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each fixed m; (b) Am
1 → A as m → ∞, and (c) limm→∞ lim supn→∞ P [‖A1n −Am

1n‖ ≥ δ] = 0 for

all δ > 0 (cf. Proposition 6.3.9 of Brockwell and Davis (BD) (1991), p. 207). For (a), we have

Am
1n =

∑m
j=1

∑m
i=1 bjb

′
in
−1

∑n
t=1 εt−jεt−i. For fixed i 6= j it follows that n−1

∑n
t=1 εt−jεt−i

P→ 0

by Andrews’ (1988) LLN for u.i. L1-mixingales, since {εt−jεt−i} is a m.d.s. with E |εt−jεt−i|r ≤
‖εt−j‖r

2r ‖εt−i‖r
2r < ∆2r < ∞ by Cauchy-Schwartz and Assumption A(vi). For fixed i = j, we can write

n−1
∑n

t=1 ε2
t−j −σ2 = n−1

∑n
t=1 zt + n−1

∑n
t=1 E

(
ε2
t−j |Ft−j−1

)
−σ2, with zt = ε2

t−j −E
(
ε2
t−j |Ft−j−1

)
.

Since zt can be shown to be an u.i. m.d.s, the first term goes to zero in probability by Andrews’ LLN.

The second term also vanishes in probability by Assumption A(iii). Thus, n−1
∑n

t=1 ε2
t−j − σ2 P→ 0 for

fixed j. It follows that Am
1n

P→ σ2
∑m

j=1 bjb
′
j ≡ Am

1 , which completes the proof of (a). Part (b) follows

from the dominated convergence theorem, given that
∥∥∥∑∞

j=1 bjb
′
j

∥∥∥ ≤ ∑∞
j=1 |bj |2 < ∞. To prove (c),

note that for any δ > 0,

P [‖A1n −Am
1n‖ ≥ δ] ≤ 1

δ
E ‖A1n −Am

1n‖

≤ 2
δ




∞∑

j>m

|bj |






∞∑

j=1

|bj |

n−1

n∑

t=1

E |εt−iεt−j | ≤



∞∑

j>m

|bj |

K → 0 as m →∞,

since E |εt−iεt−j | ≤ ∆ for some ∆ < ∞, and since
∑∞

j=1 |bj | < ∞. Next, we prove (ii). We apply

Proposition 6.3.9 of BD. Let Zt = Yt−1εt ≡
∑∞

j=1 bjεt−jεt. For fixed m, define Zm
t = Yt−1,mεt =

∑m
j=1 bjεt−jεt, where Yt−1,m is defined as above. We first show n−1/2

∑n
t=1 Zm

t ⇒ N (0, Bm), with

Bm =
∑m

j=1

∑m
i=1 bjb

′
iσ

4τ j,i. We have

n−1/2
n∑

t=1

Zm
t = n−1/2

n∑

t=1

m∑

j=1

bjεt−jεt =
m∑

j=1

bjn
−1/2

n∑

t=1

εt−jεt ≡
m∑

j=1

bjXnj .

By Lemma A.1 we have that (Xn1, . . . ,Xnm)′ ⇒ N (0, Ωm) . Thus,
∑m

j=1 bjXnj ⇒ N (0, Bm), with

Bm = b′Ωmb, b′ = (b1, . . . , bm) . Since
∥∥∥∑∞

j=1

∑∞
i=1 bjb

′
iσ

4τ j,i

∥∥∥ ≤ ∑∞
j=1

∑∞
i=1 |bj | |bi|σ4 |τ j,i| < ∞, it

follows that Bm → B ≡ ∑∞
j=1

∑∞
i=1 bjb

′
iσ

4τ j,i as m → ∞. Finally, for any λ ∈ Rp such that λ′λ = 1

and for any δ > 0, we have

lim
m→∞ lim sup

n→∞
P

[∣∣∣∣∣n
−1/2

n∑

t=1

λ′Zt − n−1/2
n∑

t=1

λ′Zm
t

∣∣∣∣∣ ≥ δ

]
= lim

m→∞ lim sup
n→∞

P




∣∣∣∣∣∣
n−1/2

n∑

t=1

∑

j>m

λ′bjεt−jεt

∣∣∣∣∣∣
≥ δ




≤ lim
m→∞ lim sup

n→∞
1

nδ2 E




∣∣∣∣∣∣

n∑

t=1

∑

j>m

λ′bjεt−jεt

∣∣∣∣∣∣

2
 = lim

m→∞
1
δ2


∑

j>m

∑

i>m

λ′bjb
′
iλσ4τ j,i


 = 0,

where the inequality holds by Chebyshev’s inequality, the second-to-last equality holds by the fact that

E (εt−jεtεs−iεs) = 0 for s 6= t, and all i, j, and the last equality holds by the summability of
{
ψj

}
and
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the fact that τ j,i are uniformly bounded.¥
Proof of Theorem 3.2. By Lemma A.4, n−1

