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Abstract

The main contribution of this paper is to study the applicability of the bootstrap to estimating
the distribution of the standard test of overidentifying restrictions of Hansen (1982) when the model
is globally identified but the rank condition fails to hold (lack of first order local identification).

An important example for which these conditions are verified is the popular test of common
conditionally heteroskedastic features proposed by Engle and Kozicki (1993). As Dovonon and
Renault (2013) show, the Jacobian matrix for this model is identically zero at the true parameter
value, resulting in a highly nonstandard limiting distribution that complicates the computation of
critical values.

We first show that the standard bootstrap method of Hall and Horowitz (1996) fails to consis-
tently estimate the distribution of the overidentification restrictions test under lack of first order
identification. We then propose a new bootstrap method that is asymptotically valid in this con-
text. The modification consists of adding an additional term that recenters the bootstrap moment
conditions in a way as to ensure that the bootstrap Jacobian matrix is zero when evaluated at the
GMM estimate.

1 Introduction

GMM estimators are commonly used in economics to estimate parameters defined by moment con-

ditions. Under standard regularity conditions, including the rank identification condition, the GMM

estimator is
√
T -consistent and asymptotically normal, as shown by Hansen (1982) in his seminal

paper. Nevertheless, the bootstrap is often used to estimate the distribution of the GMM estimator

and related test statistics because the first order asymptotic distribution is a poor approximation to

the GMM finite sample distribution for the sample sizes typically found in practice.

The main goal of this paper is to study the applicability of the bootstrap for GMM inference

when the standard rank identification condition fails but the model is still globally identified. Global

identification, which requires that a unique parameter value θ0 solves the moment conditions, ensures

that the GMM estimator is consistent for θ0. As is well known, global identification is equivalent to

the rank identification condition for linear models. The rank identification condition, which requires

that the expected value of the Jacobian matrix of the moment conditions with respect to θ is of full

column rank, is an example of a local identification condition that is important to derive the first
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order asymptotic distribution of the GMM estimator. For nonlinear models, and as first discussed

by Sargan (1983), it is possible to maintain global identification of the model and at the same time

have a rank deficient Jacobian matrix. Failure of the rank identification condition (or first order

underidentification) implies that the first order asymptotic distribution of the GMM estimator and

related test statistics are highly nonstandard, thus motivating the use of the bootstrap as an alternative

method of inference.

In this paper, we focus on bootstrapping the test of overidentification restrictions proposed by

Hansen (1982) when the model is globally identified but the expected Jacobian matrix is identically

zero. Our motivation for considering this special case of rank deficiency is the test for common condi-

tionally heteroskedastic factors studied by Dovonon and Renault (2013) (henceforth D&R (2013)), for

which the expected Jacobian matrix is nil when evaluated at the true parameter value. In this case,

local identification is ensured by imposing identification conditions on higher order derivatives of the

moment conditions. Under these conditions, D&R (2013) show that this popular test (which amounts

to a test of appropriately defined overidentifying restrictions) is no longer asymptotically distributed

as a χ2
H−p random variable (where H denotes the number of moment conditions and p the number of

parameter coefficients in θ). Instead, its asymptotic distribution is a fifty-fifty mixture of χ2
H−1 and

χ2
H when p = 1, leading to an oversized test under the null of common conditionally heteroskedastic

features when the standard χ2
H−1 distribution is used, independently of the sample size. When p > 1,

the correct asymptotic distribution is the minimum of a certain stochastic process whose distribution

is highly nonstandard, implying that critical values are difficult to obtain. Our main goal here is to

propose a bootstrap method that is able to estimate the correct distribution of the overidentification

test in this context. The bootstrap will be especially useful when p > 1 because it avoids the use

of conservative critical values, which were proposed by D&R (2013) based on their proof that the

asymptotic distribution of the test lies between χ2
H−p and χ2

H when p > 1.

Our contributions are as follows. First, we show that the standard bootstrap overidentification

test statistics (as proposed by Hall and Horowitz (1996)), where one resamples the moment conditions

recentered around the bootstrap population mean evaluated at the GMM estimate θ̂T , is not valid

when the Jacobian matrix is degenerate. The reason for this failure is that the bootstrap Jacobian

matrix is the sample Jacobian matrix evaluated at θ̂T and this is typically not zero. Thus the standard

GMM bootstrap does not mimic the degeneracy of the expected Jacobian matrix at θ0. To remedy this

problem, we propose two alternative bootstrap methods where the bootstrap GMM estimator is defined

as the minimum of a quadratic form of a set of modified recentered bootstrap moment conditions. The

first modification that we propose consists on recentering the moment condition that the bootstrap

resamples twice: first we subtract off the bootstrap mean of the bootstrap moment conditions evaluated

at θ̂T , as proposed by Hall and Horowitz (1996). Second, we subtract off a term that is equal to the

sample Jacobian matrix evaluated at θ̂T multiplied by the difference between θ and θ̂T . We label this

the corrected bootstrap. The second modification differs from the first one by letting the Jacobian

2



matrix be evaluated at the unknown parameter. Because of its continuous correction nature, we label

this as the continuously corrected bootstrap. In both alternatives, the modified bootstrap moment

conditions are equal to zero when evaluated at θ̂T (as in Hall and Horowitz (1996)), but in addition

are such that the first order derivative with respect to θ is zero when evaluated at θ̂T . Consequently,

the bootstrap expected Jacobian matrix is degenerate and this restores the asymptotic validity of the

bootstrap for estimating the overidentification test when the expected Jacobian matrix is zero under

the true model.

The rest of this paper is organized as follows. In Section 2, we introduce our assumptions and

provide the asymptotic distribution of the overidentification test when the expected Jacobian matrix

is zero. These results generalize some of the results in D&R (2013) by allowing for general nonlinear

moment conditions that are not necessarily quadratic in θ. Section 3 establishes the invalidity of

the standard bootstrap method for the test of overidentification conditions when first order underi-

dentification holds. Section 4 introduces the new bootstrap methods based on the doubly recentered

bootstrap moment conditions and proves their asymptotic validity. Section 5 contains Monte Carlo

simulation results and Section 6 concludes. Two mathematical appendices contain the proofs.

2 Setup, examples, assumptions, and asymptotic theory

We consider a sample {Xt : t = 1, . . . , T} of random variables described by the moment conditions

E(ψ(Xt, θ)) = 0, (1)

where ψ(·, ·) ∈ RH is a known function and θ ∈ Θ ⊂ Rp is the parameter of interest. In the following,

we will often write ψt (θ) ≡ ψ (Xt, θ) whenever convenient. Throughout we maintain the assumption

that the model is globally identified, i.e. there exists a unique parameter vector θ0 that solves the

moment conditions E(ψ(Xt, θ0)) = 0. Letting

QT (θ) ≡ ψ̄′
T (θ)WT ψ̄T (θ),

where ψ̄T (θ) =
1
T

∑T
t=1 ψ(Xt, θ) and WT a symmetric positive definite random matrix, we can define

the GMM estimator θ̂T as

θ̂T = argmin
θ∈Θ

QT (θ) .

The statistic of interest is

ĴT = T ψ̄′
T (θ̂T )WT ψ̄T (θ̂T ).

When WT is such that WT →P W = Σ−1, where Σ = Var (ψ(X1, θ0)), we obtain Hansen’s (1982)

GMM overidentification test statistic. This statistic has the standard χ2
H−p as T → ∞ under the rank

identification condition that Rank
(
∂
∂θ′ ρ (θ0)

)
= p, where ρ (θ) ≡ E (ψ (X1, θ)) .

Our aim in this section is to derive the asymptotic distribution of ĴT whenever the rank identifi-

cation condition fails. First, we provide several examples where this is the case.
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2.1 Examples of first-order underidentification

Example 2.1 (A toy example)

Let yt ∼ i.i.d. (0, 1), xt ∼ i.i.d. (0, 1) such that E(|xt|3) < ∞, where xt is independent of yt, for

t = 1, . . . , T . Let ψ (yt, xt, θ) = zt

(
(yt − θxt)

2 − 1
)
, where zt = (1, xt)

′ and θ ∈ R, and define the set

of moment conditions as

E (ψ (yt, xt, θ)) ≡ E
(
zt

(
(yt − θxt)

2 − 1
))

= 0.

We can show that ρ (θ) ≡ E (ψ (yt, xt, θ)) =
(
θ2, θ2E

(
x3t
))′

, implying that the moment condition model

identifies the true parameter value θ0 = 0. However, the Jacobian matrix of ρ (θ) evaluated at θ0 is

nil, meaning that the first order local identification condition fails in this model.

Example 2.2 (Nonstationary panel AR(1) model with individual fixed effects)

Consider the standard AR(1) panel data model with individual specific effects,

yit = ρyi,t−1 + ηi + εit, i = 1, . . . , N, t = 0, 1, 2.

Assume that the vector (yi0, ηi, εi1, . . . , εiT ) is i.i.d. across i with mean 0 and that E(ε2it) = σ2ε ,

E(εisεit) = 0 for s ̸= t, s, t = 0, 1, 2, E(η2i ) = σ2η, E(y2i0) = σ20, E(εitηi) = 0, E(εityi0) = 0, t = 0, 1, 2,

and E(yi0ηi) = σ0η.

Let θ = (ρ, σ20, σ0η, σ
2
η, σ

2
ε)

′ denote the vector of parameters in this model. Writing yi1 and yi2 in

terms of yi0, and then V ar((yi0, yi1, yi2)
′) in terms of θ, we can easily show the following moment

restrictions hold:

E(ψ(yi, θ)) = 0, (2)

where yi = (yi0, yi1, yi2)
′ and

ψ(yi, θ) =



y2i0 − σ20
yi0yi1 − ρy2i0 − σ0η
yi0yi2 − ρyi0yi1 − σ0η

y2i1 − yi0yi2 − σ2η + (1− ρ)σ0η − σ2ε
yi1yi2 − ρy2i1 − σ2η − ρσ0η
(yi2 − ρyi1)

2 − σ2η − σ2ε

 .

These moment restrictions are equivalent, up to a linear one-to-one mapping, to those considered by

Madsen (2009, Eq. (5)). We can show this model is globally identified, i.e. there exists a unique

solution θ∗ to (2), where θ∗ is such that ρ∗ ∈ R, σ∗20 , σ∗2η , σ∗2ε ≥ 0, and σ∗0η ∈ R. However, as it turns

out, the usual rank condition is not satisfied for all θ∗ in the parameter space. In particular, it fails

when the true value is θ∗ = (1, σ∗
2

0 , 0, 0, σ
∗2
ε ). This parameter configuration corresponds to a panel

AR(1) model with a unit root and no individual fixed effects:

yit = yi,t−1 + εit, i = 1, . . . , n, t = 0, 1, 2.
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More specifically, we can show that the Jacobian matrix evaluated at θ∗ = (1, σ∗
2

0 , 0, 0, σ
∗2
ε ) is

E

(
∂ψ

∂θ′
(yi, θ

∗)

)
=



0 −1 0 0 0

−σ∗20 0 −1 0 0

−σ∗20 0 −1 0 0
0 0 0 −1 −1

−σ∗20 − σ∗
2

ε 0 −1 −1 0
0 0 0 −1 −1


,

which is of rank 4 < 5. Hence, the usual rank identification condition fails, implying that the overi-

dentification test statistic does not have the usual limiting chi square distribution. Similarly, a test for

unit root will not have the standard limiting distribution.

Example 2.3 (Testing for common conditionally heteroskedastic factors)

Following D&R (2013), let us consider n assets and (Yt+1)t the vector process of their returns, each

of which is assumed to be conditionally heteroskedastic with respect to an increasing filtration Ft that

contains at least returns up to t. These n returns have common conditionally heteroskedastic features

if there exists a n×K matrix Λ of rank K < n, a symmetric positive definite n× n matrix Ω, and a

diagonal K ×K matrix Dt that is Ft-measurable such that

V ar(Yt+1|Ft) = ΛDtΛ
′ +Ω.

