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BOOTSTRAPPING REALIZED VOLATILITY

BY SÍLVIA GONÇALVES AND NOUR MEDDAHI1

We propose bootstrap methods for a general class of nonlinear transformations of
realized volatility which includes the raw version of realized volatility and its logarith-
mic transformation as special cases. We consider the independent and identically dis-
tributed (i.i.d.) bootstrap and the wild bootstrap (WB), and prove their first-order as-
ymptotic validity under general assumptions on the log-price process that allow for drift
and leverage effects. We derive Edgeworth expansions in a simpler model that rules out
these effects. The i.i.d. bootstrap provides a second-order asymptotic refinement when
volatility is constant, but not otherwise. The WB yields a second-order asymptotic re-
finement under stochastic volatility provided we choose the external random variable
used to construct the WB data appropriately. None of these methods provides third-
order asymptotic refinements. Both methods improve upon the first-order asymptotic
theory in finite samples.

KEYWORDS: Realized volatility, i.i.d. bootstrap, wild bootstrap, Edgeworth expan-
sions.

1. INTRODUCTION

THE INCREASING AVAILABILITY of high frequency financial data has con-
tributed to the popularity of realized volatility as a measure of volatility in fi-
nance. Realized volatility is simple to compute (it is equal to the sum of squared
high frequency returns) and is a consistent estimator of integrated volatility
under general conditions (see Andersen, Bollerslev, and Diebold (2002) for a
survey of realized volatility).

Recently, a series of papers, including Barndorff-Nielsen and Shephard
(henceforth BNS) (2002) and Barndorff-Nielsen, Graversen, Jacod, and Shep-
hard (BNGJS) (2006) have developed an asymptotic theory for measures of
variation such as realized volatility. In particular, for a rather general stochas-
tic volatility model, these authors establish a central limit theorem (CLT) for
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realized volatility over a fixed interval of time, for example, a day, as the num-
ber of intraday returns increases to infinity.

In this paper, we propose bootstrap methods for realized volatility-like mea-
sures. Our main motivation is to improve upon the existing asymptotic mixed
normal approximations. The bootstrap can be particularly valuable in the con-
text of high frequency data-based measures. Current practice is to use a mod-
erate number of intraday returns in computing realized volatility to avoid mi-
crostructure biases.2 Sampling at long horizons may limit the value of the as-
ymptotic approximations derived under the assumption of an infinite number
of returns. In particular, the Monte Carlo results in BNS (2005) showed that
the feasible asymptotic theory for realized volatility can be a poor guide to
the finite sample distribution of the studentized realized volatility. BNS (2005)
also showed that a logarithmic version of the raw statistic has improved finite
sample properties.

Here we focus on a general class of nonlinear transformations of realized
volatility which includes the raw realized volatility and its log transform as spe-
cial cases. For this class of statistics, we ask whether we can improve upon the
existing first-order asymptotic theory by relying on the bootstrap for inference
on integrated volatility in the absence of microstructure noise. Since the effects
of microstructure noise are more pronounced at very high frequencies, we ex-
pect the bootstrap to be a useful tool of inference based on realized volatil-
ity when sampling at moderate frequencies such as 30 minute horizons (as in
Andersen, Bollerslev, Diebold, and Labys (2003)) or at 10–15 minute horizons
for liquid asset returns (see Hansen and Lunde (2006)).

We propose and analyze two bootstrap methods for realized volatility: an in-
dependent and identically distributed (i.i.d.) bootstrap and a wild bootstrap
(WB). The i.i.d. bootstrap generates bootstrap intraday returns by resampling
with replacement the original set of intraday returns. It is motivated by a
benchmark model in which volatility is constant and therefore intraday returns
are i.i.d. In practice, volatility has components which are highly persistent, es-
pecially over a daily horizon, implying that it is at least locally nearly constant.
Hence we may expect the i.i.d. bootstrap to provide a good approximation even
under stochastic volatility. The WB observations are generated by multiplying
each original intraday return by an i.i.d. draw from a distribution that is inde-
pendent of the data. The WB was introduced by Wu (1986), and further studied
by Liu (1988) and Mammen (1993) in the context of cross-section linear regres-
sion models subject to unconditional heteroskedasticity in the error term.

We summarize our main contributions as follows. First, we prove the first-
order asymptotic validity of both bootstrap methods under very general as-

2Recently, a number of papers have studied the impact of microstructure noise on realized
volatility; these include Zhang, Mykland, and Aït-Sahalia (2005b), Hansen and Lunde (2006),
Bandi and Russell (2008), and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008). In par-
ticular, these papers proposed alternative estimators of integrated volatility that are robust to
microstructure noise and that differ from realized volatility.
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sumptions which allow for drift and leverage effects. Second, for a simpler
model that rules out these effects, we derive formal second- and third-order
Edgeworth expansions of the distribution of realized volatility-based t statistics
as well as of their bootstrap analogues. Third, we use our Edgeworth expan-
sions to compare the accuracy of the first-order asymptotic theory for realized
volatility and for its log transform. Last, we use our Edgeworth expansions and
Monte Carlo simulations to compare the finite sample accuracy of bootstrap
confidence intervals for integrated volatility with the existing CLT-based inter-
vals.

Our results are as follows. The Edgeworth expansions for the raw and log
statistics provide a theoretical explanation for the superior finite sample per-
formance of the log statistic. For both types of statistics, the simulated boot-
strap (one-sided and two-sided symmetric) intervals are more accurate in finite
samples than the CLT-based intervals. The second-order Edgeworth expan-
sions show that the i.i.d. bootstrap provides a second-order refinement over
the normal approximation when volatility is constant but not otherwise. When
volatility is time-varying and the rate of convergence of both approximations
is the same, we use the asymptotic relative bootstrap error as a criterion of
comparison (see Shao and Tu (1995) and Davidson and Flachaire (2001) for a
similar argument). We show that the i.i.d. bootstrap is better than the normal
approximation under this criterion for the raw statistic. These results are con-
sistent with the good finite sample properties of the i.i.d. bootstrap one-sided
confidence intervals. The WB provides a second-order asymptotic refinement
when we choose the external random variable appropriately. We provide an
optimal choice for the raw statistic. Our Monte Carlo simulations show that
the WB implemented with this choice outperforms the first-order asymptotic
normal approximation. The comparison between this WB and the i.i.d. boot-
strap favors the i.i.d. bootstrap, which is the preferred method in the context
of our study.

Motivated by the good finite sample performance of the bootstrap for two-
sided symmetric intervals, we also investigate the ability of the bootstrap to
provide a third-order asymptotic refinement for the raw realized volatility sta-
tistic. We show that none of our bootstrap methods gives third-order refine-
ments. This is true for the i.i.d. bootstrap even when volatility is constant, a
surprising result given that returns are i.i.d. in this case.

A distinctive feature of our i.i.d. bootstrap t statistic is that it uses the (un-
scaled) sample variance estimator of the bootstrap squared returns and not the
bootstrap analogue of the variance estimator proposed by BNS (2002) (which
relies on the conditional local Gaussianity of intraday returns and cannot be
used with the bootstrap). Under constant volatility, an alternative consistent
variance estimator to BNS (2002) is the (unscaled) sample variance of squared
returns, which mimics the i.i.d. bootstrap variance estimator. In this case, the
i.i.d. bootstrap is third-order accurate when used to estimate the distribution
of the alternative t statistic based on the sample variance of squared returns.
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Thus, the lack of third-order asymptotic refinements for the i.i.d. bootstrap un-
der constant volatility is explained by the fact that the bootstrap statistic is not
of the same form as the original statistic.