∑n
t=1 Y ∗

t−1Y
∗′
t−1

P→
∗

A, in probability, whereas Lemma

A.5 implies n−1/2
∑n

t=1 Y ∗
t−1ε̂

∗
t ⇒dP∗ N

(
0, B̃

)
, in probability. Since under Assumption A(iv′), B = B̃,

the result follows by Polya’s Theorem, given that the normal distribution is everywhere continuous. ¥
Proof of Theorem 3.3. We need to show that (a) n−1

∑n
t=1 Yt−1Y

′
t−1

P→ A, and (b) n−1/2
∑n

t=1 Yt−1ε̂
∗
t

⇒dP∗ N (0, B) in probability. Part (a) was proved in Theorem 3.1. To show part (b) note that

n−1/2
n∑

t=1

Yt−1ε̂
∗
t = n−1/2

n∑

t=1

Yt−1εtηt − n−1/2
n∑

t=1

Yt−1 (εt − ε̂t) ηt

= n−1/2
n∑

t=1

Yt−1εtηt − n−1
n∑

t=1

Yt−1Y
′
t−1ηt

√
n

(
φ̂− φ

)
≡ A∗1 −A∗2.

First, note that A∗2
P ∗→ 0, in probability, since

√
n

(
φ̂− φ

)
= OP (1) and n−1

∑n
t=1 Yt−1Y

′
t−1ηt

P ∗→ 0, in

probability. This follows from showing that E∗ (
n−1

∑n
t=1 Yt−1Y

′
t−1ηt

)
= 0 and

V ar∗
(
n−1

∑n
t=1 Yt−1Y

′
t−1ηt

)
= n−2

∑n
t=1 Yt−1Y

′
t−1Yt−1Y

′
t−1

P→ 0, under Assumption A. We next show

A∗1 ⇒dP∗ N (0, B) in probability, where B = V ar
(
n−1/2

∑n
t=1 Yt−1εt

)
= n−1

∑n
t=1 E

(
Yt−1Y

′
t−1ε

2
t

)
.

For any λ ∈ Rp, λ′λ = 1, let Z∗t = λ′Yt−1εtηt. {Z∗t } is (conditionally) independent such that

E∗ (
n−1/2

∑n
t=1 Z∗t

)
= 0 and V ar∗

(
n−1/2

∑n
t=1 Z∗t

)
= λ′n−1

∑n
t=1 Yt−1Y

′
t−1ε

2
t λ. We now apply Lya-

punov’s Theorem (e.g. Durrett, 1996, p.121). Let α∗2n = λ′
∑n

t=1 Yt−1Y
′
t−1ε

2
t λ. By arguments similar to

Theorem 3.1, n−1α∗2n
P→ B. If for some r > 1

α∗−2r
n

n∑

t=1

E∗ |Z∗t |2r P→ 0 (A.1)

then α∗−1
n

∑n
t=1 Z∗t ⇒dP∗ N (0, 1) in probability. By Slutsky’s Theorem, it follows that n−1/2

∑n
t=1 Z∗t ⇒dP∗

N
(
0, λ′Bλ

)
. To show (A.1), note that the LHS can be written as

(
α∗2n

n

)−r

n−r
n∑

t=1

∣∣λ′Yt−1εt

∣∣2r
E∗ |ηt|2r .

Thus, it suffices to show that E
∣∣∣n−r

∑n
t=1

∣∣λ′Yt−1εt

∣∣2r
E∗ |ηt|2r

∣∣∣ → 0. Since E∗ |ηt|2r ≤ ∆ < ∞, this

holds provided E
∣∣λ′Yt−1εt

∣∣2r ≤ ∆ < ∞, which follows under Assumption A. ¥
Proof of Theorem 3.4 Let ε̂t = yt − φ̂

′
Yt−1, ε̂∗t = y∗t − φ̂

′
Y ∗

t−1, and ε∗t = y∗t − φ′Y ∗
t−1. We show that

(i) n−1
∑n

t=1 Y ∗
t−1Y

∗′
t−1

P ∗→ A in probability, and (ii) n−1/2
∑n

t=1 Y ∗
t−1ε̂

∗
t ⇒dP∗ N (0, B) in probability. We

can write,

n−1
n∑

t=1

Y ∗
t−1Y

∗′
t−1 −A =

{
n−1

n∑

t=1

Y ∗
t−1Y

∗′
t−1 − n−1

n∑

t=1

Yt−1Y
′
t−1

}
+

{
n−1

n∑

t=1

Yt−1Y
′
t−1 −A

}
≡ A∗1 + A2.
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Theorem 3.1 shows A2
P→ 0. Next we show A∗1

P ∗→ 0, in probability. Conditional on the data, by

Chebyshev’s inequality, it suffices that E∗ (A∗1A
∗′
1 ) = oP (1) . But

E∗ (
A∗1A

∗′
1

)
= n−1E∗

(
n−1

n∑

t=1

n∑

s=1

(
Y ∗

t−1Y
∗′
t−1 − n−1

n∑

t=1

Yt−1Y
′
t−1

) (
Y ∗

s−1Y
∗′
s−1 − n−1

n∑

t=1

Yt−1Y
′
t−1

)′)