A natural consequence of the common conditionally heteroskedastic features is the existence of so-called

co-feature vectors θ ̸= 0 in Rn that offset the conditionally heteroskedastic patterns from (Yt+1)t:

V ar(θ′Yt+1|Ft) = θ′Ωθ = cst.

Assuming that E(Yt+1|Ft) = 0, a test for common conditionally heteroskedastic factors can be based

on the conditional moment restriction:

E((θ′Yt+1)
2|Ft) = c,

for some constant c. This moment restriction can be translated into an unconditional moment restric-

tion:

E (ψ(zt, Yt+1, θ, c)) ≡ E
(
zt
(
(θ′Yt+1)

2 − c
))

= 0, (3)

where zt is an H-vector of instruments belonging to Ft including the constant instrument 1 as a

component. Testing for common conditionally heteroskedastic features amounts to testing the validity

of the moment conditions in (3) and the standard overidentification test statistic is routinely used to

do.

The global identification of the parameter c in (3) is guaranteed so long as θ is globally identified

since, using the constant instrument, we have c = E(θ′Yt+1)
2. The global identification of θ has

extensively been discussed in D&R (2013). In particular, if K = n− 1, θ is identified up to a scaling

factor and the full vector is identified if, for instance, a relevant component is fixed to 1 or alternatively,
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by imposing a portfolio weights type of restriction such as θn = 1−
∑n−1

i=1 θi.

Suppose that K = n − 1 and that setting θn = 1 −
∑n−1

i=1 θi ensures the identification of the

parameters in model (3). This model effectively has n parameters: θ1 = (θ1, . . . , θn−1)
′ ∈ Rn−1 and c

that are all globally identified. Let us now evaluate the Jacobian matrix of the model at the true value

δ0 = (θ1
′

0 , c0)
′. Letting ι denote the (n − 1)-vector of 1’s, recall that θ0 = (θ1

′
0 , ι

′θ10)
′ is a co-feature

vector and as such, θ′0Λ = 0.

Clearly, for j = 1, . . . , n− 1,

E

(
∂ψ

∂c
(zt, Yt+1, θ0, c0)

)
= −E(zt); E

(
∂ψ

∂θj
(zt, Yt+1, θ0, c0)

)
= 2E

(
zt(θ

′
0Yt+1)(Yj,t+1 − Yn,t+1)

)
.

But, since θ0 is a co-feature vector,

E
(
(θ′0Yt+1)Y

′
t+1|Ft

)
= θ′0E

(
Yt+1Y

′
t+1|Ft

)
= θ′0ΛDtΛ

′ + θ′0Ω = θ′0Ω.

Thus, E
(
(θ′0Yt+1)Y

′
j,t+1|Ft

)
is constant for any j = 1, . . . , n. As a result, there exists a constant aj

such that E
(
∂ψ
∂θj

(zt, Yt+1, θ0, c0)
)
= ajE(zt). Collecting aj’s into a row (n− 1)-vector A, we have

E

(
∂ψ

∂δ′
(zt, Yt+1, θ0, c0)

)
=
(
E (zt)A −E (zt)

)
= E (zt)

(
A −1

)
.

This shows that the Jacobian matrix of ψ(zt, Yt+1, θ, c) evaluated at the true value δ0 is of rank one.

This establishes that the first order local identification condition fails in model (3) since the number

of parameters in δ is equal or larger than 2.

An alternative set of moment conditions considered by D&R (2013) consists of getting c in terms

of θ (c(θ) = E(θ′Yt+1)
2) and then plugging this into in (3). The resulting moment condition is:

E(ψ(zt, Yt+1, θ)) ≡ E(zt − E(zt))
(
(θ′Yt+1)

2 − c(θ)
)
= 0, (4)

where zt is the same vector of instruments as in (3) excluding the constant instrument.

D&R (2013) show that the model (4) globally identifies the parameters of interest under suitable

normalization of θ if K = n− 1. They also establish that regardless of the normalization chosen,

E

(
∂ψ

∂θ1′
(zt, Yt+1, θ0)

)
= 0,

where θ1 is the collection of free parameters after normalization. This highlights the first order local

identification failure in this alternative model.

2.2 Assumptions

The previous examples show that for nonlinear moment condition models, local first order identification

cannot be taken for granted even when the model is globally identified. As D&R (2013) showed for

Example 2.3, the lack of first order identification results in nonstandard limiting distributions for the

overidentification test statistic. Here we extend their results by considering general moment conditions

and by studying bootstrap inference. Our assumptions are as follows.
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Assumption 1 (DGP) Let (Ω,F , P ) denote a complete probability space. We observe an i.i.d.

sample given by
{
Xt : Ω → Rl, l ∈ N, t = 1, . . . , T

}
.

Assumption 2 (global identification) θ0 is an interior point of Θ, a compact subset of Rp, p ∈ N,
and it is the unique solution in Θ to the equation E (ψ (Xt, θ)) = 0.

Assumption 3 (regularity conditions on ψ)

(i) {ψ (x, θ)} is continuous on Θ for all x in the support of X1.

(ii) E (supθ∈Θ ∥ψ (X1, θ)∥) <∞.

(iii) E
(
∥ψ(X1, θ0)∥2

)
<∞ and Σ ≡ Var (ψ(X1, θ0)) is positive definite.

Assumption 4 (regularity conditions on derivatives on ψ)

(i) {ψ (x, θ)} is twice continuously differentiable with respect to θ in a neighborhood N of θ0 for all

x in the support of X1 and there exists a function m (x) such that E(m(X1)) < ∞ and for

any θ1, θ2 ∈ N ,
∥∥∥ ∂2ψh
∂θ∂θ′ (x, θ1)−

∂2ψh
∂θ∂θ′ (x, θ2)

∥∥∥ ≤ m(x)∥θ1 − θ2∥, for h = 1, . . . , H, for all x in the

support of X1.

(ii) E
(∥∥ ∂

∂θ′ψ(X1, θ0)
∥∥2) <∞ and E

(∥∥∥ ∂2

∂θ∂θ′ψh(X1, θ0)
∥∥∥) <∞, for h = 1, . . . , H.

Assumption 5 (weighting matrix) WT
P→W , a symmetric positive definite matrix.

Assumption 6 (local identification)

(i) E
(
∂
∂θ′ψ(X1, θ0)

)
= ∂

∂θ′ ρ (θ0) = 0, where ρ (θ) ≡ E (ψ (X1, θ)) .

(ii) ∀θ ∈ Θ,
[
(θ − θ0)

′E
(

∂2

∂θ∂θ′ψh(X1, θ0)
)
(θ − θ0)

]
1≤h≤H

= 0 ⇐⇒ θ = θ0.

Assumptions 1, 2, 3 and 5 are standard in the GMM literature but Assumptions 4 and 6 are not.

Assumption 4(i) is useful to control the remainder of second-order Taylor expansions of the estimating

function while the first part of Assumption 4(ii) ensures the applicability of a central limit theorem

to the sample mean of the Jacobian matrix of the estimating function evaluated at the true value

θ0. The second part of Assumption 4(ii) along with Assumption 4(i) ensures that the second order

derivatives of the estimating function are uniformly dominated in a neighborhood of θ0, allowing for

the application of a uniform law of large numbers. Part (i) of Assumption 6 states that the expected

value of the Jacobian matrix is zero. This is a violation of the standard rank identification condition,

which requires the rank of ∂
∂θ′ ρ (θ0) to be equal to p. Given the lack of first order identification, part

(ii) of Assumption 6 ensures local identification of θ0 through second-order derivatives. In particular,

letting

G ≡
[
vec

(
∂2ρ1(θ0)
∂θ∂θ′

)
· · · vec

(
∂2ρH(θ0)
∂θ∂θ′

) ]′
7



denote an H × p2 matrix, Assumption 6(ii) is equivalent to

Gvec
(
(θ − θ0)(θ − θ0)

′) ̸= 0 for all θ ̸= θ0. (5)

When p = 1, (5) is equivalent to G ̸= 0, i.e. ∂2ρh(θ0)
∂θ2

̸= 0 for at least one h = 1, . . . , H. In the general

case, the condition that G ̸= 0 is obviously necessary for (5) but it is not sufficient. It is hard to provide

more primitive conditions in this case as this amounts to giving conditions for a unique solution of a

set of H nonlinear equations in θ. An important example that satisfies (5) are the moment conditions

underlying the test for common conditionally heteroskedastic features. See D&R’s (2013) Lemma 2.3.

Next, we derive the asymptotic distribution of ĴT under Assumptions 1-6. Although in practice ĴT

requires the choice of the weighting matrixWT , we abstract from this choice in the paper. However, we

note that our Assumption 5 is consistent with the usual choice of WT that guarantees efficiency when

the rank condition for identification is satisfied. In particular, under our assumptions, a consistent

estimator of W = Σ−1 is given by the inverse of

1

T

T∑
t=1

ψt(θ̃T )ψt(θ̃T )
′,

where θ̃T is a first-step GMM estimator that is consistent for θ0 (e.g. a GMM estimator based on

WT = Ip).

2.3 Asymptotic results

Proposition 2.1 Under Assumptions 1-3 and 5, θ̂T − θ0 = oP (1) .

Proposition 2.1 shows that the GMM estimator is consistent for θ0 despite the lack of first order

identification. This is an immediate consequence of global identification and the uniform convergence

of QT (θ) towards

Q (θ) = E (ψ (Xt, θ))
′WE (ψ (Xt, θ)) ≡ ρ (θ)′Wρ (θ) ,

where ρ (θ) ≡ E (ψ (Xt, θ)) .

Our next result derives the rate of convergence of θ̂T − θ0 when local identification is achieved

through second-order local conditions.

Proposition 2.2 Under Assumptions 1-6, (i)
∥∥∥θ̂T − θ0

∥∥∥ = OP
(
T−1/4

)
and (ii) T 1/4

(
θ̂T − θ0

)
has at

least a subsequence that converges in distribution to some random variable V such that P (V ̸= 0) > 0.

Part (i) of Proposition 2.2 shows that the convergence rate of θ̂T − θ0 is at least T−1/4 whereas

part (ii) shows that this rate is sharp, i.e. there is a subsequence of T 1/4
(
θ̂T − θ0

)
which converges

in distribution to a nondegenerate random variable V . This implies that T 1/4
(
θ̂T − θ0

)
cannot be

oP (1) (if it were then any subsequence would converge in distribution to 0).
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To understand why the lack of first order identification implies a slower than
√
T rate of conver-

gence, note that we can write a second-order Taylor expansion of the moment conditions
√
T ψ̄T

(
θ̂T

)
as

√
T ψ̄T

(
θ̂T

)
=

√
T ψ̄T (θ0) +

∂ψ̄T (θ0)

∂θ′

√
T
(
θ̂T − θ0

)
︸ ︷︷ ︸
=oP (1) under Assumption 6(i)

+
1

2
RT

(
θ̈T

)
, (6)

where the remainder is such that

RT

(
θ̈T

)
= Ḡ

(
θ̈T

)
︸ ︷︷ ︸

↓P
G

under A6(ii)

vec

(
T 1/4

(
θ̂T − θ0

)
T 1/4

(
θ̂T − θ0

)′)
,

where for any θ,

Ḡ (θ) ≡
[
vec

(
∂2ψ̄1,T (θ)
∂θ∂θ′

)
· · · vec

(
∂2ψ̄H,T (θ)
∂θ∂θ′

) ]′
(7)

is a random H × p2 matrix. Because the Jacobian matrix is nil,
√
T ∂ψ̄T (θ0)

∂θ′ = OP (1) (by a CLT) and

since θ̂T − θ0 = oP (1), it follows that the second term in (6) is oP (1). Thus, identification is achieved

at the second-order. In particular, Assumption 6(ii) guarantees that RT

(
θ̈T

)
is an OP (1) term that

is not oP (1), implying that T 1/4
(
θ̂T − θ0

)
= OP (1) .

To describe the asymptotic distribution of ĴT we need to introduce some additional notation.