The remainder of this paper is organized as follows. In Section 2, we de-
scribe the setup and briefly review the existing theory. Section 3 introduces the
bootstrap methods and establishes their first-order asymptotic validity. Sec-
tion 4 contains the second-order accuracy results, whereas Section 5 discusses
third-order results. Section 6 contains simulations and Section 7 concludes. In
Appendix A we state and prove the cumulant asymptotic expansions. Appen-
dix B collects some of the proofs of the results that appear in Sections 3–5.
Supplementary proofs and technical results appear in the web supplement to
this paper (Gonçalves and Meddahi (2009), hereafter GM09).

2. SETUP, NOTATION, AND EXISTING THEORY

We follow BNGJS (2006) and assume that the log-price process {logSt : t ≥
0} is defined on some filtered probability space (Ω� F� (Ft)t≥0�P) and follows
the continuous time process

d logSt = μt dt + σt dWt�(1)

where Wt denotes a standard Brownian motion, μ is an adapted predictable lo-
cally bounded drift term, and σ is an adapted cadlag volatility process. These
assumptions are very general, allowing for jumps, intraday seasonality, and
long memory in both μ and σ . In addition, we do not assume Wt to be in-
dependent of σt , allowing for the presence of leverage effects. The parameter
of interest is the integrated volatility over a fixed time interval [0�1] and is de-
fined as σ2 ≡ ∫ 1

0 σ2
u du. A consistent estimator of σ2 is the realized volatility

R2 = ∑1/h
i=1 r

2
i , where ri ≡ logSih − logS(i−1)h denotes the high frequency return

measured over the period [(i− 1)h� ih] for i = 1� � � � �1/h.
For any q > 0, define σq ≡ ∫ 1

0 σq
u du and σ

q
h ≡ h−q/2+1

∑1/h
i=1(σ

2
i )

q/2, where
σ2

i ≡ ∫ ih

(i−1)h σ
2
u du. BNGJS (2006) showed that for any q > 0, as h → 0, Rq ≡

h−q/2+1
∑1/h

i=1 |ri|q P→ μqσq, where μq ≡ E|Z|q, with Z ∼ N(0�1). When q = 2,
we obtain the consistency result for realized volatility. BNGJS (2006) also
showed that

Th ≡
√
h−1(R2 − σ2)√

V̂

d→ N(0�1)�(2)

where V̂ = 2
3R4, under very general conditions, including drift and leverage

effects. In particular, a sufficient assumption is (1) and

σt = σ0 +
∫ t

0
a#
u du+

∫ t

0
σ#

u dWu +
∫ t

0
v#
u dVu�(3)
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with a#, σ#, and v# adapted cadlag processes, a# predictable and locally
bounded, and V a Brownian motion independent of W . Equation (3) does not
allow for jumps in the volatility, but this can be relaxed (see Assumption H1
of BNGJS (2006) for a more general assumption on σ). An earlier statement
of the CLT result for realized volatility under stronger conditions appeared in
Jacod and Protter (1998) and BNS (2002).

The log transformation of realized volatility is often used in empirical ap-
plications due to its improved finite sample properties. Here we consider a
general class of nonlinear transformations that satisfy the following assump-
tion. Throughout we let g′(z) and g′′(z) denote the first and second derivatives
of g with respect to z, respectively.

ASSUMPTION G: Let g : R → R be twice continuously differentiable with
g′(σ2) �= 0 for any path of σ .

Assumption G contains the log transform for realized volatility (when g(z) =
logz) and the raw statistic (when g(z) = z) as special cases. The corresponding
t statistic is

Tg�h ≡
√
h−1(g(R2)− g(σ2))

g′(R2)
√
V̂

�

For the raw statistic, Tg�h = Th. By the delta method, it follows from (2) that
Tg�h

d→ N(0�1).

3. THE BOOTSTRAP

Under stochastic volatility, intraday returns are independent but het-
eroskedastic, conditional on the volatility path, which motivates a WB in this
context. The i.i.d. bootstrap is motivated by a benchmark model in which μt = 0
and σt = σ > 0 for all t. In this case, intraday returns at horizon h are i.i.d.
N(0�σ2h). As we show here, the i.i.d. bootstrap remains asymptotically valid
for general stochastic volatility models described by (1) and (3).

We denote the bootstrap intraday h-period returns as r∗
i . For the i.i.d. boot-

strap, r∗
i is i.i.d. from {ri : i = 1� � � � �1/h}. For the WB, r∗

i = riηi, where ηi are
i.i.d. with moments given by μ∗

q = E∗|ηi|q. In the following, P∗ denotes the
probability measure induced by the bootstrap, conditional on the original sam-
ple. Similarly, we let E∗ (and Var∗) denote expectation (and variance) with
respect to the bootstrap data, conditional on the original sample.

The bootstrap realized volatility is equal to R∗
2 = ∑1/h

i=1 r
∗2
i . For the i.i.d. boot-

strap, we can show that E∗(R∗
2) = R2 and V ∗ ≡ Var∗(

√
h−1R∗

2) = R4 − R2
2.
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We propose the following consistent estimator of the i.i.d. bootstrap vari-
ance V ∗:

V̂ ∗ = h−1
1/h∑
i=1

r∗4
i −

(
1/h∑
i=1

r∗2
i

)2

≡R∗
4 −R∗2

2 �(4)

where for any q > 0 we let R∗
q ≡ h−q/2+1

∑1/h
i=1 |r∗

i |q. The i.i.d. bootstrap analogue
of Tg�h is given by

T ∗
g�h ≡

√
h−1(g(R∗

2)− g(R2))

g′(R∗
2)

√
V̂ ∗

�(5)

Note that although we center the (transformed) bootstrap realized volatility
around the (transformed) sample realized volatility (since E∗(R∗

2) = R2), the
bootstrap standard error estimator is not of the same form as that used to
studentize Tg�h. In particular, V̂ ∗ is not given by 2

3R
∗
4, which would be the boot-

strap analogue of V̂ . The naive estimator 2
3R

∗
4 is not consistent for V ∗ because

it relies on a local Gaussianity assumption that does not hold for the i.i.d.
nonparametric bootstrap. In contrast, V̂ ∗ given in (4) is a consistent estima-
tor of V ∗.

For the WB, we can show that E∗(R∗
2) = μ∗

2R2 and V ∗ ≡ Var∗(
√
h−1R∗

2) =
(μ∗

4 −μ∗2
2 )R4. We propose the following consistent estimator of V ∗,

V̂ ∗ =
(
μ∗

4 −μ∗2
2

μ∗
4

)
R∗

4�(6)

and define the WB studentized statistic T ∗
g�h as

T ∗
g�h ≡

√
h−1(g(R∗

2)− g(μ∗
2R2))

g′(R∗
2)

√
V̂ ∗

�(7)

Note that T ∗
g�h is invariant to multiplication of η by a constant when g(z) = z

and when g(z) = log(z), the two leading choices of g.

THEOREM 3.1: Suppose (1) and (3) hold. Let T ∗
g�h denote either the i.i.d. boot-

strap statistic defined in (4) and (5), or the WB statistic defined in (6) and (7).
For the WB, let ηi ∼ i.i.d. such that μ∗

8 = E∗|ηi|8 < ∞. Under Assumption G, as

h→ 0, supx∈R
|P∗(T ∗

g�h ≤ x)− P(Tg�h ≤ x)| P→ 0.

This result provides a theoretical justification for using the i.i.d. bootstrap
or the WB to consistently estimate the distribution of Tg�h for any function g
satisfying Assumption G. The conditions under which the i.i.d. bootstrap and
WB work are those of BNGJS (2006), which allow for the presence of drifts and
leverage effects. As the proof of Theorem 3.1 shows, the asymptotic validity of
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the bootstrap depends on the availability of a CLT result for R2 and a law of
large numbers for Rq, which hold under the general assumptions of BNGJS
(2006).