= n−1

{
n−1

n∑

t=1

(
Yt−1Y

′
t−1 − n−1

n∑

t=1

Yt−1Y
′
t−1

)(
Yt−1Y

′
t−1 − n−1

n∑

t=1

Yt−1Y
′
t−1

)′}
,

where the term in curly brackets is OP (1) given Assumption A (in particular, given A (vi)), delivering

the result. Next we show (ii). We can write

n−1/2
n∑

t=1

Y ∗
t−1ε̂

∗
t = n−1/2

n∑

t=1

(
Y ∗

t−1ε
∗
t − n−1

n∑

t=1

Yt−1εt

)

+

(
n−1

n∑

t=1

Yt−1Y
′
t−1 − n−1

n∑

t=1

Y ∗
t−1Y

∗′
t−1

)
√

n
(
φ̂− φ

)
≡ B∗

1 + B∗
2 .

Since B∗
2

P ∗→ 0 in probability, (ii) follows if we prove that B∗
1 ⇒dP∗ N (0, B) in probability. This follows

straightforwardly by an application of Lyapunov’s CLT, given that Z∗t ≡ Y ∗
t−1ε

∗
t − n−1

∑n
t=1 Yt−1εt is

(conditionally) i.i.d. with mean zero and variance V ar∗ (Z∗t ) = n−1
∑n

t=1 ZtZ
′
t, where Zt ≡ Yt−1εt −

n−1
∑n

t=1 Yt−1εt, and by arguments similar to those used in the proof of Theorem 3.1,

n−1
∑n

t=1 Yt−1Y
′
t−1ε

2
t

P→ B and n−1
∑n

t=1 Yt−1εt
P→ 0. ¥

Proof of Corollary 3.1. Given the previous results, it suffices to show that Ĉ∗ P ∗→ C, i.e., (i) Â∗ P ∗→ A,

and (ii) B̂∗ P ∗→ B, in probability, where B = B̃ for the recursive-design WB. We showed (i) in Lemma

A.4 for the recursive-design WB, and in Theorems 3.3 and 3.4, for the fixed-design WB and pairwise

bootstrap, respectively. Next, we sketch the proof of (ii). For simplicity we take p = 1. The proof for

general p is similar. For each of the three bootstrap schemes, we can write ε̃∗t = ε̂∗t −
(
φ̂
∗ − φ̂

)
y∗t−1,

where ε̂∗t = ε̂tηt for the recursive-design and fixed-design WB, and ε̂∗t = y∗t − φ̂y∗t−1 for the pairwise

bootstrap. Thus,

B̂∗ = B̂∗
1 + B̂∗

2 + B̂∗
3 , with

B̂∗
1 = n−1

n∑

t=1

y∗2t−1ε̂
∗2
t , B̂∗

2 = −2
(
φ̂
∗ − φ̂

)
n−1

n∑

t=1

y∗3t−1ε̂
∗
t , and B̂∗

3 =
(
φ̂
∗ − φ̂

)2
n−1

n∑

t=1

y∗4t−1.

It is enough to show that with probability approaching one, (a) B̂∗
1

P ∗→ B, (b) B̂∗
2

P ∗→ 0, and (c)

B̂∗
3

P ∗→ 0. For the fixed-design WB, starting with (a), note that y∗t−1 = yt−1, and therefore B̂∗
1 − B =

n−1
∑n

t=1 y2
t−1ε̂

2
t

(
η2

t − 1
)
+n−1

∑n
t=1 y2

t−1ε̂
2
t −B ≡ χ1 +χ2. Under our assumptions χ2

P→ 0. Since ε̂t =

εt −
(
φ̂− φ

)
yt−1, we can write χ1 = n−1

∑n
t=1 y2

t−1ε
2
t

(
η2

t − 1
)− 2

(
φ̂− φ

)
n−1

∑n
t=1 y3

t−1εt

(
η2

t − 1
)

+
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(
φ̂− φ

)2
n−1

∑n
t=1 y4

t−1

(
η2

t − 1
)
. We can show that each of these terms is oP ∗ (1) in probability. For

the first term, write zt = y2
t−1ε

2
t

(
η2

t − 1
)
, and note that zt is (conditionally) a m.d.s. with respect to

F t
η = σ (ηt, . . . , η1). Thus, by Andrews’ (1988) LLN, it follows that n−1

∑n
t=1 zt

P ∗→ 0, in probability,

provided that E∗ |zt|r = OP (1), or E (E∗ |zt|r) = O (1), for some r > 1, which holds under our moment

conditions (in particular, the existence of 4r moments of εt suffices). A similar argument applies to the

last two terms of χ1, where we note that φ̂ − φ
P→ 0. For (b), and given φ̂

∗ − φ̂ = oP ∗ (1), it suffices

that n−1
∑n

t=1 y3
t−1ε̂

∗
t = OP ∗ (1), in probability, or that E∗ ∣∣n−1

∑n
t=1 y3

t−1ε̂
∗
t

∣∣ = OP (1). This condition

holds under Assumption A (first apply the triangle inequality, then use the definition of ε̂t, and finally

apply repeatedly the Cauchy-Schwartz inequality to the sums involving products of yt−1 and/or εt.).