Following D&R (2013), let

ZT (θ0) =

(
∂2ρ′ (θ0)

∂θi∂θj
W

√
T ψ̄T (θ0)

)
1≤i,j≤p

denote a symmetric random p× p matrix whose limit in distribution is given by the following random

Gaussian matrix

Z(X) =

(
∂2ρ′ (θ0)

∂θi∂θj
WX

)
1≤i,j≤p

,

with X ∼ N(0,Σ). Similarly, define the Rp-indexed stochastic process

J (v) ≡ X ′WX +X ′WGvec
(
vv′
)
+

1

4
vec′

(
vv′
)
G′WGvec

(
vv′
)
,

where v ∈ Rp and note that the sample paths of J are continuous functions of v.

Theorem 2.4 If Assumptions 1-6 hold, then as T → ∞,

ĴT
d→ J ≡ min

v∈Rp
J(v).

and the function x 7−→ P (J ≤ x) is continuous at x, for all x ∈ R.

The first part of Theorem 2.4 extends Theorem 3.1 of D&R (2013) to the case of general moment

conditions satisfying Assumptions 1-6. In particular, we do not restrict ourselves to quadratic functions
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of θ. The second part of this theorem is new. It shows that the asymptotic distribution of ĴT is

continuous. This result is essential to prove that the bootstrap methods that we introduce in this

paper (see Sections 4) are uniformly consistent. Regarding the first part of Theorem 2.4, the main

insights of D&R’s (2013) proof remain valid here. Specifically, we consider the following stochastic

process indexed by v ∈ Rp,

JT (v) = T ψ̄T

(
θ0 + T−1/4v

)′
WT ψ̄T

(
θ0 + T−1/4v

)
,

where v is implicitly defined as v = T 1/4 (θ − θ0), with θ ∈ Θ. Let ℓ∞ (K) denote the space of

bounded real-valued functions on a compact subset K ⊂ Rp, equipped with the supremum norm

supv∈K |z (v)|.1 We show in the Appendix that JT ⇒ J in ℓ∞ (K) for every compact K ⊂ Rp,
which is equivalent to E (h (JT )) → E (h (J)), for any h : ℓ∞ (K) → R bounded and continuous

with respect to the sup norm. Let v̂T = T 1/4
(
θ̂T − θ0

)
. Since ĴT = JT (v̂T ) = minv∈HT

JT (v),

where HT ≡
{
v ∈ Rp : v = T 1/4 (θ − θ0) , θ ∈ Θ

}
is such that ∪T≥0HT = Rp, uniform tightness of

v̂T ∈ argminv∈HT
JT (v) and of v̂ ∈ argminv∈Rp J(v) suffice to show that the minimum of JT (v)

converges in distribution to the minimum of J (v) (see Lemma B.5 of D&R (2013)).

Theorem 2.4 provides the asymptotic distribution for the GMM overidentification test statistic ĴT

under second-order identification (the standard case where WT →P W = Σ−1 is included as a special

case). As it makes clear, and as was already discussed by D&R (2013) in the context of the test for

common conditionally heteroskedastic features, the lack of first order identification implies that this

distribution is no longer the standard chi-squared distribution with H−p degrees of freedom. Instead,

the correct distribution of ĴT is the distribution of J which, as we show in this paper, is continuous.

Except for the special case when p = 1, for which D&R (2013) showed that this distribution is a

fifty-fifty mixture of χ2
H and χ2

H−1, critical values of J are not available. This is the main motivation

for proposing the bootstrap.

3 Asymptotic invalidity of the standard bootstrap

Given Assumption 1, we let {X∗
t : t = 1, . . . , T} denote a (conditionally) i.i.d. bootstrap sample ob-

tained by resampling with replacement the original sample XT ≡ {Xt : t = 1, . . . , n} .2 A standard

application of the bootstrap for GMM estimators involves recentering the bootstrap moment condi-

tions by subtracting the term3 E∗
(
ψ
(
X∗
t , θ̂T

))
from 1

T

∑T
t=1 ψt (X

∗
t , θ) when defining the bootstrap

criterion function, i.e.

Q∗
T (θ) = ψ̄∗

c,T (θ)′W ∗
T ψ̄

∗
c,T (θ) ,

1Note that for given ω ∈ Ω, the sample paths of v 7→ J (ω, v) and v 7→ JT (ω, v) , v ∈ K are elements of ℓ∞ (K).
2Under weak dependence of {Xt : t = 1, . . . , T}, a block bootstrap would be appropriate. We do not consider this

possibility here because our focus is on the impact of the first order local underidentification on bootstrap validity rather
than on the impact of weak dependence.

3Here and throughout, we let E∗, V ar∗ and P ∗ denote the bootstrap expectation, variance and probability measure
induced by the resampling, conditional on the original sample. Appendix B gives more details on these bootstrap
definitions.
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whereW ∗
T is a symmetric positive definite weighting matrix that may depend on the bootstrap sample

and

ψ̄∗
c,T (θ) = T−1

T∑
t=1

ψc (X
∗
t , θ) , with

ψc (X
∗
t , θ) = ψ (X∗

t , θ)− E∗
(
ψ
(
X∗
t , θ̂T

))
.

Letting ψ∗
t (θ) ≡ ψ (X∗

t , θ) and ψ
∗
c,t (θ) ≡ ψc (X

∗
t , θ) for t = 1, . . . , T and θ ∈ Θ, it follows that

ψ∗
c,t (θ) = ψ∗

t (θ)− E∗
(
ψ∗
t

(
θ̂T

))
.

Recentering ensures that the bootstrap moment conditions are equal to zero when evaluated at the

“true parameter” θ̂T , i.e. that we have E∗
(
ψ̄∗
c,T

(
θ̂T

))
= 0. Instead, by the properties of the i.i.d.

bootstrap, without recentering, we have that

E∗

(
1

T

T∑
t=1

ψ∗
t

(
θ̂T

))
=

1

T

T∑
t=1

ψt

(
θ̂T

)
=

1

T

T∑
t=1

ψ
(
Xt, θ̂T

)
,

which is not necessarily zero when the model is overidentified.

As shown by Hahn (1996), recentering of the moment conditions in the bootstrap world is not

necessary for the consistency of the bootstrap distribution of the bootstrap GMM estimator. Never-

theless, it is important to obtain asymptotic refinements for bootstrap tests and intervals based on

Wald tests, as first shown by Hall and Horowitz (1996) and further studied by Andrews (2002) and

Inoue and Shintani (2006), among others. For bootstrapping the distribution of the overidentification

test, recentering is crucial even for first-order asymptotic validity of the bootstrap. This was discussed

by Brown and Newey (2002), who proposed using a weighted bootstrap scheme, where the bootstrap

probabilities are the implied empirical likelihood probabilities instead of the empirical probabilities

given by 1/T.

The goal of this section is to study the asymptotic properties of the standard GMM bootstrap

when local identification is achieved at the second-order as described by Assumption 6. The bootstrap

GMM estimator and the corresponding overidentification test statistic are defined as

θ̂∗T = argmin
θ∈Θ

Q∗
T (θ) and Ĵ∗

T = T ψ̄∗′
c,T

(
θ̂∗T

)
W ∗
T ψ̄

∗
c,T

(
θ̂∗T

)
.

We require W ∗
T to converge to W under the bootstrap measure P ∗ with probability P approaching

one, i.e. W ∗
T →P ∗

W in prob-P (see Appendix B for the formal definition of this mode of convergence).

One possible choice for W ∗
T which is covered by our assumptions is the inverse of

1

T

T∑
t=1

ψ∗
c,t(θ̃

∗
T )ψ

∗
c,t(θ̃

∗
T )

′, (8)

where θ̃∗T is a first-step GMM estimator.

Our first result shows that θ̂∗T is consistent for θ0 under P ∗ with probability approaching one.

11



Given Proposition 2.1, this result implies the usual result that θ̂∗T is consistent for θ̂T in probability.

Proposition 3.1 Under Assumptions 1-6 and if W ∗
T →P ∗

W in prob-P , then θ̂∗T − θ0 = oP ∗ (1) in

prob-P .

The proof of this result is rather standard and requires showing that supθ∈Θ |QT (θ)−Q (θ)| =
oP (1) and supθ∈Θ |Q∗

T (θ)−QT (θ)| = oP ∗ (1) in prob-P . This together with the fact that θ0 is the

unique solution to the moment conditions ρ (θ) = 0 (and hence the unique minimizer of Q (θ) over Θ)

deliver the result.

Our next result shows that the standard GMM bootstrap method does not consistently estimate the

distribution of ĴT . Specifically, we show that the unconditional limiting distribution of the bootstrap

overidentification statistic Ĵ∗
T does not coincide with the asymptotic distribution of ĴT . To simplify

the arguments, we consider only the case where p = 1, but the asymptotic invalidity of the standard

bootstrap method extends to the general case p > 1.

Because our proof of invalidity is based on the unconditional distribution of Ĵ∗
T , we need to intro-

duce the joint probability measure P = P ×P ∗ that accounts for the two sources of randomness in Ĵ∗
T :

the randomness that comes from the original data (and which is described by P ) and the randomness

that comes from the resampling, conditional on the original sample (described by P ∗). See Appendix

B for more details on the properties of P and its relation to P ∗ and P .

To characterize the bootstrap distribution of Ĵ∗
T , we introduce the following stochastic process

indexed by v ∈ R,

J∗
T (v) = T ψ̄∗

c,T

(
θ̂T + T−1/4v

)′
W ∗
T ψ̄

∗
c,T

(
θ̂T + T−1/4v

)
,

where v is implicitly defined as v = T 1/4
(
θ − θ̂T

)
, with θ ∈ Θ. Note that

Ĵ∗
T = J∗

T (v̂∗T ) = min
v∈VT

J∗
T (v) ,

where VT =
{
v ∈ R : v = T 1/4

(
θ − θ̂T

)
, θ ∈ Θ

}
.

Theorem 3.1 Suppose that the assumptions of Proposition 3.1 hold with p = 1. It follows that:

(i)
∥∥∥θ̂∗T − θ0

∥∥∥ = OP
(
T−1/4

)
.

(ii) There exists at least one subsequence of(√
T ψ̄T (θ0) ,

√
T
(
ψ̄∗
T (θ0)− ψ̄T (θ0)

)
, T 1/4

(
θ̂T − θ0

)
, T 1/4

(
θ̂∗T − θ̂T

))
which converges in dis-

tribution under P towards (X,X∗, V, U∗), where X and X∗ have the same distribution N(0,Σ),

X∗ is independent of (X,V ), and P (U∗ ̸= 0) > 0.

(iii) Along that same subsequence, Ĵ∗
T converges in distribution under P towards J∗ ≡ minv∈R J

∗ (v),

where

J∗(v) =

(
X∗ − 1

2
GV 2

)′
W

(
X∗ − 1

2
GV 2

)
+

(
X∗ − 1

2
GV 2

)′
WGv2 +

1

4
G′WGv4.
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(iv) If, in addition, W = Σ−1, then E(J∗) = E(J)− 1
2π .

Part (i) of Theorem 3.1 shows that the convergence rate of θ̂∗T −θ0 is T−1/4 whereas part (ii) shows

that this rate is sharp. Thus, the standard bootstrap method replicates the convergence rate of the

GMM estimator despite first order underidentification. Nevertheless, and as shown by part (iii), the

limit process of JT (v) does not look like the unconditional limit of the bootstrap process J∗
T (v) since

the latter depends on V 2, the limit distribution of
√
T (θ̂T − θ0)

2. This is a strong indication that

the minima (J , and J∗) of these limit processes may not have the same distribution; highlighting the

invalidity of this standard bootstrap method. This is precisely the point made by part (iv) which, for

W = Σ−1, shows that the expected values of these minima differ by 1/2π, which in particular implies

that the standard bootstrap distribution is asymptotically biased.

The main reason for the failure of the standard bootstrap when applied to the overidentification

test is that while the sample mean of the Jacobian matrix of the estimating function evaluated at the

population value θ0, ∂ψ̄(θ0)/∂θ
′, is of order OP (T

−1/2), its bootstrap analogue is of order OP(T
−1/4).