4. SECOND-ORDER ACCURACY OF THE BOOTSTRAP

We investigate the ability of the bootstrap to provide a second-order as-
ymptotic refinement over the standard normal approximation when estimating
P(Tg�h ≤ x). We make the following assumption.

ASSUMPTION H: The log price process follows (1) with μt = 0 and σt is inde-
pendent of Wt , where σ is a cadlag process, bounded away from zero, and satisfies
limh→0 h

1/2
∑1/h

i=1 |σr
ηi

− σr
ξi
| = 0 for some r > 0, and for any ηi and ξi such that

0 ≤ ξ1 ≤ η1 ≤ h≤ ξ2 ≤ η2 ≤ 2h≤ · · · ≤ ξ1/h ≤ η1/h ≤ 1.

Assumption H restricts considerably our previous assumptions by ruling out
drift and leverage effects. The effect of the drift on Tg�h is OP(

√
h) (see, e.g.,

Meddahi (2002)). While this is asymptotically negligible at the first order, it is
not at higher orders. Thus, our higher order results do not allow for μt �= 0.
One could in principle bootstrap the centered returns to account for the pres-
ence of a constant drift, but we do not explore this possibility here. The no-
leverage assumption is mathematically convenient to derive the asymptotic ex-
pansions because it allows us to condition on the path of volatility when com-
puting higher order cumulants. Relaxing this assumption is beyond the scope
of this paper.

To describe the Edgeworth expansions, we need to introduce some addi-
tional notation. We write κj(Tg�h) to denote the jth-order cumulant of Tg�h

and write κ∗
j (T

∗
g�h) to denote the corresponding bootstrap cumulant. For j = 1

and 3, κj�g denotes the coefficient of the terms of order O(
√
h) of the asymp-

totic expansion of κj(Tg�h), whereas for j = 2 and 4, κj�g denotes the coefficients
of the terms of order O(h). The bootstrap coefficients κ∗

j�g�h are defined simi-
larly. For the raw statistic, we omit the subscript g, and write κj and κ∗

j�h to de-
note the corresponding cumulants. We follow this convention throughout, for
instance, when referring to q1�g(x) and q2�g(x). See Appendix A for a precise
definition of κj�g and κ∗

j�g�h. Finally, we let σq�p ≡ σq/(σp)q/p for any q�p > 0.
Note that under constant volatility, σq�p = 1. Similarly, we let Rq�p =Rq/R

q/p
p .

The formal3 second-order Edgeworth expansion of the distribution of Tg�h

can be written as

P(Tg�h ≤ x) =	(x)+ √
hq1�g(x)φ(x)+O(h)�(8)

3We do not prove the validity of our Edgeworth expansions. Such a result would be a valuable
contribution in itself, which we defer for future research. Here our focus is on using formal expan-
sions to explain the superior finite sample properties of the bootstrap theoretically. See Mammen
(1993) and Davidson and Flachaire (2001) for a similar approach.
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uniformly over x ∈ R, where 	(x) and φ(x) are the standard normal cumu-
lative and partial distribution functions, respectively. Following Hall (1992,
p. 48), q1�g(x) = −(κ1�g + 1

6κ3�g(x
2 − 1)). Given (8), the error of the normal

approximation is

P(Tg�h ≤ x)−	(x) = √
hq1�g(x)φ(x)+O(h)(9)

uniformly in x ∈ R. The Edgeworth expansion for the bootstrap is

P∗(T ∗
g�h ≤ x) =	(x)+ √

hq∗
1�g(x)φ(x)+OP(h)�(10)

where q∗
1�g(x)= −(κ∗

1�g�h + 1
6κ

∗
3�g�h(x

2 − 1)).

PROPOSITION 4.1: Under Assumptions G and H, conditionally on σ , we have
that the following statements:

(a) q1�g(x) = q1(x) + 1
2(g

′′(σ2))/(g′(σ2))
√

2σ4x2, where q1(x) ≡ ((4(2x2 +
1))/6

√
2)σ6�4.

(b) For the i.i.d. bootstrap, q∗
1�g(x) = q∗

1(x)+ 1
2(g

′′(R2))/(g
′(R2))

√
R4 −R2

2x
2,

where

q∗
1(x) ≡ 1

6
(2x2 + 1)

R6 − 3R4R2 + 2R3
2

(R4 −R2
2)

3/2
�

(c) For the WB, q∗
1�g(x) = q∗

1(x)+ 1
2(g

′′(μ∗
2R2))/(g

′(μ∗
2R2))

√
(μ∗

4 −μ∗2
2 )R4x

2,
where

q∗
1(x) ≡ −

(
−A∗

1

2
+ 1

6
(B∗

1 − 3A∗
1)(x

2 − 1)
)
R6�4�

A∗
1 = μ∗

6 −μ∗
2μ

∗
4

μ∗
4(μ

∗
4 −μ∗2

2 )1/2
�

B∗
1 = μ∗

6 − 3μ∗
2μ

∗
4 + 2μ∗3

2

(μ∗
4 −μ∗2

2 )3/2
�

Proposition 4.1(a) shows that the magnitude of q1�g(x) depends on σ (ex-
cept when volatility is constant) and on g. When g(z) = z, q1�g(x) = q1(x) and
when g(z) = logz, q1�log(x)≡ q1�g(x)= q1(x)− 1

2

√
2σ4�2x

2. The following result
compares |q1�g(x)| for these two leading choices of g.

PROPOSITION 4.2: Under Assumption H, conditionally on σ , for any x �= 0,
|q1�log(x)| < |q1(x)| and |q1�log(0)| = |q1(0)|.

Given (9), supx |q1�log(x)|/|q1(x)| is a measure of the relative asymptotic er-
ror of the normal when approximating the distribution of the log transformed
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statistic as compared to the raw statistic (to O(
√
h)). Proposition 4.2 implies

that the error of the normal approximation is larger for the raw statistic than
for its log version. This theoretical result explains the finite sample improve-
ments of the log statistic found in the simulations (see BNS (2005) and Sec-
tion 6).

Gonçalves and Meddahi (2007) applied the results of Proposition 4.1(a) to
the class of Box–Cox transforms to show that there are other choices of non-
linear transformations within this class that dominate the log.

Similarly, Gonçalves and Meddahi (2008) use q1(x) to build improved con-
fidence intervals for σ2. Although these outperform the CLT-based intervals,
they are dominated by the i.i.d. bootstrap intervals proposed here. Recently,
Zhang, Mykland, and Aït-Sahalia (2005a) also derived Edgeworth expansions
for test statistics based on realized volatility measures. Zhang, Mykland, and
Aït-Sahalia (2005a) allowed for microstructure noise (from which we abstract
here) and therefore studied a variety of estimators including realized volatil-
ity as well as other microstructure noise robust estimators. Nevertheless, their
results apply only to normalized statistics based on the true variance of real-
ized volatility (which is unknown in practice), whereas we provide results for
the feasible studentized statistics. As Gonçalves and Meddahi (2008) showed,
confidence intervals based on Edgeworth expansions for normalized statistics
have poor finite sample properties when compared to the Edgeworth-based
intervals derived from the correct expansions for the feasible statistics.