For (c), by a reasoning similar to (b), it suffices that n−1
∑n

t=1 y4
t−1 = OP (1), which holds under our

moment conditions. For the pairwise bootstrap, we proceed similarly, but rely on the (conditional)

independence of
(
y∗t , y∗t−1

)
to obtain the results. In particular, for (a), following Theorem 3.3 we can

define ε̂∗t = ε∗t −
(
φ̂− φ

)
y∗t−1, with ε∗t = y∗t −φy∗t−1, which implies B̂∗

1 ≡ χ1+χ2, say. In particular, χ1 =

n−1
∑n

t=1 z∗1t+ζ, where z∗1t = y∗2t−1ε
∗2
t−1−n−1

∑n
t=1 y2

t−1ε
2
t and ζ = n−1

∑n
t=1 y2

t−1ε
2
t . Under our conditions,

ζ
P→ B. Since z∗1t is a uniformly square-integrable m.d.s. (conditional on the original data), Andrews’

LLN implies that the first term of χ1 is oP ∗ (1) in probability. Similarly, we can show that χ2 = oP ∗ (1)

in probability. For the recursive-design WB, for part (a), note that we can write B̂∗
1 = χ1 + χ2, where

χ1 =
∑n−1

j=1 ψ̂
2

j−1

(
n−1

∑n
t=j+1 ε̂∗2t−j ε̂

∗2
t

)
, and χ2 = n−1

∑n
t=1

∑t−1
i,j=1,i6=j ψ̂j−1ψ̂i−1ε̂

∗
t−iε̂

∗
t−j ε̂

∗2
t . Now, using

arguments analogous to those used in the proof of Lemmas A.4 and A.5 we can show that χ1
P ∗→ B̃, and

χ2
P ∗→ 0, in probability. Similar arguments apply for (b) and (c).

Proof of Lemma A.1. The proof follows closely that of Lemma A.1 of Kuersteiner (2001). We

reproduce his steps under our weaker Assumption A. In particular, we show that for all λ ∈ Rm such

that λ′λ = 1 we have n−1/2
∑n

t=1 λ′Wt ⇒ N
(
0, λ′Ωmλ

)
, where Wt = (εtεt−1, . . . , εtεt−m)′. Noting that

{Wt,Ft} is a vector m.d.s., we check the m.d.s. CLT conditions (cf. Davidson, 1994, Theorem 24.3).

Let Zt = λ′Wt. We check: (i) n−1
∑n

t=1

[
Z2

t − E
(
Z2

t

)] P→ 0, where E
(
Z2

t

)
= λ′E (WtW

′
t) λ = λ′Ωmλ;

and (ii) n−1/2 max1≤t≤n |Zt| P→ 0. To see (i), note that n−1
∑n

t=1

[
Z2

t − E
(
Z2

t

)]
= A1 + A2, with

A1 = n−1
n∑

t=1

[
Z2

t −E
(
Z2

t |Ft−1

)]
and A2 = n−1

n∑

t=1

[
E

(
Z2

t |Ft−1

)− E
(
Z2

t

)]
.

First consider A1. Since
{
Z2

t −E
(
Z2

t |Ft−1

)
,Ft

}
is a m.d.s., we have that Z2

t −E
(
Z2

t |Ft−1

)
is an L1-

mixingale with mixingale constants ct = E
∣∣Z2

t − E
(
Z2

t |Ft−1

)∣∣: E
∣∣E (

Z2
t − E

(
Z2

t |Ft−1

) |Ft−k

)∣∣ ≤ ctξk,

k = 0, 1, . . . , with ξk = 1 for k = 0 and ξk = 0 otherwise. Thus, we apply Andrews’ LLN for L1-

mixingales (Andrews 1988) to show A1
P→ 0. It suffices that for some r > 1, E

∣∣Z2
t

∣∣r ≤ K < ∞ and
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n−1
∑n

t=1 ct < ∞. Now, E |Zt|2r = E |∑m
i=1 λiεtεt−i|2r ≤ (

∑m
i=1 |λi| ‖εtεt−i‖2r)

2r < K by repeated

application of Minkowski and Cauchy-Schwartz, given Assumption A(vi). The second condition on {ct}
follows similarly. Next we consider A2. We have that