This rate is not fast enough to make the terms depending on this Jacobian matrix vanish from the

expansion of the bootstrap test statistic, creating a discrepancy between the limiting distributions of

the original statistic and its bootstrap analogue.

4 Modified bootstrap moment conditions

In this section, we propose two alternative modifications to the standard GMM bootstrap. Both

alternatives involve a double recentering of the bootstrap moment conditions. This double recentering

ensures that not only the bootstrap expected value of the bootstrap moment conditions at θ̂T is zero,

but that the bootstrap expected Jacobian matrix at θ̂T is also zero.

4.1 The corrected GMM bootstrap

The first method considers the following bootstrap moment conditions,

ψ
∗(1)
t (θ) = ψ∗

t (θ)−E∗
(
ψ∗
t

(
θ̂T

))
−E∗

(
∂

∂θ′
ψ∗
t

(
θ̂T

))(
θ − θ̂T

)
,

where ψ
∗(1)
t (θ) ≡ ψ(1) (X∗

t , θ) for any t = 1, . . . , T and θ ∈ Θ. Thus, we recenter the original boot-

strap moment function ψ∗
t (θ) = ψ (X∗

t , θ) twice: first by subtracting off its bootstrap expected value

evaluated at θ̂T (as in the standard GMM bootstrap), and second by subtracting off the product of

the expected bootstrap Jacobian matrix evaluated at θ̂T with the factor θ − θ̂T . We call this method

the “corrected” GMM bootstrap. Similarly to the standard GMM bootstrap, we have that

E∗
(
ψ
∗(1)
t

(
θ̂T

))
= 0,

which ensures E∗
(
ψ̄
∗(1)
T (θ)

)
= 0 when θ = θ̂T , where ψ̄

∗(1)
T (θ) ≡ T−1

∑T
t=1 ψ

∗(1)
t (θ) . Nevertheless,

and contrary to the standard GMM bootstrap, the second recentering ensures that the expected value
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of the bootstrap Jacobian matrix

E∗
(
∂

∂θ′
ψ
∗(1)
t (θ)

)
= E∗

(
∂

∂θ′
ψ∗
t (θ)

)
− E∗

(
∂

∂θ′
ψ∗
t

(
θ̂T

))
is zero when θ = θ̂T . Thus, the corrected GMM bootstrap is able to mimic the lack of first-order

identification at θ0 that affects the original moment conditions.

Let

Q
∗(1)
T (θ) = ψ̄

∗(1)′
T (θ)W

∗(1)
T ψ̄

∗(1)
T (θ) ,

where W
∗(1)
T is a symmetric positive definite weighting matrix that may depend on the bootstrap

sample. The modified bootstrap GMM estimator θ̂
∗(1)
T is defined as the minimum of Q

∗(1)
T (θ) over

θ ∈ Θ. The corresponding overidentification test statistic is given by

Ĵ
∗(1)
T = T ψ̄

∗(1)′
T

(
θ̂
∗(1)
T

)
W

∗(1)
T ψ̄

∗(1)
T

(
θ̂
∗(1)
T

)
.

We note that since E∗
(

∂
∂θ′ψ

∗(1)
t

(
θ̂T

))
= 0, the second recentering term ensures that

√
T∂ψ̄

∗(1)
T

(
θ̂T

)
/∂θ′ =

OP ∗ (1) in prob-P , thus mimicking the fact that
√
T∂ψ̄T (θ0) /∂θ

′ = OP (1) under first order underi-

dentification.

We first show that θ̂
∗(1)
T is consistent for θ0 under the bootstrap probability measure P ∗ with

probability approaching one. We impose the additional moment condition, which is a strengthening

of Assumption 4(ii).

Assumption 7 E
(
supθ∈Θ

∥∥∥∂ψ(Xt,θ)
∂θ′

∥∥∥) <∞.

Proposition 4.1 Under Assumptions 1-7, if W
∗(1)
T →P ∗

W in prob-P , then θ̂
∗(1)
T = θ0 + oP ∗(1) in

prob-P .

Given Proposition 2.1, Proposition 4.1 implies that θ̂
∗(1)
T = θ̂T + oP ∗(1) in prob-P. The next result

shows that the convergence rate of the bootstrap GMM estimator θ̂
∗(1)
T is T−1/4 and that this rate is

sharp.

Proposition 4.2 Under the same assumptions as in Proposition 4.1, (i)
∥∥∥θ̂∗(1)T − θ̂T

∥∥∥ = OP ∗
(
T−1/4

)
in prob-P , and (ii) T 1/4

(
θ̂
∗(1)
T − θ̂T

)
has at least a subsequence that converges in distribution to some

random variable V ∗ under P ∗, a.s. -P , such that for some δ > 0, P (∥V ∗∥ ̸= 0) ≥ δ.

Part (ii) shows that v̂
∗(1)
T ≡ T 1/4

(
θ̂
∗(1)
T − θ̂T

)
is not oP ∗ (1) , a.s.-P , which suffices to show that the

rate of convergence derived in (i) is sharp. Next, we show that the modified bootstrap statistic Ĵ
∗(1)
T has

the same asymptotic distribution as ĴT , the original test statistic, under first-order underidentification.

To characterize the bootstrap distribution we introduce the following stochastic process indexed by

v ∈ Rp,

J
∗(1)
T (v) = T ψ̄

∗(1)
T

(
θ̂T + T−1/4v

)′
W

∗(1)
T ψ̄

∗(1)
T

(
θ̂T + T−1/4v

)
,
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where v is implicitly defined as v = T 1/4
(
θ − θ̂T

)
, with θ ∈ Θ. As before, note that

Ĵ
∗(1)
T = J

∗(1)
T

(
v̂
∗(1)
T

)
= min

v∈VT

J
∗(1)
T (v) ,

where VT =
{
v ∈ Rp : v = T 1/4

(
θ − θ̂T

)
, θ ∈ Θ

}
. Our first result shows that conditionally on the

original sample Xn, J∗(1)
T (v) converges weakly to J (v) in ℓ∞ (K) in probability for every compact

K ⊂ Rp. This is denoted as J
∗(1)
T ⇒P ∗

J in ℓ∞ (K), in prob-P, and it means that E∗
(
h
(
J
∗(1)
T

))
→

E (h (J)) in prob-P for any h : ℓ∞ (K) → R bounded and continuous with respect to the sup norm.

Lemma 4.1 Under Assumptions 1-7, if W
∗(1)
T →P ∗

W in prob-P , we have that J
∗(1)
T (v) ⇒P ∗

J (v)

in ℓ∞ (K) , in prob-P.

Lemma 4.1 is instrumental in deriving the following result.

Theorem 4.1 Under Assumptions 1-7, ifW
∗(1)
T →P ∗

W in prob-P , we have that (i) Ĵ
∗(1)
T

d∗→ minv∈Rp J(v) ≡
J, in prob-P, and (ii) supx∈R

∣∣∣P ∗(Ĵ
∗(1)
T ≤ x)− P (ĴT ≤ x)

∣∣∣→ 0, in prob-P.

Theorem 4.1 shows that the bootstrap distribution of the corrected bootstrap overidentification

test statistic Ĵ
∗(1)
T is consistent for the distribution of the original statistic ĴT . This result justifies using

the corrected bootstrap method to compute the critical values of ĴT when testing for overidentifying

restrictions. This is particularly useful when p > 1, for which there is no closed form expression for

the asymptotic distribution of ĴT and the only available alternative is the use of conservative critical

values, as proposed by D&R (2013).

4.2 The continuously-corrected GMM bootstrap

The second modification we consider is based on the following modified moment conditions:

ψ
∗(2)
t (θ) = ψ∗

t (θ)− E∗
(
ψ∗
t

(
θ̂T

))
− E∗

(
∂

∂θ′
ψ∗
t (θ)

)(
θ − θ̂T

)
,

where the expected bootstrap Jacobian matrix is evaluated at θ instead of θ̂T . Because this bears

a resemblance with the continuous-updated GMM, in which the weighting matrix is evaluated at θ

and not at θ̂T , we call this method the “continuously-corrected” GMM bootstrap. As our simulations

show, the finite sample null rejection rates of this method are closer to desired nominal level than

those of the corrected bootstrap method, which is our main motivation for studying its theoretical

properties here.

The Jacobian matrix of ψ
∗(2)
h,t (θ) (h = 1, . . . , H) is given by

∂

∂θ
ψ
∗(2)
h,t (θ) =

∂

∂θ
ψ∗
h,t (θ)− E∗

(
∂2

∂θ∂θ′
ψ∗
h,t (θ)

)(
θ − θ̂T

)
− E∗

(
∂

∂θ
ψ∗
h,t (θ)

)
,
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implying that its bootstrap expectation at θ = θ̂T is also equal to zero:

E∗
(
∂

∂θ
ψ
∗(2)
h,t

(
θ̂T

))
= E∗

(
∂

∂θ
ψ∗
h,t

(
θ̂T

))
− E∗

(
∂2

∂θ∂θ′
ψ∗
h,t

(
θ̂T

))(
θ̂T − θ̂T

)
−E∗

(
∂

∂θ
ψ∗
h,t

(
θ̂T

))
= 0.

The set of moment conditions that the “continuously-corrected” GMM bootstrap implements, ψ̄
∗(2)
T (θ),

converge uniformly towards a modified set of moment conditions given by

E (Φ (X1, θ)) = E(ψ(X1, θ))− E

(
∂ψ(X1, θ)

∂θ′

)
(θ − θ0) ,

where we let

Φ(x, θ) ≡ ψ(x, θ)− ∂ψ(x, θ)

∂θ′
(θ − θ0).

To ensure that these modified moment conditions identify θ0, we need to impose the following assump-

tion.

Assumption 8 θ0 is the unique solution to the equation E (Φ (X1, θ)) = 0.

Assumption 8 imposes the restriction that θ0, the parameter vector that uniquely identifies the

original moment conditions given by Assumption 2, also uniquely identifies the modified moment

conditions E (Φ (X1, θ)) = 0. One leading case where this requirement is satisfied is when the original

moment conditions ψ (x, θ) are quadratic in θ and and the expected Jacobian matrix is nil at θ0.

Actually, in this case, E(Φ(x, θ)) = −E(ψ(x, θ)), for all θ. Note that the test for common conditionally

heteroskedastic features fits into this category. It is also worthwhile to mention that E(Φ(x, θ)) = 0

has the same local identification properties at θ0 as E(ψ(x, θ)) = 0. In particular, we can see that

E

(
∂Φ(x, θ0)

∂θ′

)
= 0, and that

[
(θ − θ0)

′E

(
∂2Φh(x, θ0)

∂θ∂θ′

)
(θ − θ0)

]
1≤h≤H

= 0 ⇔ (θ = θ0).

Under Assumptions 1-8, we can show that θ̂
∗(2)
T , the bootstrap GMM estimator that minimizes

Q
∗(2)
T (θ) = ψ̄

∗(2)′
T (θ)W

∗(2)
T ψ̄

∗(2)
T (θ) ,

over θ ∈ Θ, is consistent towards θ0. Here and throughout, W
∗(2)
T denotes a symmetric bootstrap

random weighting matrix that converges to W in probability P ∗, in prob-P .

Proposition 4.3 Under Assumptions 1-8, if W
∗(2)
T →P ∗

W in prob-P , then θ̂
∗(2)
T = θ0 + oP ∗(1) in

prob-P .

Given θ̂
∗(2)
T , we can form the bootstrap overidentification test statistic

Ĵ
∗(2)
T = T ψ̄

∗(2)′
T

(
θ̂
∗(2)
T

)
W

∗(2)
T ψ̄

∗(2)
T

(
θ̂
∗(2)
T

)
.

To show that the bootstrap distribution of Ĵ
∗(2)
T is consistent for the distribution of ĴT , we need to

impose the following additional regularity condition, which strengthens Assumption 4(i).
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Assumption 9 {ψ (x, θ)} is three times continuously differentiable with respect to θ in a neighbor-

hood N of θ0 for all x in the support of X1 and E
(
supθ∈N

∥∥∥ ∂3

∂θi∂θj∂θ
ψ (X1, θ)

∥∥∥) < ∞ for all

i, j = 1, . . . , p.