For the raw statistic, the second-order Edgeworth expansion for the i.i.d.
bootstrap can be obtained as a special case of Liu’s (1988) work. She showed
that the i.i.d. bootstrap is not only asymptotically valid, but also second-order
correct for studentized statistics based on the sample mean of independent but
heterogeneous observations. Liu’s (1988) results apply to t and bootstrap t sta-
tistics that are both studentized by the sample variance. Crucial to Liu’s (1988)
results is a homogeneity condition on the population means that ensures con-
sistency of the sample variance estimator in the heterogeneous context. Specif-
ically, Liu (1988) assumed that n−1

∑n

i=1(μi − μ̄)2 → 0, where μi ≡ E(Xi),
μ̄ ≡ n−1

∑n

i=1 μi, and n is the sample size. Letting Xi ≡ r2
i /h, where ri = σiui,

with ui ∼ N(0�1), and letting n ≡ 1/h, we can write R2 = n−1
∑n

i=1 Xi. Con-
ditionally on σ , Xi is independently distributed with mean μi ≡ σ2

i /h and
variance 2σ4

i /h
2. We can show that q∗

1(x) can be obtained from (2.7) in Liu
(1988) as a special case. In our context, Liu’s (1988) homogeneity condition
is n−1

∑n

i=1(μi − μ̄)2 = σ4
h − (σ2

h)
2 → 0, which is not satisfied under stochas-

tic volatility. Thus, we cannot use R4 − R2
2 to studentize realized volatility.

Tg�h is the statistic of interest here and this is not covered by the results in
Liu (1988). Hence the results in Proposition 4.1(a) are new (and so are the
results for the WB, as well as the results for nonlinear functions g for the i.i.d.
bootstrap).
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Given (10), the bootstrap error in estimating P(Tg�h ≤ x) is

P∗(T ∗
g�h ≤ x)− P(Tg�h ≤ x)(11)

= √
h
(

plim
h→0

q∗
1�g(x)− q1�g(x)

)
φ(x)+ oP(

√
h)

uniformly in x ∈ R. Next we characterize plimh→0 q
∗
1�g(x)− q1�g(x) for our two

bootstrap methods.

4.1. The i.i.d. Bootstrap Error

PROPOSITION 4.3: Under Assumptions G and H, conditionally on σ , we have
that the following statements:

(a) plimh→0 q
∗
1�g(x)−q1�g(x)= plimh→0 q

∗
1(x)−q1(x)+ 1

2(g
′′(σ2))/(g′(σ2))×

(

√
3σ4 − (σ2)2 −

√
2σ4)x2, where

plim
h→0

q∗
1(x)− q1(x)

= 1
6
(2x2 + 1)

(
15σ6 − 9σ4σ2 + 2(σ2)3(

3σ4 − (σ2)2
)3/2 − 4√

2

σ6

(σ4)3/2

)
�

(b) If σt = σ for all t, then plimh→0 q
∗
1�g(x)− q1�g(x)= 0.

(c) |plimh→0 q
∗
1(x)− q1(x)| ≤ |q1(x)| uniformly in x.

Proposition 4.3(a) shows that under Assumptions G and H, plimh→0 q
∗
1�g(x)−

q1�g(x) �= 0, implying that the bootstrap error is of the same order, OP(
√
h),

as the normal approximation error. The i.i.d. bootstrap does not match the
cumulants of the original statistic when volatility is time-varying, explaining
the lack of asymptotic refinements (although it is asymptotically valid, as we
showed in Section 3 under more general assumptions than Assumption H).
When volatility is constant, Proposition 4.3(b) implies that the i.i.d. bootstrap
error is oP(

√
h), smaller than the normal error O(

√
h). In this case, ri is i.i.d.

N(0�hσ2) and the i.i.d. bootstrap provides a second-order refinement. This
result holds for any choice of g, including the raw statistic and the log-based
statistic.

When the two approximations have the same convergence rate, an alterna-
tive bootstrap accuracy measure is the relative asymptotic error of the boot-
strap. See Shao and Tu (1995, Section 3.3) and Davidson and Flachaire (2001)
for more on alternative measures of accuracy of the bootstrap. The asymp-
totic relative bootstrap error can be approximated to O(

√
h) by the ratio

r1�g(x) = |plimh→0 q
∗
1�g(x)− q1�g(x)|/|q1�g(x)| for any x ∈ R. An approximation
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to this order of the relative error for i.i.d. bootstrap critical values is r1�g(zα),
where zα is such that 	(zα)= α.

For the raw statistic, Proposition 4.3(c) proves that r1�g(x) ≡ r1(x) ≤ 1 uni-
formly in x. Thus, r1(zα) ≤ 1, showing that the bootstrap critical values are
more accurate than the normal critical values for the raw statistic under our
assumptions. In this case, it is easy to see that r1(x) is a random function
that depends on σ , but not on x. This not only simplifies the proof that
supx∈R

r1(x) ≤ 1, but also allows us to evaluate easily by simulation the mag-
nitude of this ratio for different stochastic volatility models. In particular, we
show that this ratio is very small and close to zero for the generalized autore-
gression conditional heteroskedasticity GARCH(1�1) diffusion (with a mean
of 0.0025 and a maximum of 0.024 across 10,000 simulations), and slightly
larger for the two-factor diffusion model (the mean is 0.089 and the maximum
is 0.219). See Section 6 for details on the simulation design.

For nonlinear functions g, r1�g(x) is a more complicated function, depending
on both σ and x. Proving that supx∈R

r1�g(x)≤ 1 is therefore more challenging.
Although we do not provide a proof of this analytical result, we evaluated by
simulation the value of r1�g(x) on a grid of values of x in the interval [0�10]
for g(z) = logz. For the GARCH(1�1) model, the maximum (over x) mean
value (over σ) of r1�log(x) was 0.0074, with an overall maximum (over σ and x)
equal to 0.043. For the two-factor model, these numbers were 0.097 and 0.289
respectively. We take this as evidence of the superior accuracy of the bootstrap
critical values for the GARCH(1�1) and two-factor diffusions, consistent with
the good performance of the i.i.d. bootstrap for these models for one-sided
intervals based on the log transform (see Section 6).

4.2. The Wild Bootstrap Error

PROPOSITION 4.4: Under Assumptions G and H, conditionally on σ ,

plim
h→0

q∗
1�g(x)− q1�g(x)

= −
[(

plim
h→0

κ∗
1�g�h − κ1�g

)
+ 1

6

(
plim
h→0

κ∗
3�g�h − κ3�g

)
(x2 − 1)

]
�

where

plim
h→0

κ∗
1�g�h − κ1�g = −1

2
σ6�4

(
5√
3
A∗

1 − 4√
2

)

− 1
2

(
g′′(μ∗

2σ
2)

g′(μ∗
2σ

2)

√
3σ4(μ∗

4 −μ∗2
2 )− g′′(σ2)

g′(σ2)

√
2σ4

)
�

plim
h→0

κ∗
3�g�h − κ3�g = 6

(
plim
h→0

κ∗
1�g�h − κ1�g

)
+ σ6�4

(
5√
3
B∗

1 − 4√
2

)
�
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with A∗
1 and B∗

1 as in Proposition 4.1.

Proposition 4.4 shows that the ability of the WB to match κ1�g and κ3�g

(and hence provide a second-order asymptotic refinement) depends on g,
A∗

1, and B∗
1 . The constants A∗

1 and B∗
1 are a function of μ∗

q for q = 2�4�6,
and therefore depend on the choice of ηi. For instance, if we choose4 ηi ∼
N(0�1), then A∗

1 = A1 = B1 = B∗
1 . This implies that for the raw statistic

plimh→0 κ
∗
1�h − κ1 = ( 5√

3
− 1)κ1 �= 0, and plimh→0 κ

∗
3�h − κ3 = ( 5√

3
− 1)κ3 �= 0.

In this case, plimh→0 q
∗
1(x) − q1(x) ≈ 1�89q1(x), showing that this choice of ηi

does not deliver an asymptotic refinement. It also shows that the contribution
of the term O(

√
h) to the bootstrap error is almost twice as large as the con-

tribution of q1(x) to the normal error. Thus ηi ∼ N(0�1) is not a good choice
for the WB, which is confirmed by our simulations in Section 6.