A2 = λ′n−1
n∑

t=1

(
E

(
WtW

′
t |Ft−1

)− E
(
WtW

′
t

))
λ = λ′

[
n−1

n∑

t=1

εt−iεt−jE
(
ε2
t |Ft−1

)− σ4τ i,j

]

i,j=1,...,p

λ
P→ 0,

given Assumption A(v). This proves (i). To prove (ii), note that by Markov’s inequality, for any δ > 0

and for some r > 1,

P

(
1√
n

max
1≤t≤n

|Zt| > δ

)
≤

n∑

t=1

P
(
|Zt| > n1/2δ

)
≤ δ−2rn−r

n∑

t=1

E |Zt|2r ≤ Kδ−2rn1−r → 0. ¥

Proof of Lemma A.2. First we consider (i) with j = 0, without loss of generality. By definition,

ε̂∗t ≡ ε̂tηt, and thus

n−1
n∑

t=1

ε̂∗2t − σ2 =

[
n−1

n∑

t=1

ε̂2
t

(
η2

t − 1
)
]

+

[
n−1

n∑

t=1

ε̂2
t − σ2

]
≡ F ∗

1 + F2,

with the obvious definitions. Under our assumptions F2 = oP (1). So it suffices to show that P ∗ [|F ∗
1 | > δ] =

oP (1), for any δ > 0, or, by Chebyshev’s inequality, that E∗
(
(F ∗

1 )2
)

= oP (1). Let z∗t ≡ ε̂2
t

(
η2

t − 1
)

and note that E∗ (z∗t z∗s ) = 0 for t 6= s, E∗ (
z∗2t

)
= ε̂4

t E
∗ (

η4
t − 2η2

t + 1
)

= ε̂4
t

(
E∗ (

η4
t

)− 1
)
. Thus,

E∗
[
(F ∗

1 )2
]

= E∗
(

n−2
n∑

t=1

n∑

s=1

z∗t z∗s

)
= n−1

(
n−1

n∑

t=1

ε̂4
t

(
E∗ (

η4
t

)− 1
)
)
≤ n−1K

(
n−1

n∑

t=1

ε̂4
t

)
= oP (1) ,

where the last inequality holds by E∗ (
η4

t

) ≤ ∆ < ∞ and n−1
∑n

t=1 ε̂4
t = OP (1), given that E |εt|4 <

K < ∞ and that φ̂ → φ in probability. For (ii), by a similar reasoning, it suffices to note that

E∗





n−1

n∑

t=j+1

ε̂∗t−j ε̂
∗
t




2
 = n−2

n∑

t=j+1

ε̂2
t−j ε̂

2
t E

∗ (
η2

t η
2
t−j

)
= n−2

n∑

t=j+1

ε̂2
t−j ε̂

2
t = oP (1) .

For (iii), note that

n−1
n∑

t=max(i,j)+1

ε̂∗t−iε̂
∗
t−j ε̂

∗2
t − σ4τ ij1 (i = j) = n−1

n∑

t=max(i,j)+1

ε̂t−iε̂t−j ε̂
2
t

(
η2

t ηt−iηt−j − 1 (i = j)
)

+n−1
n∑

t=max(i,j)+1

(
ε̂t−iε̂t−j ε̂

2
t − σ4τ ij

)
1 (i = j) ≡ G∗

1 + G2.

Under our assumptions, for any fixed i, j,

n−1
n∑

t=max(i,j)+1

ε̂t−iε̂t−j ε̂
2
t = n−1

n∑

t=max(i,j)+1

εt−iεt−jε
2
t + Rn,

30



where the remainder Rn involves products of elements of φ̂−φ, which are oP (1) under our assumptions,

with averages of products of elements of Yt−1−j and εt, up to the fourth order, which are bounded in

probability, given that E |εt|4 < ∆ < ∞. Thus, Rn = oP (1), and since n−1
∑n

t=max(i,j)+1 εt−iεt−jε
2
t →

σ4τ i,j (cf. proof of Lemma A.1), it follows that G2 = oP (1). So, if we let

z
∗(i,j)
t = ε̂t−iε̂t−j ε̂

2
t

(
ηt−iηt−jη

2
t − 1 (i = j)

)
, it suffices that P ∗ (|G∗

1| > δ) = oP (1) for any δ > 0.

But

P ∗ (|G∗
1| > δ) ≤ 1

δ2n2
E∗




n∑

t=max(i,j)+1

n∑

s=max(i,j)+1

E∗
(
z
∗(i,j)
t z∗(i,j)s

)



=
1

δ2n2

n∑

t=max(i,j)+1

ε̂2
t−iε̂

2
t−j ε̂

4
t E

∗
[(

ηt−iηt−jη
2
t − 1 (i = j)

)2
]

≤ K

δ2n


n−1

n∑

t=max(i,j)+1

ε̂2
t−iε̂

2
t−j ε̂

4
t


 ,

where the equality holds because E∗
(
z
∗(i,j)
t z

∗(i,j)
s

)
= 0 for s 6= t by the properties of {ηt}, and the

second inequality uses the fact that E∗ |ηt|4 < ∆ < ∞. Under Assumption A strengthened by A′