Theorem 4.2 Under Assumptions 1-9, the conclusions of Theorem 4.1 hold with Ĵ
∗(1)
T replaced with

Ĵ
∗(2)
T provided W

∗(2)
T →P ∗

W in prob-P .

Theorem 4.2 is the analogue of Theorem 4.1 for the continuously-corrected GMM bootstrap. As

the proof in Appendix B shows, it follows by establishing the analogues of Proposition 4.2 and Lemma

4.1 for this bootstrap method.

To conclude this section, we discuss the power properties of the proposed tests. We consider

the so-called fixed alternatives under which the model is not correctly specified in the sense that no

parameter value in the parameter space Θ solves the moment condition model, i.e.:

µ(θ) ≡ E(ψt(θ)) ̸= 0, ∀θ ∈ Θ.

In this case and as mentioned by D&R (2013), JT diverges to infinity. To see this, observe that under

mild conditions, ψ̄′
T (θ)WT ψ̄T (θ)

P→ µ′(θ)Wµ(θ), uniformly over Θ with the map θ 7→ µ(θ) continuous.

By the continuous mapping theorem, minθ∈Θ ψ̄
′
T (θ)WT ψ̄T (θ)

P→ minθ∈Θ µ
′(θ)Wµ(θ). Assuming

that W is nonsingular, there exists θ̇ ∈ Θ such that minθ∈Θ µ
′(θ)Wµ(θ) = µ′(θ̇)Wµ(θ̇). Hence,

minθ∈Θ µ
′(θ)Wµ(θ) = C > 0. It follows that JT diverges to infinity. This guarantees that the

overidentification test is consistent under fixed alternatives.

The bootstrap test procedures that we propose in this paper are also consistent. Actually, since

JT diverges under the alternative, a sufficient condition for the bootstrap to be consistent is that the

bootstrap test statistic (J∗(k)
T : k = 1, 2) stays asymptotically bounded under the alternative. Assuming

that W
∗(k)
T = OP ∗(1), in prob-P , this boundedness of J∗(k)

T (k = 1, 2) can be seen by observing that:

Ĵ
∗(k)
T ≡ T ψ̄

∗(k)′
T

(
θ̂
∗(k)
T

)
W

∗(k)
T ψ̄

∗(k)
T

(
θ̂
∗(k)
T

)
≤ T ψ̄

∗(k)′
T

(
θ̂T

)
W

∗(k)
T ψ̄

∗(k)
T

(
θ̂T

)
= T

(
ψ̄∗
T (θ̂T )− ψ̄T (θ̂T )

)′
W

∗(k)
T

(
ψ̄∗
T (θ̂T )− ψ̄T (θ̂T )

)
,

with ψ̄∗
T (θ) = 1

T

∑T
t=1 ψ

∗
t (θ). Under our assumptions, by some bootstrap central limit theorem,

√
T
(
ψ̄∗
T (θ̂T )− ψ̄T (θ̂T )

)
= OP ∗(1), in prob-P . As a result, J∗(k)

T = OP ∗(1), in prob-P for k = 1, 2.

5 Monte Carlo simulations

In this section, we illustrate the finite sample properties of the proposed tests in the context of testing

for common conditionally heteroskedastic factors. Specifically, we consider an n×1 return vector Yt+1

with the following conditionally heteroskedastic factor representation,

Yt+1 = ΛFt+1 + Ut+1, (9)
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where Λ is the (n,K)-matrix of factor loadings, Ft+1 is the K-vector of conditionally heteroskedastic

and mutually independent factors and Ut+1, the n-vector of idiosyncratic shocks. We let Ut+1 ∼
i.i.d. N(0, 12I), where I denotes the identity matrix. The generic component ft+1 of Ft+1 follows a

Gaussian-GARCH model,

ft+1 = σtεt+1, σ2t = ω + αf2t + βσ2t−1; ω, α, β > 0 and εt ∼ i.i.d. N(0, 1).

In addition, εt and Ut are mutually independent and independent of {Fτ , Yτ : τ ≤ t}.
Let Ft be the increasing filtration given by the sigma algebra generated by returns heteroskedastic

factors up to date t. We have:

V ar(Yt+1|Ft) = ΛDtΛ
′ +Ω,

where Ω = 1
2I is the conditional variance of Ut+1 and Dt is the diagonal (K,K)-matrix of σ2t ’s. If

K = n, there is no common conditionally heteroskedastic features for the returns in Yt+1 whereas

K < n reflects that the returns have common conditionally heteroskedastic features. (See Example

3.)

We will test for common conditionally heteroskedastic features in Yt+1 using the moment condition

(4). However, this moment restriction is not feasible since c(θ) and E(zt) are unknown in general. As

suggested by D&R (2013), we consider the feasible moment restriction that replaces these population

means by their sample counterparts:

H0 : E (ψt,T (θ)) = 0, ψt,T (θ) ≡ (zt − z̄T )
((
θ′Yt+1

)2 − c̄T (θ)
)
,

with c̄T (θ) = T−1
∑T

t=1 (θ
′Yt+1)

2 and z̄T = 1
T

∑T
t=1 zt. In order to globally identify θ, a normalization

on θ is imposed. We follow D&R (2013) and assume that
∑n

i=1 θi = 1 and set θn = 1 −
∑n−1

i=1 θi in

our derivations.

Our simulation designs are the same as in D&R (2013). We consider models with n = 2 and

3 asset return series. Designs 1 and 2 generate bivariate return series with 1 and 2 conditionally

heteroskedastic factors, respectively, while Designs 3, 4 and 5 generate trivariate returns with 1, 2

and 3 factors, respectively. In Designs 1, 3 and 4, the factor loading matrix Λ is of dimension (n,K)

with K < n. Therefore, the existence of at least one co-feature vector is guaranteed for those designs

which are hence consistent with the null hypothesis of common conditionally heteroskedastic factors.

Thanks to the normalization of θ, the moment condition H0 has only one solution in Designs 1 and 4 so

that global identification of the co-feature vector is insured and our theory applies. Unless additional

identifying restrictions are made, it is not possible to identify the co-feature vector in Design 3 because

of the dimension of the co-feature space that is 2. For that reason, our theory does not apply to this

case. However, we include this Design in our experiments for its obvious interest in practice. Designs

2 and 5 imply the existence of no common co-feature vector and hence allow us to investigate power.

The simulation designs are summarized in the following table.
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Number Number GARCH Factor
of assets of factors Parameters loading

(ω, α, β)

Design 1 2 1 F1 : (0.2, 0.2, 0.6) (1, 0.5)′

Design 2 2 2 F1 : (0.2, 0.2, 0.6)
I2F2 : (0.2, 0.4, 0.4)

Design 3 3 1 F1 : (0.2, 0.2, 0.6) (1, 1, 0.5)′

Design 4 3 2 F1 : (0.2, 0.2, 0.6)
(

1 1 0.5
0 1 0.5

)′

F2 : (0.2, 0.4, 0.4)

Design 5 3 3 F1 : (0.2, 0.2, 0.6)
F2 : (0.2, 0.4, 0.4) I3
F3 : (0.1, 0.1, 0.8)

The GMM estimations are carried out with H = 2 and zt =
(
Y 2
1,t, Y

2
2,t

)′
for the designs with 2

assets, and with H = 3 and zt =
(
Y 2
1,t, Y

2
2,t, Y

2
3,t

)′
for the designs with 3 assets. The sample sizes are

T = 1, 000, 2, 000, 5, 000, 10, 000, 20, 000, 40, 000 and 50, 000 throughout. Because the convergence

rate of the GMM estimator is T 1/4, it is important to allow for sample sizes larger than usual to

evaluate the performance of the methods in this context. The simulation rejection rates are based

on 10,000 Monte Carlo replications with 199 bootstrap replications for each Monte Carlo replication

throughout.

The bootstrap samples consist of random draws with replacement4 of T − 1 realizations (Y ∗
t+1, z

∗
t )

from {(Y2, z1), (Y3, z2), · · · , (YT , zT−1)}. The bootstrap estimating function is given by

ψ∗
t,T (θ) = (z∗t − z̄T )(θ

′Y ∗
t+1 − c̄T (θ)).

The standard bootstrap and the modified bootstrap methods proposed in Section 4 are considered.

The choice of the weighting matrices is done according to (8) with ψ∗
c,t(·) replaced by ψ

∗(1)
t (·) and

ψ
∗(2)
t (·) for the corrected and continuously-corrected bootstraps, respectively. The nominal level is 5%

throughout.

Design 1 corresponds to the case where the number p of parameters in θ is equal to 1. Thus,

the resulting overidentification test statistic is asymptotically distributed as a fifty-fifty mixture of

chi-square distributions with 1 and 2 degrees of freedom. For Design 4, p = 2 and therefore we do not

4This i.i.d. bootstrap scheme is justified by the fact that the estimating function ψt,T (θ) has its sample mean
that is equal to the sample mean of a martingale difference sequence up to an oP (T

−1/2) term. Specifically, ψ̄T (θ) =
v̄(θ)+ ψ̄0T (θ)+ oP (T

−1/2), where v̄(θ) = 1
T

∑T
t=1 µz(c(θ)− (θ′Yt+1)

2), ψ̄0T (θ) =
1
T

∑T
t=1 zt((θ

′Yt+1)
2 − c(θ));µz = E(zt)

(see Equation (9) of D&R (2013)). Note that (θ′Yt+1)
2 − c(θ) is a martingale difference sequence with respect to Ft

under the null of constant conditional variance of θ′Yt+1.
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know the critical values of the limiting distribution of ĴT in this case. However, as suggested by D&R

(2013), this test can be carried out conservatively using the quantiles from a chi-square distribution

with 3 degrees of freedom. The bootstrap methodologies developed in this paper are expected to

provide asymptotically correct critical values to perform this test. Design 3 corresponds to a case of

common conditionally heteroskedastic factor structure but, without some identifying restrictions on

δ, no exact asymptotic distribution is available in the literature for the test statistic and our theory

does not apply either. Following D&R (2013), we carry out the simulations without such restrictions

to assess the performances of the tests in this case. Designs 2 and 5 correspond to the alternative

where no co-feature vector exists and the purpose of these designs is to assess the power of the tests.

The results are displayed in Figures 1 through 5. Figure 1 gives the simulated null rejection rates

for the bootstrap and asymptotic tests for Design 1 for which critical values for the asymptotic test are

available. Results for the standard bootstrap are labeled “BootST”, whereas “Boot-(1)” refers to the

corrected bootstrap and “Boot-(2)” refers to the continuously-corrected bootstrap. “Asym” indicates

results based on the asymptotic distribution (fifty-fifty mixture of χ2
1 and χ2

2). The results confirm the

failure of the standard bootstrap reflected by a systematic over-rejection of the null hypothesis of factor

structure with a rejection rate above 8% in large samples. The corrected bootstrap also over-rejects

for small sample sizes, but its rejection rate declines as the sample size grows, reaching around 6% for

large samples. The continuously-corrected bootstrap tracks closely the asymptotic distribution and

displays a correct rejection rates for almost all the sample sizes considered. Its rejection rate is of about

5% for large values of T . From these results, the continuously-corrected bootstrap is noticeably better

than the corrected bootstrap. This means that correcting the standard bootstrap using the bootstrap

expected Jacobian evaluated at the bootstrap estimator yields better small sample properties (for

the overidentification test) than evaluated at the original GMM estimator. This feature is observed

throughout the remaining designs satisfying the null hypothesis of conditionally heteroskedastic factor

structure: the rejection rate of the corrected bootstrap converges towards the nominal level more

slowly than the continuously-corrected bootstrap.