A sufficient condition for the WB to provide a second-order asymptotic re-
finement is that μ∗

2, μ∗
4, and μ∗

6 solve plimh→0 κ
∗
1�g�h = κ1�g and plimh→0 κ

∗
3�g�h =

κ3�g. For the raw statistic, as Proposition 4.4 shows, this is equivalent to solv-
ing 5√

3
A∗

1 = 4√
2

and 5√
3
B∗

1 = 4√
2
. We can show that for any γ �= 0, the solution

is of the form μ∗
2 = γ2, μ∗

4 = 31
25γ

4, and μ∗
6 = 31

25
37
25γ

6. Since T ∗
h is invariant to

the choice of γ, we choose γ = 1 without loss of generality, implying μ∗
2 = 1,

μ∗
4 = 31

25 = 1�24, and μ∗
6 = 31

25
37
25 = 1�8352. Next, we propose a two-point distribu-

tion for ηi that matches these three moments and thus implies a second-order
asymptotic refinement for the WB for the raw statistic.

PROPOSITION 4.5: Let T ∗
h be defined as in (6) and (7) with g(z) = z, and let

ηi be i.i.d. such that

ηi =

⎧⎪⎪⎨
⎪⎪⎩

1
5

√
31 + √

186 ≈ 1�33 with prob p = 1
2

− 3√
186

≈ 0�28,

−1
5

√
31 − √

186 ≈ −0�83 with prob 1 −p.

Under Assumption H, conditionally on σ , as h → 0, supx∈R
|P∗(T ∗

h ≤ x) −
P(Th ≤ x)| = oP(

√
h).

The choice of ηi in Proposition 4.5 is not optimal for other choices of g, in-
cluding the log statistic. In this case, the solution to plimh→0 κ

∗
1�g�h = κ1�g and

plimh→0 κ
∗
3�g�h = κ3�g depends on g and on the volatility path through σq. Al-

though we could replace these unknowns by consistent estimates, the Edge-
worth expansions derived here would likely change because they do not take
into account the randomness of the estimates. In addition, these estimates are

4Given that returns are (conditionally on σ) normally distributed, choosing ηi ∼N(0�1) could
be a natural choice.



BOOTSTRAPPING REALIZED VOLATILITY 295

very noisy and it is unclear whether such an approach would be useful in prac-
tice. See Gonçalves and Meddahi (2007) for more on a related issue. For these
reasons, we do not pursue this approach here.

5. THIRD-ORDER ACCURACY OF THE BOOTSTRAP

Here we develop Edgeworth expansions through O(h) and use these to eval-
uate the accuracy of the bootstrap for estimating P(|Th| ≤ x). For brevity, we
only give results for the raw statistic. The third-order Edgeworth expansion of
the distribution of Th is

P(Th ≤ x) =	(x)+ √
hq1(x)φ(x)+ hq2(x)φ(x)+ o(h)(12)

for any x ∈ R, where q1 is defined in Section 4 and q2 is an odd polynomial
of degree 5 whose coefficients depend on κj for j = 1� � � � �4. The third-order
bootstrap Edgeworth expansion is similar to (12), with q∗

1(x) and q∗
2(x) de-

noting the bootstrap analogues of q1(x) and q2(x), respectively. In particular,
q∗

2(x) is of the same form as q2(x) but replaces the coefficients κj with boot-
strap analogues κ∗

j�h.
The error in estimating P(|Th| ≤ x) made by the normal approximation is

given by P(|Th| ≤ x)− (2	(x)− 1)= 2hq2(x)φ(x)+o(h), which is O(h). The
bootstrap error can be written as

P∗(|T ∗
h | ≤ x)− P(|Th| ≤ x) = 2h

[
plim
h→0

q∗
2(x)− q2(x)

]
φ(x)+ oP(h)�(13)

The bootstrap provides a third-order asymptotic refinement when
plimh→0 q

∗
2(x)= q2(x) or, equivalently, when plimh→0 κ

∗
j�h = κj for j = 1� � � � �4.

Our findings are as follows. The i.i.d. bootstrap does not provide third-
order asymptotic refinements. This is true even when volatility is constant,
which is a surprising result. Under constant volatility, plimh→0 κ

∗
j�h = κj for

j = 1 and 3 (implying that plimh→0 q
∗
1(x) = q1(x); cf. Proposition 4.3(b)),

but this is not true for j = 2 and 4. Note that this does not mean that
the i.i.d. bootstrap provides inconsistent estimates of the asymptotic value
(as h → 0) of the second and fourth cumulants of Th. Since κ∗

2(T
∗
h ) = 1 +

hκ∗
2�h +oP(h) and κ∗

4(T
∗
h )= hκ∗

4�h +oP(h), it follows that plimh→0 κ
∗
2(T

∗
h )= 1 =

plimh→0 κ2(Th) and plimh→0 κ
∗
4(T

∗
h )= 0 = plimh→0 κ4(Th), independently of the

value of plimh→0 κ
∗
j�h and κj ; these terms are multiplied by h, which goes to

zero, and only play a role in proving bootstrap refinements.
The reason why the i.i.d. bootstrap does not provide a third-order asymptotic

refinement under constant volatility is related to the fact that T ∗
h uses a variance

estimator V̂ ∗ which is not the bootstrap analogue of the variance estimator V̂ ≡
2
3R4 used in Th. Under constant volatility, an alternative consistent variance
estimator of the asymptotic variance of R2 is Ṽ = R4 − R2

2, which is of the
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same form as V̂ ∗. We can show that for a t statistic based on Ṽ , we get second-
and third-order asymptotic refinements for the i.i.d. bootstrap under constant
volatility. Using V̂ instead of Ṽ does not have an impact at the second order,
but it does at the third order. Because Ṽ is only consistent for V under constant
volatility, we cannot use it in the general context of stochastic volatility.

Our main finding for the WB is that there is no choice of ηi for which the
WB gives a third-order asymptotic refinement. In particular, it is not possi-
ble to find ηi such that plimh→0 κ

∗
j�h = κj for j = 1� � � � �4. As discussed in Sec-

tion 4, to match the first- and third-order cumulants, we need to choose ηi

with moments μ∗
2 = γ2, μ∗

4 = 31
25γ

4, and μ∗
6 = 31

25
37
25γ

6. Since the WB statistic
is invariant to the choice of γ, we set γ = 1. We are left with two equations
(plimh→0 κ

∗
j�h = κj for j = 2�4) and one free parameter μ∗

8. The two-point distri-
bution proposed in Proposition 4.5 gives a second-order refinement, implying
μ∗

8 = 3�014. We can also choose ηi to solve plimh→0 κ
∗
j�h = κj for j = 1�2�3 by

setting μ∗
2 = 1, μ∗

4 = 31
25 , μ∗

6 = 31
25

37
25 , and μ∗

8 = ( 31
25)

2( 1
25)(

1739
35 )= 3�056.5 Because it

solves plimh→0 κ
∗
j�h = κj for j = 2 (in addition to j = 1 and 3), this choice may

perform better than the two-point choice of ηi in Proposition 4.5.
Given the absence of third-order bootstrap asymptotic refinements, we rely

on the asymptotic relative error of the bootstrap as the criterion of compar-
ison. To O(h), this error is equal to r2(x) = |plimh→0 q

∗
2(x) − q2(x)|/|q2(x)|,

with x > 0. In the general stochastic volatility case, r2(x) is a random func-
tion of x as it depends on σ through the ratios σ6�4 and σ8�4. When σ is con-
stant, these ratios equal 1 and r2(x) becomes a deterministic function of x.
Figure 1 plots r2(x) against x when σ is constant. Four methods are consid-
ered: the i.i.d. bootstrap, the WB based on ηi ∼ N(0�1), the WB based on
ηi chosen according to Proposition 4.5, and a third WB whose moments μ∗

q

solve plimh→0 κ
∗
j�h = κj for j = 1�2�3. Figure 1 shows that supx r2(x) < 1 for the

i.i.d. bootstrap, suggesting that it is better than the normal approximation un-
der this criterion. Instead, Figure 1 shows that for the WB, r2(x) can be larger
or smaller than 1, depending on x, except for the WB based on N(0�1), for
which it is always well above 1. We also evaluated r2(x) by simulation when σ
is stochastic, as we did for r1�log(x). The results show that r2(x) can be smaller
or larger than 1, depending on x. Overall, Figure 1 suggests that the asymp-
totic relative bootstrap error criterion is not a good indicator of the accuracy
of our WB methods for two-sided distribution functions. Although Edgeworth
expansions are the main theoretical tool for proving bootstrap asymptotic re-
finements, it has already been pointed out in the bootstrap literature (see, e.g.,
Härdle, Horowitz, and Kreiss (2003)) that Edgeworth expansions can be im-
perfect guides to the relative accuracy of the bootstrap methods. The same
comment applies here to the asymptotic relative bootstrap error criterion for
two-sided distribution functions.