(vi′), we can show that n−1
∑n

t=max(i,j)+1 ε̂2
t−iε̂

2
t−j ε̂

4
t = OP (1), which implies that P ∗ (|G∗

1| > δ) =

oP (1). In fact, given that ε̂t = εt −
(
φ̂− φ

)′
Yt−1, it follows that n−1

∑n
t=max(i,j)+1 ε̂2

t−iε̂
2
t−j ε̂

4
t =

n−1
∑n

t=max(i,j)+1 ε2
t−iε

2
t−jε

4
t + oP (1). In particular, the remainder contains terms involving products of

elements of φ̂−φ (which are oP (1)) with terms involving averages of cross products of elements of Yt−1−j

and εt, up to the eighth order, which are OP (1), given E |εt|8 ≤ ∆ < ∞. This assumption also ensures

that n−1
∑n

t=max(i,j)+1 ε2
t−iε

2
t−jε

4
t = OP (1), by an application of the Markov and Cauchy-Schwartz

inequalities.¥
Proof of Lemma A.3. Let F∗t = σ

(
ηt, ηt−1, . . . , η1

)
, and define W ∗

t =
(
ε̂∗t ε̂

∗
t−1, . . . , ε̂

∗
t ε̂
∗
t−m

)′. Con-

ditional on the original sample, we have E∗ (
W ∗

t |F∗t−1

)
= E∗ (

ε̂∗t |F∗t−1

) (
ε̂∗t−1, . . . , ε̂

∗
t−m

)′ = 0 since

E∗ (
ε̂∗t |F∗t−1

)
= E∗ (

ε̂tηt|F∗t−1

)
= ε̂tE

∗ (
ηt|F∗t−1

)
= 0, where E∗ (

ηt|F∗t−1

)
= E∗ (ηt) = 0, by the inde-

pendence and mean zero properties of {ηt}. Thus, {W ∗
t ,F∗t } is a vector m.d.s. We now apply Theorem

A.1 to Z∗t = λ′W ∗
t for arbitrary λ ∈ Rm, λ′λ = 1. First, note that σ̄∗2n ≡ V ar∗

(
n−1/2

∑n
t=m+1 Z∗t

)
=

λ′n−1
∑n

t=m+1 E∗ (W ∗
t W ∗′

t ) λ ≡ λ′Ω∗n,mλ, where by direct evaluation and using the independence and

zero properties of {ηt},

Ω∗n,m = diag

(
n−1

n∑

t=m+1

ε̂2
t ε̂

2
t−1, . . . , n

−1
n∑

t=m+1

ε̂2
t ε̂

2
t−m

)
.

Under our assumptions, we can show n−1
∑n

t=m+1 ε̂2
t ε̂

2
t−i

P→ σ4τ i,i, i = 1, . . . , m, which implies Ω∗n,m
P→
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Ω̃m ≡ σ4diag (τ1,1, . . . , τm,m). Thus, to verify the first condition of the CLT it suffices that

λ′
[
n−1

n∑

t=m+1

W ∗
t W ∗′

t − Ω̃m

]
λ ≡ λ′V ∗

n λ
P ∗→ 0, in probability.

A typical element (k, l) of the middle matrix V ∗
n is given by

(V ∗
n )k,l ≡ n−1

n∑

t=m+1

ε̂∗t−kε̂
∗
t−lε̂

∗2
t − σ4τk,l1 (k = l) ,

where by Lemma A.2 (iii), under Assumption A strengthened by A′ (vi′), we have that (V ∗
n )k,l

P ∗→ 0 in

probability. Lastly, condition 2 holds if for some r > 1, n−r
∑n

t=m+1 E∗ ∣∣λ′W ∗
t

∣∣2r = oP (1). We take

r = 2. By the cr-inequality, we have

n−r
n∑

t=m+1

E∗ ∣∣λ′W ∗
t

∣∣2r = n−r
n∑

t=m+1

E∗
∣∣∣∣∣

m∑

i=1

λiε̂
∗
t ε̂
∗
t−i

∣∣∣∣∣
2r

≤ m2r−1
m∑

i=1

|λi|2r n−r
n∑

t=m+1

E∗ ∣∣ε̂∗t ε̂∗t−i

∣∣2r

≤ n−(r−1)m2r−1
m∑

i=1

|λi|2r n−1
n∑

t=m+1

|ε̂tε̂t−i|2r E∗ |ηt|2r E∗ ∣∣ηt−i

∣∣2r = oP (1) ,

given in particular that n−1
∑n

t=m+1 |ε̂tε̂t−i|2r = OP (1). ¥
Proof of Lemma A.4. We can write y∗t =

∑t−1
j=0 ψ̂j ε̂

∗
t−j , t = 1, . . . , n, where

{
ψ̂j

}
is defined by

ψ̂j =
∑min(j,p)