Figure 2 shows the results for Design 4. Note that critical values for the asymptotic distribution

are not available for this design. The figure shows that the corrected and continuously-corrected

bootstrap methods yield null rejection rates that tend to the nominal level of 5%. The corrected

bootstrap has a rejection rate of about 5.38% for large T whereas the continuously-corrected bootstrap

rejection rate lies between 3.8 and 5.0% across all sample sizes. As observed for Design 1, the standard

bootstrap approximation over rejects systematically, yielding a rejection rate of about 8.5% in large

samples, confirming its theoretical invalidity. This figure also shows that using critical values from

the χ2
3 yields rejection rates well below the desired nominal level, which implies an unnecessary loss of

power in comparison to the corrected bootstrap methods (this is particularly true when comparing this

conservative test with the continuously-corrected bootstrap). We can also see that using critical values

from the standard χ2
1 (thereby ignoring the local identification failure) leads to large over-rejections
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under the null.

The results for Design 3 are shown in Figure 3. Here, the null of common conditionally het-

eroskedastic factor structure holds, but the co-feature vector is not identifiable. Though no asymptotic

result is available, we expect the overidentification test to be conservative. This is the case for the

two valid bootstrap methods as well as for the standard χ2
1 approximation. Instead, the standard

bootstrap method over-rejects even in large samples, which makes it undesirable in empirical works

since it can potentially rule out present and ‘easy’ to detect common conditionally heteroskedastic

factor structures.

The results for Designs 2 and 5 are displayed in Figures 4 and 5, respectively. Figure 4 shows

that the standard bootstrap and the corrected bootstrap have similar power and this is slightly larger

than the power associated with the use of critical values based on the fifty-fifty mixture of χ2
1 and χ2

2.

The continuously-corrected bootstrap has smaller power than these three tests, which is as expected

given that it yields lower rejection rates under the null. In this case, where the true asymptotic

distribution is known, the trade-off between power and size favors the asymptotic test based on the

mixture of chi-square distributions. Nevertheless, this is no longer the case for Design 5, where the

exact asymptotic null distribution is not known and the choice is between using the bootstrap or the

conservative bound based on the χ2
3 distribution. Indeed, as Figure 5 shows, the latter approximation

yields lower rejection rates under the alternative compared to the continuously-corrected bootstrap,

which in turn is dominated by the standard bootstrap and the corrected bootstrap in terms of power.

However, if we want to control the size of the test under the null and still achieve the largest possible

power, the continuously-corrected bootstrap seems preferable.

0 5000 10000 20000 40000 50000
0.04

0.05

0.06

0.08

0.09

0.10

Sample size

Rejection rates −− 2 Assets − 1 Factor

 

 
Asymp
BootST
Boot−(1)
Boot−(2)
Nominal

Figure 1: Rejection rates under the null for Design 1: ĴT ∼a 1
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Figure 2: Rejection rates under the null for Design 4: ĴT ∼a minvJ(v)
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Figure 3: Rejection rates under the null for Design 3: asymptotic theory unavailable
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Figure 4: Rejection rates under the alternative for Design 2
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Figure 5: Rejection rates under the alternative for Design 5

6 Conclusion and some possible extensions

The main contribution of this paper is to propose a new bootstrap method for GMM inference in the

context of nonlinear overidentified models that are globally identified but not locally identified to first

order. In particular, we focus on the special case of a degenerate rank identification condition, which

was recently analyzed by Dovonon and Renault (2013) in the context of tests for common conditionally

heteroskedastic factors.

We show that the standard method of bootstrapping the overidentification test statistic as pro-

posed by Hall and Horowitz (1996) fails under this condition. The main reason for the failure of the

bootstrap is that the bootstrap moment conditions do not replicate the singularity of the Jacobian

matrix present in the population. We offer an easy modification of the standard bootstrap method

that consists of further recentering the bootstrap moment function by subtracting off a term that

is proportional to the sample Jacobian matrix multiplied by θ − θ̂T . This second recentering of the

bootstrap moment condition ensures that the bootstrap Jacobian matrix is also degenerate in the

bootstrap world, restoring the asymptotic validity of the bootstrap overidentification test.

Several extensions of our work are worth considering in future work. First, although we have

focused on a null Jacobian matrix at the true parameter value, it is possible to adapt the bootstrap

methods studied in this paper to the case where the Jacobian matrix is rank deficient but different

from 0, i.e.

Rank

(
∂ρ

∂θ′
(θ0)

)
= r, 0 < r < p.

The GMM overidentification test has been studied by Dovonon and Renault (2009) in this lack of

identification configuration. They establish that when r = p − 1, the test statistic is asymptotically

distributed as a fifty-fifty mixture of χ2
H−r and χ2

H−p. When r < p − 1, this asymptotic distribution

lies between χ2
H−r and χ2

H−p with non-tractable critical values. In this case, it is possible to perform
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conservative tests with the χ2
H−r bound.

Extending the bootstrap to the case where the Jacobian matrix is nil in the first p− r directions

and full rank in the last r directions is easy, as we now discuss. More specifically, suppose that we can

decompose θ as θ = (θ′1, θ
′
2), where θ1 is a (p− r)× 1 vector and θ2 an r × 1 vector. If

∂ρ

∂θ′1
(θ0) = 0, and Rank

(
∂ρ

∂θ′2
(θ0)

)
= r,

then the second recentering of the bootstrap estimating function should be applied only in the direction

of θ1. In particular, for our first bootstrap method, the estimating function used in the bootstrap

should be given by

ψ
∗(1)
t (θ) = ψ∗

t (θ)− E∗
(
ψ∗
t (θ̂T )

)
− E∗

(
∂

∂θ′1
ψ∗
t (θ̂T )

)(
θ1 − θ̂1T

)
.

A similar correction works for the continuously-corrected bootstrap method based on ψ
∗(2)
t (θ) with

the only difference that the bootstrap Jacobian matrix with respect to θ1 is left as a function of θ

instead of being evaluated at θ̂T .

In the general case, a clear rank partition of the Jacobian matrix might not exist, making the

extension of the bootstrap to this context harder. However, since the null space of ∂ρ∂θ′ (θ0) has dimension

p− r, there exists a p× (p− r) full rank matrix R1 such that

∂ρ

∂θ′
(θ0)R1 = 0.

Let R2 be any p× r matrix such that R = (R1, R2) is a p× p nonsingular matrix. With the parame-

terization η = R−1θ, we can consider the bootstrap estimating function

ψ
∗(1)
t (η) = ψ(X∗

t , Rη)− E∗
(
ψ∗
t (θ̂T )

)
− E∗

(
∂

∂θ′
ψ∗
t (θ̂T )

)
R1(η1 − η̂1T ),

η̂1T is the first (p − r) components of η̂T = R−1θ̂T . The alternative of this function that replaces θ̂T

in the first derivative by θ can also be employed. In practice, estimates of R and R1 are required.

Studying this extension is an interesting topic of research that we leave for future work.

The second extension concerns bootstrapping the distribution of the GMM estimators θ̂T them-

selves. This is an important but difficult extension since the asymptotic distribution of θ̂T has not

yet been studied when the rank condition is not satisfied. Sargan (1983) derived some results for

nonlinear IV regressions when the rank of the Jacobian matrix is equal to p− 1 and showed that the

asymptotic distribution of the IV estimators is a mixture of two conditional distributions. Given that

these distributions are difficult to estimate in practice, developing a bootstrap method that replaces

analytical approximations would be an important contribution to this literature.

Appendix A: Proof of results in Section 2

Proof of Proposition 2.1. The proof that θ̂T − θ0 = oP (1) follows by Theorem 2.6 of Newey and McFadden
(1994) under our Assumptions 1-3.
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Proof of Proposition 2.2. For part (i), we follow the proof of Proposition 3.1 of D&R (2013). The only
difference is the fact that the moment conditions ψ considered here are not necessarily quadratic. For each

h = 1, . . . ,H, by a Taylor expansion of ψt,h

(
θ̂T

)
≡ ψh

(
Xt, θ̂T

)
around θ0, we have that

ψt,h

(
θ̂T

)
= ψt,h (θ0) +

∂ψt,h (θ0)

∂θ′

(
θ̂T − θ0

)
+

1

2

(
θ̂T − θ0

)′ ∂2ψt,h (θ̈T)
∂θ∂θ′

(
θ̂T − θ0

)
,

where θ̈T is a p × 1 vector on the segment connecting θ̂T and θ0 that may depend on h. The superscript (h)
reflects the fact that the mean value may be different for each element ψt,h (θ) of ψt (θ). Stacking this equation

over h = 1, . . . , H, summing over t and multiplying the result by
√
T yields

√
T ψ̄T

(
θ̂T

)
=

√
T ψ̄T (θ0) +

√
T
∂ψ̄T (θ0)

∂θ′

(
θ̂T − θ0

)
+

1

2
RT

(
θ̈T

)
, (A.1)

where the remainder RT

(
θ̈T

)
is a H × 1 vector defined as

RT

(
θ̈T

)
=

√
T

(θ̂T − θ0

)′ ∂2ψ̄h,T (θ̈(h)T

)
∂θ∂θ′

(
θ̂T − θ0

)
h=1,...,H

.

For h = 1, . . . , H, we can write

(
θ̂T − θ0

)′ ∂2ψ̄h,T (θ̈(h)T

)
∂θ∂θ′

(
θ̂T − θ0

)
= vec

∂2ψ̄h,T
(
θ̈
(h)
T

)
∂θ∂θ′

′

vec

((
θ̂T − θ0

)(
θ̂T − θ0

)′)
,

since tr (AB) = vec (A′)
′
vec (B). It follows that

RT

(
θ̈T

)
=

√
TḠ

(
θ̈T

)
vec

((
θ̂T − θ0

)(
θ̂T − θ0

)′)
≡ Ḡ

(
θ̈T

)
vec (v̂T v̂

′
T ) ,

where v̂T ≡ T 1/4
(
θ̂T − θ0

)
and Ḡ

(
θ̈T

)
is the random H × p2 matrix Ḡ (θ) defined in (7) evaluated at θ̈T .

Given our assumptions and the fact that θ̈T →P θ0, we can show that Ḡ
(
θ̈T

)
= G+ oP (1) (see e.g. Lemmas

2.4 and 2.9 of Newey and McFadden (1994)). Thus,

RT

(
θ̈
(h)
T

)
= Gvec (v̂T v̂

′
T ) + oP

(
∥v̂T ∥2

)
.

This implies that

√
T ψ̄T

(
θ̂T

)
=

√
T ψ̄T (θ0) +

√
T
∂ψ̄T (θ0)

∂θ′

(
θ̂T − θ0

)
+

1

2
Gvec (v̂T v̂

′
T ) + oP

(
∥v̂T ∥2

)
=

√
T ψ̄T (θ0) +

1

2
Gvec (v̂T v̂

′
T ) + oP (1) + oP

(
∥v̂T ∥2

)
, (A.2)

where the oP (1) term is equal to
√
T ∂ψ̄T (θ0)

∂θ′

(
θ̂T − θ0

)
= OP (1) × oP (1) since under Assumption 6(i),

E
(
∂ψ̄T (θ0)
∂θ′

)
= 0 and thanks to Assumption 4(ii), therefore

√
T ∂ψ̄T (θ0)

∂θ′ = OP (1) by a CLT applied to
{
∂ψ(Xt,θ0)

∂θ′

}
.

It follows that

T ψ̄′
T (θ̂T )WT ψ̄T

(
θ̂T

)
= T ψ̄′

T (θ0)WT ψ̄T (θ0) +
1

4
vec′(v̂T v̂

′
T )G

′WTGvec(v̂T v̂
′
T )

+vec′(v̂T v̂
′
T )G

′WT

√
T ψ̄T (θ0) + oP (1) + oP (∥v̂T ∥2) + oP (∥v̂T ∥4).

The expected result follows from the same arguments as those used by D&R (2013) to prove their Proposition
3.1. The additional oP (∥v̂T ∥4) term that appears here does not alter the reasoning.
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We now establish (ii). Since ZT (θ0) = OP (1) and v̂T = OP (1), we have (vec′ (ZT (θ0)) , v̂
′
T )

′
= OP (1).