5Matching κj for j = 1�2�4 is not possible because the solution for the μ∗
q ’s does not satisfy

Jensen’s inequality.
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FIGURE 1.—The function r2(x) when σ is constant.

6. MONTE CARLO RESULTS

We compare the finite sample performance of the bootstrap with the first-
order asymptotic theory for confidence intervals of integrated volatility. Our
Monte Carlo design follows that of Andersen, Bollerslev, and Meddahi (2005).
In particular, we consider the stochastic volatility model

d logSt = μdt + σt

[
ρ1 dW1t + ρ2 dW2t +

√
1 − ρ2

1 − ρ2
2 dW3t

]
�

where W1t , W2t , and W3t are three independent standard Brownian motions.
For σt , we consider a GARCH(1�1) diffusion (cf. Andersen and Bollerslev
(1998)), where dσ2

t = 0�035(0�636 − σ2
t ) dt + 0�144σ2

t dW1t , and a two-factor
diffusion (see Huang and Tauchen (2006) and Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2008)) where σt = exp(−1�2 + 0�04σ2

1t + 1�5σ2
2t), with

dσ2
1t = −0�00137σ2

1t dt + dW1t and dσ2
2t = −1�386σ2

2t dt + (1 + 0�25σ2
2t) dW2t .

Our baseline models let μ = 0 and ρ1 = ρ2 = 0, consistent with Assump-
tion H. We also allow for drift and leverage effects by setting μ = 0�0314,
ρ1 = −0�576, and ρ2 = 0 for the GARCH(1�1) model, and μ = 0�030 and
ρ1 = ρ2 = −0�30 for the two-factor diffusion model, for which our results in
Section 3 apply. We consider one- and two-sided symmetric 95% confidence
intervals based on the raw and on the log statistics. We use the normal distri-
bution (CLT), the i.i.d. bootstrap (iidB), and two WB methods, one based on
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ηi ∼N(0�1) (WB1) and another based on the two-point distribution proposed
in Proposition 4.5 (WB2) to compute critical values.

Table I gives the actual coverage rates of all the intervals across 10,000 repli-
cations for four different sample sizes: 1/h = 1152, 288, 48, and 12, corre-
sponding to 1.25-minute, 5-minute, half-hour, and 2-hour returns. Bootstrap
intervals use 999 bootstrap replications. For all models, both one-sided and
two-sided asymptotic intervals tend to undercover. The degree of undercover-
age is especially large for larger values of h, when sampling is not too frequent,
and it is larger for one-sided than for two-sided intervals. It is also larger for
the raw statistics than for the log-based statistics. The two-factor model im-
plies overall lower coverage rates (hence larger coverage distortions) than the
GARCH(1�1) model. The bootstrap methods outperform the feasible asymp-
totic theory for both one- and two-sided intervals, and for the raw and the
log statistics. The i.i.d. bootstrap does very well across all models and inter-
vals, even though there is stochastic volatility. It essentially eliminates the dis-
tortions associated with the asymptotic intervals for small values of 1/h for
the GARCH(1�1). Its performance deteriorates for the two-factor model, but
it remains very competitive relative to the other methods. The WB intervals
based on the normal distribution tend to overcover across all models. The WB
based on the two-point distribution tends to undercover, but significantly less
than the feasible asymptotic theory intervals. This is true for both the raw and
the log versions of R2, although its relative performance is worse for the log
case, for which this choice is not optimal. The i.i.d. and the WB based on the
two-point distribution outperform the normal approximation for symmetric in-
tervals, despite the fact that these bootstrap methods do not theoretically pro-
vide an asymptotic refinement for two-sided symmetric confidence intervals.
The i.i.d. bootstrap is the preferred method overall, followed by the WB based
on the proposed two-point distribution. Finally, the results are robust to lever-
age and drift effects.

7. CONCLUSIONS

The results presented here justify using the i.i.d. bootstrap and the wild boot-
strap for a class of nonlinear transformations of realized volatility that contains
the log transform as a special case. We show that these methods are asymptot-
ically valid under the assumptions of BNGJS (2006), which allow for drift and
leverage effects. In simulations, the bootstrap is more accurate than the stan-
dard normal asymptotic theory for two popular stochastic volatility models. We
provide higher order results that explain these findings under a stricter set of
assumptions that rules out drift and leverage effects. Establishing higher or-
der refinements of the bootstrap under the conditions of BNGJS (2006) is a
promising extension of this work. Another important extension is to prove the
validity of the Edgeworth expansions derived here. Finally, one interesting ap-
plication of the bootstrap is to realized beta, where the Monte Carlo results of
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TABLE I

COVERAGE RATES OF NOMINAL 95% CONFIDENCE INTERVALS FOR σ2 a

One-Sided Two-Sided Symmetric

Raw Log Raw Log

1/h CLT iidB WB1 WB2 CLT iidB WB1 WB2 CLT iidB WB1 WB2 CLT iidB WB1 WB2

Baseline Models: No Leverage and No Drift
GARCH(1�1) diffusion

12 82.69 93.27 98.51 87.50 88.83 93.48 98.07 90.27 86.08 93.75 98.51 87.49 90.40 95.86 97.96 88.30
48 89.74 94.63 98.32 93.87 92.74 94.74 97.73 95.20 92.32 94.87 98.32 93.83 93.64 95.46 97.42 94.66

288 93.03 95.10 97.40 95.04 94.33 95.12 97.03 95.55 94.57 95.18 97.05 95.17 94.70 95.11 96.38 95.13
1152 94.01 95.02 96.51 95.04 94.56 95.00 96.22 95.21 94.81 94.97 95.69 94.88 94.85 94.99 95.43 94.86

Two-factor diffusion
12 75.69 89.70 96.52 78.94 82.41 90.35 96.12 82.76 78.94 90.13 96.52 78.92 85.90 93.32 96.14 80.25
48 84.52 92.66 96.92 89.71 88.48 92.64 96.49 91.70 87.95 92.83 96.92 89.79 90.85 93.97 96.50 90.95

288 90.27 94.28 97.32 93.49 92.12 94.25 96.94 94.35 92.83 94.59 97.25 93.98 93.59 94.88 96.78 94.27
1152 93.20 95.02 96.93 94.95 94.04 94.99 96.60 95.30 94.64 95.20 96.52 94.89 94.77 95.11 96.08 94.92

Models With Leverage and Drift
GARCH(1�1) diffusion

12 82.40 93.00 98.36 87.21 88.40 93.32 98.04 89.99 85.72 93.69 98.36 87.22 90.48 95.70 97.93 88.29
48 89.81 94.70 98.57 94.01 92.72 94.79 98.01 95.17 92.35 94.97 98.57 93.92 93.65 95.55 97.70 94.66