i=1 φ̂iψ̂j−1, with ψ̂0 = 1 and ψ̂j = 0 for j < 0. It follows that Y ∗
t−1 =

∑t−1
j=1 b̂j ε̂

∗
t−j , for

t = 2, . . . , n, where b̂j =
(
ψ̂j−1, . . . , ψ̂j−p

)′
. Note that for t = 1, Y ∗

t−1 = Y ∗
0 = 0, given the zero initial

conditions. Hence,

n−1
n∑

t=1

Y ∗
t−1Y

∗′
t−1 = T ∗1n + T ∗2n, with T ∗1n =

n−1∑

j=1

b̂j b̂
′
j


n−1

n∑

t=j+1

ε̂∗2t−j


 , and

T ∗2n =
n−2∑

k=1

n−k−1∑

j=1

(
b̂j b̂

′
j+k + b̂j+k b̂

′
j

)(
n−1

n−j∑

t=1+k

ε̂∗t−kε̂
∗
t

)
.

Next, we show: (a) T ∗1n
P ∗→ A ≡ σ2

∑∞
j=1 bjb

′
j , and (b) T ∗2n

P ∗→ 0, in probability. To prove (a), consider

for fixed m ∈ N,

T ∗1n = T ∗m1n + R∗m
1n , with T ∗m1n =

m−1∑

j=1

b̂j b̂
′
j


n−1

n∑

t=j+1

ε̂∗2t−j


 , and R∗m

1n =
n−1∑

j=m

b̂j b̂
′
j


n−1

n∑

t=j+1

ε̂∗2t−j


 .

By Lemma A.2.(i), for each j = 1, . . . ,m, m fixed, n−1
∑n

t=j+1 ε̂∗2t−j
P ∗→ σ2, in probability; also, under

Assumption A, ψ̂j
P→ ψj , implying b̂j

P→ bj . Thus, by Slutsky’s theorem, T ∗m1n
P ∗→ ∑m−1

j=1 bjb
′
jσ

2 ≡ Am,

in probability. Since
{
ψj

}
is absolutely summable, it follows that Am → A as m → ∞. Thus,

T ∗m1n
P ∗→ A, in probability. Choose λ ∈ Rp arbitrarily such that λ′λ = 1. By BD’s Proposition 6.3.9, it
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now suffices to show that, for any δ > 0, limm→∞ lim supn→∞ P ∗ (∣∣λ′R∗m
1n λ

∣∣ > δ
)

= 0, in probability,

or limm→∞ lim supn→∞E∗ (∣∣λ′R∗m
1n λ

∣∣) = 0, in probability, by Markov’s inequality. Using the triangle

inequality and the properties of {ηt}, we get

E∗ (∣∣λ′R∗m
1n λ

∣∣) ≤
n−1∑

j=m

∣∣∣λ′b̂j b̂
′
jλ

∣∣∣E∗


n−1

n∑

t=j+1

ε̂∗2t−j


 =

n−1∑

j=m

∣∣∣λ′b̂j b̂
′
jλ

∣∣∣ n−1
n∑

t=j+1

ε̂2
t−j

≤
(

n−1
n∑

t=1

ε̂2
t

)


n−1∑

j=m

∣∣∣λ′b̂j b̂
′
jλ

∣∣∣

 .

Given that ε̂t = εt −
(
φ̂− φ

)′
Yt−1, and that φ̂− φ

P→ 0, we can show n−1
∑n

t=1 ε̂2
t = OP (1). Thus,

E∗ (∣∣λ′R∗m
1n λ

∣∣) ≤ OP (1)
n−1∑

j=m

∣∣∣λ′b̂j b̂
′
jλ

∣∣∣ ≤ OP (1)
p∑

k=1

p∑

l=1

|λkλl|
∞∑

j=m

∣∣∣ψ̂j−kψ̂j−l

∣∣∣ .

Under our assumptions,
∑p

j=1

∣∣∣φ̂j − φj

∣∣∣ = oP (1), so there exists n1 such that supn≥n1

∑∞
j=1

∣∣∣ψ̂j

∣∣∣ < ∞
in probability (cf. Bühlmann, 1995, Lemma 2.2.). This implies supn≥n1

∑∞
j=m

∣∣∣ψ̂j−kψ̂j−l

∣∣∣ = oP (1)

as m → ∞, which completes the proof that T ∗1n
P ∗→ A, in probability. Finally, to show (b), consider