Therefore, from Prohorov’s theorem (see Theorem 2.4 of van der Vaart (1998)), the joint sequence has a
subsequence that converges in distribution to (vec′(Z(X)), V ′)′, say, where

Z(X) =

(
∂2ρ′ (θ0)

∂θi∂θj
WX

)
1≤i,j≤p

,

and X ∼ N(0,Σ). Let “Z(X) ≥ 0” denote the event “Z(X) is positive semi-definite and “Z(X) ≥ 0” its
complement. Under Assumption 6(ii), D&R (2013, Proposition 3.2) show that P (Z(X) ≥ 0) ≤ 1/2, which
implies that P (Z(X) ≥ 0) ≥ 1/2 > 0. Since

P (V ̸= 0) ≥ P
(
V ̸= 0, Z (X) ≥ 0

)
= P

(
V ̸= 0|Z (X) ≥ 0

)
P
(
Z (X) ≥ 0

)
,

it suffices to show that P (V = 0|Z(X) ≥ 0) = 0. To this end, we follow the proof of Proposition 3.2 of D&R
(2013). The second order necessary condition for an interior solution for a minimization problem implies that,
for any unit vector e ∈ Rp,

e′
(

∂2

∂θ∂θ′
ψ̄T (θ)

′
WT ψ̄T (θ) |θ=θ̂T

)
e ≥ 0,

which is equivalent to e′(Z̃T +NT )e ≥ 0, with

Z̃T =

(
∂2

∂θi∂θj
ψ̄′
T

(
θ̂T

)
WT

√
T ψ̄T

(
θ̂T

))
1≤i,j≤p

, and NT =
√
T
∂

∂θ
ψ̄′
T

(
θ̂T

)
WT

∂

∂θ
ψ̄T

(
θ̂T

)
.

The result follows exactly along the lines of the proof of D&R (2013) once we establish that

Z̃T = ZT (θ0) +
1

2

(
∂2ρ′ (θ0)

∂θi∂θj
WGvec (v̂T v̂

′
T )

)
1≤i,j≤p

+ oP (1), (A.3)

and

NT =

(
v̂′T
∂2ρ′ (θ0)

∂θi∂θ
W
∂2ρ (θ0)

∂θj∂θ′
v̂T

)
1≤i,j≤p

+ oP (1). (A.4)

To show (A.3), we observe that from part (i), (A.2) implies that

√
T ψ̄T

(
θ̂T

)
=

√
T ψ̄T (θ0) +

1

2
Gvec (v̂T v̂

′
T ) + oP (1). (A.5)

Given the dominance condition in Assumption 4(i) and the fact that θ̂T
P→ θ0, it follows that

∂2ψ̄′
T

(
θ̂T

)
∂θi∂θj

WT =
∂2ρ′ (θ0)

∂θi∂θj
W + oP (1),

which together with (A.5) implies (A.3). To obtain (A.4), by a mean-value expansion of
∂ψ̄T (θ̂T )
∂θi

around θ0, we
get that for all i = 1, . . . , p,

W
1/2
T T 1/4

∂ψ̄T

(
θ̂T

)
∂θi

=W
1/2
T T 1/4 ∂ψ̄T (θ0)

∂θi
+W

1/2
T

∂2ψ̄T
(
θ̄
)

∂θi∂θ′
T 1/4

(
θ̂T − θ0

)
=W 1/2 ∂

2ρ (θ0)

∂θi∂θ′
v̂T + oP (1) ,

where θ̄ ∈ (θ0, θ̂T ) and may differ from row to row. We obtain (A.4) by writing this equation for any i, j = 1, . . . , p
and taking the inner product of each hand side.
Proof of Theorem 2.4. We follow the proof of Lemma B.6 of D&R (2013). By a second-order mean value
expansion of v 7→

√
T ψ̄T (θ0 + T−1/4v) at 0, we have that

√
T ψ̄T

(
θ0 + T−1/4v

)
=

√
T ψ̄T (θ0) + T 1/4 ∂ψ̄T

∂θ′
(θ0) v +

1

2
Ḡ
(
θ̈ (v)

)
vec (vv′) ,
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where θ̈ (v) ∈
(
θ0, θ0 + T−1/4v

)
and may differ from row to row. It follows that

√
T ψ̄T

(
θ0 + T−1/4v

)
=

√
T ψ̄T (θ0) +

1

2
Gvec (vv′) +

1

2

(
Ḡ (θ0)−G

)
vec(vv′)

+
1

2

(
Ḡ
(
θ̈ (v)

)
− Ḡ (θ0)

)
vec (vv′) + T 1/4 ∂ψ̄T

∂θ′
(θ0) v.

Next, we show that the last three terms in the equation above are op(1) uniformly over any compact subset K
of Rp. Starting with the first of these terms, note that Ḡ (θ0) − G = oP (1) and since v ∈ K ⊂ Rp, this term
converges to zero uniformly over K. For the term that follows, note that since θ0 is an interior point of Θ and K
is compact (hence bounded), then θ̈(v) ∈ N , a neighborhood of θ0, for all v ∈ K and T sufficientlty large. Hence,

from Assumption 3(i), using the triangle inequality, the h-th row of Ḡ
(
θ̈(v)

)
− Ḡ(θ0), say Ḡh

(
θ̈(v)

)
− Ḡh(θ0)

satisfies

∥Ḡh(θ̈(v))− Ḡh(θ0)∥ ≤ 1

T

T∑
t=1

m(Xt)∥θ̈(v)− θ0∥ =
1

T

T∑
t=1

m(Xt)(1− α)T−1/4∥v∥,

for some 0 ≤ α ≤ 1. Thus, this term is oP (1) uniformly over K. Finally, note that ∂ψ̄T

∂θ′ (θ0) = OP
(
T−1/2

)
by a

CLT since E
(
∂ψt

∂θ′ (θ0)
)
= 0. This implies that the last term is also oP (1) uniformly over K. As a result,

√
T ψ̄(θ0 + T−1/4v) =

√
T ψ̄T (θ0) +

1

2
Gvec(vv′) + oP (1),

implying that

JT (v) =
√
T ψ̄′

T (θ0)W
√
T ψ̄T (θ0) + vec′(vv′)G′W

√
T ψ̄T (θ0) +

1

4
vec′(vv′)G′WGvec(vv′) + oP (1),

where the neglected terms are uniformly (asymptotically) negligible over any compact subset K. Since this is
the analogue of equation (B.4) of D&R (2013), the rest of the proof follows exactly the same lines as the proof
of Lemma B.6 of D&R (2013).

To complete the proof of Theorem 2.4, we show that the random variable J ≡ minv∈Rp J(v) has a continuous
distribution. We adopt the notation J(X, v) for J(v) to highlight its dependence on X which is its only source
of randomness. We show that ∀c ∈ R, Prob(J = c) = 0. It is easy to see that

J(X, v) =

(
X +

1

2
Gvec(vv′)

)′

W

(
X +

1

2
Gvec(vv′)

)
.

Since W is symmetric positive definite, J(x, v) ≥ 0, ∀x ∈ RH and v ∈ Rp. As a result, Prob(J = c) =
0, ∀c < 0.

We show next that J cannot have an atom of probability at any c > 0. Let us assume by contradiction that
there exists c∗ > 0 such that Prob(J = c∗) > 0. Let

A =

{
x ∈ RH : min

v∈Rp
J(x, v) = c∗

}
.

By definition, Prob(X ∈ A) = Prob(J = c∗) > 0. As a result, since the distribution ofX is absolutely continuous
with respect to the Lebesgue measure on RH , A contains an open ball centered at a certain x0 ∈ RH , say
B(x0, ϵ) = {x ∈ RH : ∥x− x0∥ < ϵ} for some ϵ > 0. This implies that ∀d ∈ RH : ∥d∥ < ϵ, minv∈Rp J(x0 +
d, v) = c∗. Let v0 ∈ argminv∈Rp J(x0, v) (such an argmin exists for almost every x0 ∈ RH by D&R’s (2013)
Lemma B6(ii)). Since x0 ∈ A, J(x0, v0) = c∗ and ∀d ∈ RH : ∥d∥ < ϵ, we have that

J (x0, v0) = min
v∈Rp

J(x0 + d, v) ≤ J(x0 + d, v0) = J(x0, v0) + 2d′Wx0 + d′Wd+ d′Wvec(v0v
′
0).

(The second equality above is obtained by expanding the expression of J(x0 + d, v0).) That is,

2d′
(
W (x0 +

1

2
Gvec(v0v

′
0)) +

1

2
Wd

)
≥ 0, ∀d ∈ B(0, ϵ). (A.6)
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Note that since J(x0, v0) = c∗ = a′W−1a > 0, we must have a ≡W (x0+
1
2GV ec(v0v

′
0)) ̸= 0. Fix aj ̸= 0, the jth

element of a that is different from zero. Equation (A.6) implies that if we choose d with all entries equal to zero
except dj such that −ϵ < dj < ϵ, then dj(2aj +Wjjdj) ≥ 0 for all such dj . Since Wjj > 0, dj(2aj +Wjjdj) = 0
has two roots, 0 and −2aj/Wjj ̸= 0. It follows that the sign of the polynomial dj(2aj +Wjjdj) must change
in a neighborhood of zero, implying that it is impossible to have dj(2aj +Wjjdj) ≥ 0 for all −ϵ < dj < ϵ.
Thus, it must be that Prob(J = c∗) = 0 for any c∗ > 0. To complete the proof, we need to show that J does
not have an atom of probability at 0. To this end, we show that there exists a random variable L that is such
that 0 ≤ L ≤ J and Prob(L = 0) = 0. Let L = minu∈Rp2

(
X + 1

2Gu
)′
W
(
X + 1

2Gu
)
. Clearly, L ≤ J .

Assume that Rank(G) = r. Given the second-order identification condition, G ̸= 0 and r > 0. Consider a rank
factorization of G: G = G1G2, where G1 is H × r and G2 is r × p2, both of rank r. The first order condition
associated with L solved at û implies that G2û = −2(G′

1WG1)
−1G′

1WX. Consequently, we can write

L =

(
X +

1

2
G1G2û

)′

W

(
X +

1

2
G1G2û

)
= X ′W 1/2PW 1/2X, (A.7)

where P = IH −W 1/2G1(G
′
1WG1)

−1G′
1W

1/2 is the orthogonal projection matrix on the subspace of dimension
H− r that is orthogonal to the space spanned by the columns of W 1/2G1. Hence, there exists an H×H matrix
Q such that Q′Q = IH and P = Q′DQ, where D = diag (IH−r, 0). Thus, L = Y ′DY , with Y = QW 1/2X ∼
N(0, S) and S = QW 1/2ΣW 1/2Q′ positive definite. Hence, L =

∑H−r
i=1 Y 2

i . Clearly, Prob(L = 0) ≤ Prob(Y1 =
0) = 0. This concludes the proof.

Appendix B: Proofs of results in Section 3 and 4

B.1 Preliminaries

A convenient way to formalize the bootstrap is as follows (see Gonçalves and White (2004) for a similar frame-
work). Given the underlying probability space (Ω,F , P ), we observe a sample of size T ::
XT ≡ {X1 (ω) , X2 (ω) , . . . , XT (ω)} from a given realization ω ∈ Ω. Suppose we obtain a bootstrap sample
X ∗
T = {X∗

1 , X
∗
2 , . . . , X

∗
T } by resampling from XT . For each ω ∈ Ω, we view {X∗

t : t = 1, . . . , T} as the realization
of a stochastic process defined on (Λ,G, P ∗) , another probability space, such that for each t = 1, . . . , T,

X∗
t (ω, λ) = Xτt(λ) (ω) , (B.1)

where τt : Λ → {1, 2, . . . , N} denotes the random index generated by the resampling scheme for each t =
1, 2, . . . , T (independently of ω). Thus, P ∗ describes the probability of bootstrap random variables, conditional
on the observed data XT , i.e. P ∗ describes the probability induced by λ, conditional on ω. We write E∗ and
V ar∗ to denote the expected value and the variance with respect to P ∗, respectively.