288 92.84 94.98 97.37 94.95 94.25 95.00 96.87 95.46 94.41 95.15 96.84 94.94 94.56 95.09 96.19 94.80
1152 94.28 95.16 96.70 95.13 94.77 95.16 96.27 95.39 95.04 95.13 96.05 95.13 95.10 95.16 95.59 95.15

Two-factor diffusion
12 75.79 90.44 96.75 79.57 83.09 90.67 96.34 82.97 79.52 90.87 96.75 79.55 86.09 93.50 96.34 80.40
48 84.16 92.69 97.05 89.68 88.51 92.76 96.60 91.73 87.81 92.89 97.05 89.69 90.76 94.08 96.57 90.82

288 90.75 94.56 97.34 93.76 92.39 94.57 97.04 94.69 93.14 94.81 97.30 94.08 93.76 94.99 96.68 94.36
1152 93.01 95.13 96.79 94.82 93.98 95.08 96.54 95.17 94.27 94.81 96.33 94.56 94.47 94.88 95.84 94.74

aNotes: CLT—intervals based on the Normal; iidB—intervals based on the i.i.d. bootstrap; WB1—WB based on ηi ∼ N(0�1); WB2—WB based on Proposition 4.5.
10,000 Monte Carlo trials with 999 bootstrap replications each.
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BNS (2004a) show that there are important finite sample distortions. Dovonon,
Gonçalves, and Meddahi (2007) considered this extension.

APPENDIX A: CUMULANT EXPANSIONS

This Appendix contains the cumulant expansions used in the paper. Aux-
iliary lemmas and proofs appear in the Supplemental Material (see GM09).
Recall that σq�p ≡ σq/(σp)q/p for any q�p > 0. In some results, σq is replaced
with σ

q
h in this definition and we write σq�p�h. Finally, we let Rq�p ≡Rq/(Rp)

q/p.

THEOREM A.1—Cumulants of Tg�h: Suppose Assumptions G and H hold. For
any q > 0, σq

h − σq = oP(
√
h), and, conditionally on σ , as h→ 0,

(a) κ1(Th)= √
hκ1 + o(h), with κ1 ≡ −(A1/2)σ6�4;

(b) κ1(Tg�h)= √
hκ1�g +O(h), with κ1�g ≡ κ1 − 1

2(g
′′(σ2))/(g′(σ2))

√
2σ4;

(c) κ2(Th)= 1 + hκ2 + o(h), with κ2 ≡ (C1 −A2)σ8�4 + 7
4A

2
1σ

2
6�4;

(d) κ3(Th)= √
hκ3 + o(h), with κ3 ≡ (B1 − 3A1)σ6�4;

(e) κ3(Tg�h)= √
hκ3�g +O(h), with κ3�g ≡ κ3 − 3(g′′(σ2))/(g′(σ2))

√
2σ4;

(f) κ4(Th)= hκ4 +o(h), with κ4 ≡ (B2 +3C1 −6A2)σ8�4 +(18A2
1 −6A1B1)×

σ2
6�4, and

A1 = μ6 −μ2μ4

μ4(μ4 −μ2
2)

1/2
= 4√

2
�

A2 = μ8 −μ2
4 − 2μ2μ6 + 2μ2

2μ4

μ4(μ4 −μ2
2)

= 12�

B1 = μ6 − 3μ2μ4 + 2μ3
2

(μ4 −μ2
2)

3/2
= 4√

2
�

B2 = μ8 − 4μ2μ6 + 12μ2
2μ4 − 6μ4

2 − 3μ2
4

(μ4 −μ2
2)

2
= 12�

C1 = μ8 −μ2
4

μ2
4

= 32
3
�

THEOREM A.2—i.i.d. Bootstrap Cumulants: Under Assumptions G and H,
conditionally on σ , as h→ 0,

(a) κ∗
1(T

∗
h )= √

hκ∗
1�h + oP(h), with κ∗

1�h ≡ −Ã1/2;
(b) κ∗

1(T
∗
g�h) = √

hκ∗
1�g�h + OP(h), with κ∗

1�g�h ≡ κ∗
1�h − 1

2(g
′′(R2))/(g

′(R2)) ×√
R4 −R2

2;
(c) κ∗

2(T
∗
h )= 1 + hκ∗

2�h + oP(h), with κ∗
2�h ≡ C̃ − Ã2 − 1

4Ã
2
1;

(d) κ∗
3(T

∗
h )= √

hκ∗
3�h + oP(h), with κ∗

3�h ≡ −2Ã1;
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(e) κ∗
3(T

∗
g�h) = √

hκ∗
3�g�h + OP(h), with κ∗

3�g�h ≡ κ∗
3�h − 3(g′′(R2))/(g

′(R2)) ×√
R4 −R2

2;
(f) κ∗

4(T
∗
h )= hκ∗

4�h +oP(h), with κ∗
4�h ≡ (B̃2 − 2D̃+ 3Ẽ)− 6(C̃ − Ã2)− 4Ã2

1,
where

Ã1 = R6 − 3R4R2 + 2R3
2

(R4 −R2
2)

3/2
�

Ã2 = R8 − 4R2
4 − 4R6R2 + 14R4R

2
2 − 7R4

2

(R4 −R2
2)

2
�

B̃2 = R8 − 4R6R2 + 12R4R
2
2 − 6R4

2 − 3R2
4

(R4 −R2
2)

2
�

C̃ = R8 −R2
4

(R4 −R2
2)

2
+ 2(R6 −R4R2)

2

(R4 −R2
2)

3
− 12(R6 −R4R2)(R2)

(R4 −R2
2)

2
+ 12R2

2

R4 −R2
2

�

D̃= 4(R6 − 3R4R2 + 2R3
2)(R6 −R4R2)

(R4 −R2
2)

3

+ 6(R8 −R2
4 − 2R6R2 + 2R4R

2
2)

(R4 −R2
2)

2

− 15 − 20R2(R6 − 3R4R2 + 2R3
2)

(R4 −R2
2)

2
�

Ẽ = 3(R8 −R2
4)

(R4 −R2
2)

2
+ 12(R6 −R4R2)

2

(R4 −R2
2)

3

− 60(R6 −R4R2)(R2)

(R4 −R2
2)

2
+ 60(R2)

2

R4 −R2
2

�

THEOREM A.3—WB Cumulants: Under Assumptions G and H, conditionally
on σ , as h→ 0,

(a) κ∗
1(T

∗
h )= √

hκ∗
1�h + oP(h), with κ∗

1�h ≡ −(A∗
1/2)R6�4;

(b) κ∗
1(T

∗
g�h) = √

hκ∗
1�g�h + OP(h), with κ∗

1�g�h ≡ κ∗
1�h − 1

2(g
′′(μ∗

2R2))/(g
′(μ∗

2 ×
R2))

√
(μ∗

4 −μ∗2
2 )R4;

(c) κ∗
2(T

∗
h )= 1 + hκ∗

2�h + oP(h), with κ∗
2�h ≡ (C∗

1 −A∗
2)R8�4 + 7

4A
∗2
1 R2

6�4;
(d) κ∗

3(T
∗
h )= √

hκ∗
3�h + oP(h), with κ∗

3�h ≡ (B∗
1 − 3A∗

1)R6�4;
(e) κ∗

3(T
∗
g�h) = √

hκ∗
3�g�h + OP(h), with κ∗

3�g�h ≡ κ∗
3�h − 3(g′′(μ∗

2R2))/(g
′(μ∗

2 ×
R2))