first for fixed m ∈ N, T ∗m2n =
∑m−2

k=1

∑m−k−1
j=1

(
b̂j b̂

′
j+k + b̂j+k b̂

′
j

)(
n−1

∑n−j
t=1+k ε̂∗t−kε̂

∗
t

)
. For fixed j and

k, it follows by Lemma A.2 (ii) that n−1
∑n−j

t=1+k ε̂∗t−kε̂
∗
t

P ∗→ 0, in probability. Since b̂j b̂
′
j+k + b̂j+kb̂

′
j

P→
bjbj+k + bj+kb

′
j , we have that T ∗m2n

P ∗→ 0, in probability. To complete the proof of (b) we need to show

that each of the following

R∗m
2,1n =

n−1∑

k=m−1

n−k−1∑

j=1

(
b̂j b̂

′
j+k + b̂j+k b̂

′
j

)(
n−1

n−j∑

t=1+k

ε̂∗t−kε̂
∗
t

)
, and

R∗m
2,2n =

m−2∑

k=1

n−k−1∑

j=m−k

(
b̂j b̂

′
j+k + b̂j+k b̂

′
j

)(
n−1

n−j∑

t=1+k

ε̂∗t−kε̂
∗
t

)
,

satisfies the condition limm→∞ lim supn→∞ P ∗
(∣∣∣λ′R∗m

2,inλ
∣∣∣ > δ

)
= 0 in probability, for i = 1, 2, where λ

and δ are as above. This can be verified analogously to above. ¥
Proof of Lemma A.5. As in the proof of Lemma A.4, we have Y ∗

t−1 =
∑t−1

j=1 b̂j ε̂
∗
t−j , where b̂j =(

ψ̂j−1, . . . , ψ̂j−p

)′
, with ψ̂0 = 1 and ψ̂j = 0 for j < 0. Noting that Y ∗

0 = 1,

n−1/2
n∑

t=1

Y ∗
t−1ε̂

∗
t = n−1/2

n∑

t=2

t−1∑

j=1

b̂j ε̂
∗
t−j ε̂

∗
t =

n−1∑

j=1

b̂jn
−1/2

n∑

t=j+1

ε̂∗t−j ε̂
∗
t ≡ X ∗

n .

For fixed m ∈ N, let X ∗
n,m ≡ ∑m−1

j=1 b̂jn
−1/2

∑n
t=j+1 ε̂∗t−j ε̂

∗
t . Next we show: (a) for m fixed, X ∗

n,m ⇒dP∗

N
(
0, B̃m

)
, as n → ∞, where B̃m =

∑m
j=1 bjb

′
jσ

4τ j,j ; (b) B̃m → B̃ as m → ∞, and
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(c) limm→∞ lim supn→∞ P ∗ (∣∣X ∗
n −X ∗

n,m

∣∣ > δ
)

= 0 for any δ > 0. For (a), write

X ∗
n,m =

m−1∑

j=1

bjn
−1/2

n∑

t=j+1

ε̂∗t−j ε̂
∗
t +

m−1∑

j=1

(
b̂j − bj

)
n−1/2

n∑

t=j+1

ε̂∗t−j ε̂
∗
t ≡ Q∗

1 + Q∗
2.

By Lemma A.3, under Assumption A strengthened by A(vi′), Q∗
1 ⇒dP∗ N

(
0, B̃m−1

)
, in probabil-

ity, where B̃m−1 =
∑m−1

j=1 bjb
′
jσ

4τ j,j . Next, note Q∗
2

P ∗→ 0 in probability, since b̂j − bj
P→ 0 and

n−1/2
∑n

t=j+1 ε̂∗t−j ε̂
∗
t = OP ∗ (1) for each j = 1, . . . , m−1. The asymptotic equivalence lemma now implies

(a). (b) follows by dominated convergence given the summability of
{
ψj

}
and the uniform boundedness

of σ4τ j,j . To prove (c), note that it suffices to show that limm→∞ lim supn→∞E∗
(∣∣X ∗

n −X ∗
n,m

∣∣2
)

=

oP (1), by Chebyshev’s inequality. Equivalently, we consider for any λ ∈ Rp, such that λ′λ = 1,

E∗
(∣∣λ′ (X ∗

n −X ∗
n,m

)∣∣2
)

= E∗




n−1∑

j=m

n−1∑

i=m

λ′b̂j b̂
′
iλZ∗njZ

∗
ni


 ,

where Z∗nj ≡ n−1/2
∑n

t=j+1 ε̂∗t−j ε̂
∗
t . Since E∗

(
Z∗njZ

∗
ni

)
= 0 for i 6= j and E∗

(
Z∗2nj

)
= n−1

∑n
t=j+1 ε̂2

t−j ε̂
2
t ,

it follows that

E∗
(∣∣λ′ (X ∗

n −X ∗
n,m

)∣∣2
)

=
n−1∑

j=m

λ′b̂j b̂
′
jλ


n−1

n∑

t=j+1

ε̂2
t−j ε̂

2
t


 ≤

(
n−1

n∑

t=1

ε̂4
t

)


n−1∑

j=m

λ′b̂j b̂
′
jλ


 ,

where the last inequality holds by an application of the Cauchy-Schwartz inequality. Using the definition

of ε̂t, i.e., ε̂t = εtηt−
(
φ̂− φ

)′
Yt−1, and the fact that φ̂−φ

P→ 0, we can show that n−1
∑n

t=1 ε̂4
t = OP (1).

The proof of (c) now follows exactly the argument used in Lemma A.4 when dealing with R∗m
1n . ¥
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