√
(μ∗

4 −μ∗2
2 )R4;
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(f) κ∗
4(T

∗
h ) = hκ∗

4�h + oP(h), with κ∗
4�h ≡ (B∗

2 + 3C∗
1 − 6A∗

2)R8�4 + (18A∗2
1 −

6A∗
1B

∗
1)R

2
6�4, where

A∗
1 = μ∗

6 −μ∗
2μ

∗
4

μ∗
4(μ

∗
4 −μ∗2

2 )1/2
�

A∗
2 = μ∗

8 −μ∗2
4 − 2μ∗

2μ
∗
6 + 2μ∗2

2 μ∗
4

μ∗
4(μ

∗
4 −μ∗2

2 )
�

B∗
1 = μ∗

6 − 3μ∗
2μ

∗
4 + 2μ∗3

2

(μ∗
4 −μ∗2

2 )3/2
�

B∗
2 = μ∗

8 − 4μ∗
2μ

∗
6 + 12μ∗2

2 μ∗
4 − 6μ∗4

2 − 3μ∗2
4

(μ∗
4 −μ∗2

2 )2
�

C∗
1 = μ∗

8 −μ∗2
4

μ∗2
4

�

PROOF OF THEOREM A.1: We sketch the proofs for the raw statistic. The
proofs of (b) and (e) for nonlinear g follow by a second-order Taylor expan-
sion of K(R2� V̂ ) around (σ2� Vh), where K(x� y)= (g(x)− g(σ2))/(g′(x)

√
y)

and g(·) is as in Assumption G. We let Vh = Var(
√
h−1R2) = 2σ4

h , and let
Sh ≡ (

√
h−1(R2 − σ2))/

√
Vh and Uh ≡ (

√
h−1(V̂ − Vh))/Vh. We can write Th =

Sh(1 +√
hUh)

−1/2. The first four cumulants of Th are given by (e.g., Hall (1992,
p. 42))

κ1(Th)=E(Th); κ2(Th)= E(T 2
h)− [E(Th)]2�

κ3(Th)=E(T 3
h)− 3E(T 2

h)E(Th)+ 2[E(Th)]3�

κ4(Th)=E(T 4
h)− 4E(T 3

h)E(Th)− 3[E(T 2
h)]2

+ 12E(T 2
h)[E(Th)]2 − 6[E(Th)]4�

We identify the terms of order up to O(h). For a fixed k, we can write

Tk
h = Sk

h(1 + √
hUh)

−k/2

= Sk
h − k

2

√
hSk

hUh + k

4

(
k

2
+ 1

)
hSk

hU
2
h +O

(
h3/2

)
�

For k= 1� � � � �4, the moments of Tk
h up to O(h3/2) are given by

E(Th)= −√
h

1
2
E(ShUh)+ 3

8
hE(ShU

2
h)�

E(T 2
h)= 1 − √

hE(S2
hUh)+ hE(S2

hU
2
h)�
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E(T 3
h)=E(S3

h)− √
h

3
2
E(S3

hUh)+ 15
8
hE(S3

hU
2
h)�

E(T 4
h)=E(S4

h)− 2
√
hE(S4

hUh)+ 3hE(S4
hU

2
h)�

where we used E(Sh) = 0 and E(S2
h) = 1. By Lemma S.3 in GM09, we have

that

E(Th) = √
h

(
−1

2
A1σ6�4�h

)
+O

(
h3/2

)
�

E(T 2
h)= 1 + h

[
(C1 −A2)σ8�4�h +C2σ

2
6�4�h

] +O(h2)�

E(T 3
h)= √

h

[(
B1 − 3

2
A3

)
σ6�4�h

]
+O

(
h3/2

)
�

E(T 4
h)= 3 + h

(
(B2 − 2D1 + 3E1)σ8�4�h + (3E2 − 2D2)σ

2
6�4�h

) +O(h2)�

Thus κ1(Th) = √
h(−(A1/2)σ6�4�h) + O(h3/2) = √

h(−(A1/2)σ6�4) + O(h3/2),
since under Assumption H, BNS (2004b) showed that σq

h − σq = o(h1/2). This
proves the first result. The remaining results follow similarly. Q.E.D.

PROOF OF THEOREM A.2: We follow the proof of Theorem A.1 and use
Lemma S.7 in GM09 instead of Lemma S.3. The cumulant expansions follow
by noting that Ã3 = 3Ã1 and B̃1 = Ã1. Q.E.D.

See the proof of Theorem A.1 and Remark 1 in GM09 for the proof of The-
orem A.3.

APPENDIX B: PROOFS OF RESULTS IN SECTIONS 3–5

PROOF OF THEOREM 3.1: Given that Tg�h
d→ N(0�1), it suffices that T ∗

g�h

d∗→
N(0�1) in probability. We prove this for g(z) = z; the delta method implies
the result for nonlinear g. The proof contains two steps: 1. show the desired

result for S∗
h ≡ √

h−1(R∗
2 −E∗(R∗

2))/
√
V ∗; 2. show V̂ ∗ P∗→ V ∗ in probability.

We start with the i.i.d. bootstrap.
Step 1. Let S∗

h = ∑1/h
i=1 z

∗
i , where z∗

i ≡ (r∗2
i −E∗(r∗2

i ))/
√
hV ∗ are (condi-

tionally) i.i.d. with E∗(z∗
i ) = 0 and Var∗(z∗

i ) = h2V ∗/hV ∗ = h such that
Var∗(

∑1/h
i=1 z

∗
i ) = 1. Thus, by the Berry–Esseen bound, for some small ε > 0

and some constant K,

sup
x∈R

∣∣∣∣∣P∗
(

1/h∑
i=1

z∗
i ≤ x

)
−	(x)

∣∣∣∣∣ ≤K

1/h∑
i=1

E∗|z∗
i |2+ε�
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which converges to zero in probability as h→ 0. We have

1/h∑
i=1

E∗|z∗
i |2+ε = h−1−(2+ε)/2|V ∗|−(2+ε)/2E∗(|r∗2

1 −E∗|r∗
1 |2|2+ε

)
≤ 2|V ∗|−(2+ε)/2h−1−(2+ε)/2E∗|r∗

1 |2(2+ε)

= 2|V ∗|−(2+ε)/2hε/2R2(2+ε) = OP

(
hε/2

) = oP(1)�

since V ∗ P→ 3σ4 − (σ2)2 > 0 and R2(2+ε)
P→ μ2(2+ε)σ2(2+ε) =O(1).

Step 2. Use Lemma S.5 in GM09 to show that Bias∗(V̂ ∗)
P→ 0 and

Var∗(V̂ ∗)
P→ 0. The proof for the WB follows similarly. Q.E.D.

PROOF OF PROPOSITION 4.1: The results follow from the definition of
q1�g(x) and q∗

1�g(x) given the cumulants expansions in Theorems A.1, A.2,
and A.3. Q.E.D.

The proof of Proposition 4.2 appears in GM09.

PROOF OF PROPOSITION 4.3: (a) We compute plimh→0 κ
∗
j�g�h for j = 1�3 us-

ing Theorem A.2 and the fact that Rq
P→ μqσq, as shown by BNGJS (2006).

(b) Follows trivially when σ is constant because (σq)p = σqp for any q�p > 0.
The proof of (c) appears in GM09. Q.E.D.

PROOF OF PROPOSITION 4.4: This follows from Theorem A.1 and A.3, given
that Rq → μqσq in probability for any q > 0, by BNGJS (2006). Q.E.D.

PROOF OF PROPOSITION 4.5: Let ηi = a1 with probability p and let

ηi = a2 with probability 1 − p. We can show that a1 = 1
5

√
31 + √

186, a2 =
− 1

5

√
31 − √

186, and p= 1
2 − 3√

186
solve E(η2

i )= a2
1p+ a2

2(1 −p)= 1, E(η4
i )=

a4
1p+ a4

2(1 −p)= 31
25 , and E(η6

i )= a6
1p+ a6

2(1 −p)= 31
25

37
25 . Q.E.D.
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