As (B.1) makes clear, X∗
t depends on two sources of randomness, one related to the observed data (and

indexed by ω) and the other related to the resampling mechanism (as measured by τt (λ)). When the joint
randomness is of interest, we can view the bootstrap statistic as being defined on the product probability space
(Ω,F , P )× (Λ,G, P ∗) = (Ω× Λ,F × G,P), where P = P × P ∗ denotes the unconditional (or joint) probability.
We write E and Var to denote expected value and variance with respect to P, respectively.

Given any bootstrap statistic Z∗
T , we say that Z∗

T →P∗
0 in prob-P (or Z∗

T = oP∗ (1) in prob-P ) if for any
ε, δ > 0, P (P ∗ (|Z∗

T | > ε) > δ) → 0 as T → ∞. Similarly, we say that Z∗
T = OP∗ (1) in prob-P if for any δ > 0,

there exists 0 < M <∞ such that P (P ∗ (|Z∗
T | ≥M) > δ) → 0 as T → ∞. Lemma B.1 in Appendix B describes

the transition between the bootstrap and the non-bootstrap stochastic orders.
The following lemma is very useful when proving bootstrap results as it describes the transition between

the bootstrap and the non-bootstrap stochastic orders. The proof is found in Cheng and Huang (2010, Annals
of Statistics, Lemma 3 ).

Lemma B.1 Suppose that

Z∗
T = oP∗ (1) in prob-P , and W ∗

T = OP∗ (1) in prob-P.

Then, we have that (a1) if AT is defined only on (Ω,F , P ) and it is oP (1) [OP (1)], then it is also oP∗ (1) in
prob-P [OP∗ (1) in prob-P ] ; (a2) if AT is defined only on (Ω,F , P ) and it is oP (1) [OP (1)], then it is also
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oP (1) [OP (1) ] ; (a3) A∗
T = oP∗ (1) in prob-P [OP∗ (1) in prob-P ] ⇐⇒ A∗

T = oP (1) [OP (1)] ;
(a4) B∗

T = Z∗
T×W ∗

T = oP∗ (1)×OP∗ (1) = oP∗ (1) in prob-P ; (a5) C∗
T = Z∗

T×OP (1) = oP∗ (1)×OP (1) = oP∗ (1)
in prob-P , and (a6) A∗

T = Z∗
T × oP (1) = oP∗ (1)× oP (1) = oP∗ (1) in prob-P .

For a sequence of random variables (or vectors) Z∗
T , we also need the definition of convergence in distribution

in prob-P . In particular, we write Z∗
T →d∗ Z, in prob-P, if E∗f (Z∗

T ) → E (f (Z)) in prob-P for every continuous
and bounded function f .

Finally, we define weak convergence of a random process Z∗
T (v) in ℓ∞ (K) in prob-P . We write Z∗

T ⇒d∗ Z in
ℓ∞ (K) in prob-P if suph∈BL1(ℓ∞(K)) |E∗ (h (Z∗

T ))− E (h (Z))| →P 0 where BL1 (ℓ
∞ (K)) is the space of functions

h : ℓ∞ (K) → R with Lipschitz norm bounded by 1, i.e. for any h ∈ BL1 (ℓ
∞ (K)), supz∈ℓ∞(K) |h (z)| ≤ 1 and

|h (z1)− h (z2)| ≤ d (z1, z2) for all z1, z2 in ℓ∞ (K), where d (z1, z2) = supv∈K |z1 (v)− z2 (v)|. The bounded
Lipschitz distance between distribution functions metrizes weak convergence in distribution and therefore this
definition is equivalent to saying that E∗ (h (Z∗

T )) → E (h (Z)) in prob-P for any h : ℓ∞ (K) → R continuous
and bounded with respect to the sup norm.

The following result is the bootstrap version of Lemma B.6 of D&R (2003) and is useful to prove Lemma
4.1.

Lemma B.2 Suppose J∗
T (v) ⇒P∗

J(v), in ℓ∞(K), in prob-P, for any compact subset K of Rp. If there exist
v̂∗T ∈ argminv∈Rp J∗

T (v) and v̂ ∈ argminv∈Rp J(v) such that v̂∗T = OP∗(1) in prob-P and v̂ = OP (1), then

Ĵ∗
T ≡ J∗

T (v̂∗T ) = minv∈Rp J∗
T (v)

d∗→ J ≡ minv∈Rp J(v), in prob-P.

Proof of Lemma B.2. We show that E∗ (h (J∗
T (v̂∗T )))− E (h (J (v̂))) →P 0 for any continuous and bounded

function h : R → R. This is equivalent to showing that for any ϵ, δ > 0,

P (|E∗ (h (J∗
T (v̂∗T )))− E (h (J (v̂)))| > ϵ) < δ

for all T sufficiently large. Let ϵ, δ > 0 and let M denote the upper bound on the absolute value of h. Since
v̂∗T = OP∗(1) in prob-P and v̂ = OP (1), there exists A > 0 such that

P
(
P ∗(∥v̂∗T ∥ > A) >

ϵ

6M

)
<
δ

3
, and P (∥v̂∥ > A) <

δ

3
. (B.2)

Since for all compact subset K, J∗
T (v) converges weakly towards J(v) in ℓ∞(K), in prob-P , by the continuous

mapping theorem we have that min∥v∥≤A J
∗
T (v)

d∗→ min∥v∥≤A J(v), in prob-P . Hence, with v̂∗1 and v̂2 denoting
the argument of the minimum overK ≡ {∥v∥ ≤ A} of J∗

T (v) and J(v), respectively, we have that E
∗(h(J∗

T (v̂
∗
1)))−

E(h(J(v̂2))) converges in probability to 0. As a result, for all T sufficiently large,

P
(
|E∗(h(J∗

T (v̂
∗
1)))− E(h(J(v̂2)))| >

ϵ

3

)
<
δ

3
. (B.3)

By the triangle inequality, we can write

|E∗ (h (J∗
T (v̂∗T )))− E (h (J (v̂)))| ≤ |E∗ (h (J∗

T (v̂∗T )))− E∗ (h (J∗
T (v̂∗1)))|

+ |E∗ (h (J∗
T (v̂∗1)))− E (h (J (v̂2)))|

+ |E (h (J (v̂2)))− E (h (J (v̂)))| . (B.4)

It follows that

P (|E∗ (h (J∗
T (v̂

∗
T )))− E (h (J(v̂)))| > ϵ) ≤ P

(
|E∗ (h (J∗

T (v̂∗T )))− E∗ (h (J∗
T (v̂∗1)))| >

ϵ

3

)
+P

(
|E∗ (h (J∗

T (v̂
∗
1)))− E (h (J(v̂2)))| >

ϵ

3

)
(B.5)

+P
(
|E (h (J (v̂2)))− E (h (J (v̂)))| > ϵ

3

)
≡ I1 + I2 + I3.

To bound I1, note that

E∗ (h (J∗
T (v̂∗T )))− E∗ (h (J∗

T (v̂∗1))) = E∗ (h (J∗
T (v̂∗T ))− h (J∗

T (v̂∗1)) |v̂∗T ∈ K)P ∗(v̂∗T ∈ K)

+ E∗ (h (J∗
T (v̂∗T ))− h (J∗

T (v̂∗1)) |v̂∗T /∈ K)P ∗(v̂∗T /∈ K),
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where the first term is zero since if v̂∗T ∈ K, J∗
T (v̂

∗
1) is necessarily equal to J∗

T (v̂
∗
T ). It follows that

|E∗ (h (J∗
T (v̂

∗
T )))− E∗ (h (J∗

T (v̂
∗
1)))| ≤ 2MP ∗(v̂∗T /∈ K),

where we have bounded the function h by its upper bound M . Thus, by (B.2),

I1 ≤ P
(
2MP ∗(v̂∗T /∈ K) >

ϵ

3

)
= P

(
P ∗(v̂∗T /∈ K) >

ϵ

6M

)
<
δ

3

for all T sufficiently large. Similarly, I2 < δ/3 by (B.3). Finally, to bound I3, note that by the same reasoning
used above to bound I1,

I3 = P
(
|E (h (J (v̂2)))− E (h (J (v̂)))| > ϵ

3
|v̂ ∈ K

)
P (v̂ ∈ K)

+ P
(
|E (h (J (v̂2)))− E (h (J (v̂)))| > ϵ

3
|v̂ /∈ K

)
P (v̂ /∈ K) ≤ P (v̂ /∈ K) < δ/3,

given (B.2). The result now follows from (B.5).

B.2 Proofs of bootstrap results

Proof of Proposition 3.1. We would like to show that for any ε > 0,

limT→∞ P
(
P ∗
(∥∥∥θ̂∗T − θ0

∥∥∥ > ε
)
> ε
)

= 0. Because θ0 is the unique minimizer of Q (θ), for any ε > 0 such

that ∥θ − θ0∥ > ϵ, there is δ > 0 such that Q (θ)−Q (θ0) ≥ δ > 0. It follows that

P ∗
(∥∥∥θ̂∗T − θ0

∥∥∥ > ε
)
≤ P ∗

(
Q
(
θ̂∗T

)
−Q (θ0) > δ

)
≤ P ∗

(
Q
(
θ̂∗T

)
−QT

(
θ̂∗T

)
+QT

(
θ̂∗T

)
−Q∗

T

(
θ̂∗T

)
+Q∗

T

(
θ̂∗T

)
−QT

(
θ̂T

)
+QT

(
θ̂T

)
−Q (θ0) > δ

)
≤ P ∗

(
Q
(
θ̂∗T

)
−QT

(
θ̂∗T

)
+QT

(
θ̂∗T

)
−Q∗

T

(
θ̂∗T

)
+Q∗

T

(
θ̂T

)
−QT

(
θ̂T

)
+QT (θ0)−Q (θ0) > δ

)
≤ P ∗

(
2 sup
θ∈Θ

|QT (θ)−Q (θ)| > δ/2

)
+ P ∗

(
2 sup
θ∈Θ

|Q∗
T (θ)−QT (θ)| > δ/2

)
where the third inequality uses the fact that Q∗

T

(
θ̂∗T

)
≤ Q∗

T

(
θ̂T

)
and QT

(
θ̂T

)
≤ QT (θ0) by definition of θ̂∗T

and θ̂T , respectively. Thus, for any ε > 0,

P
(
P ∗
(∥∥∥θ̂∗T − θ0

∥∥∥ > ε
)
> ε
)

≤ P

(
P ∗
(
2 sup
θ∈Θ

|QT (θ)−Q (θ)| > δ/2

)
> ε/2

)
+ P

(
P ∗
(
2 sup
θ∈Θ

|Q∗
T (θ)−QT (θ)| > δ/2

)
> ε/2

)
≤ 1

ε/2
P

(
2 sup
θ∈Θ

|QT (θ)−Q (θ)| > δ/2

)
+ P

(
P ∗
(
2 sup
θ∈Θ

|Q∗
T (θ)−QT (θ)| > δ/2

)
> ε/2

)
, (B.6)

where the first term in the second inequality is obtained by first noting that
P ∗ (2 supθ∈Θ |QT (θ)−Q (θ)| > δ/2) = 1 {·} (where 1 {·} denotes the indicator function containing the expres-
sion inside P ∗ (·)) and then applying Markov’s inequality. From (B.6), it is clear that it suffices to show that
(A) supθ∈Θ |QT (θ)−Q (θ)| = oP (1) and (B) supθ∈Θ |Q∗

T (θ)−QT (θ)| = oP∗ (1) in prob-P. (A) by standard
arguments under our assumptions (see e.g. Theorem 2.6 of Newey and McFadden (1994)). Thus, we only need
to show (B). By definition,

Q∗
T (θ) = ψ̄∗′

c,T (θ)W ∗
T ψ̄

∗
c,T (θ) ,

where ψ̄∗
c,T (θ) = ψ̄∗

T (θ) − E∗
(
ψ̄∗
T

(
θ̂T

))
= ψ̄∗

T (θ) − ψ̄T

(
θ̂T

)
, given the properties of the i.i.d. bootstrap. It

follows that

Q∗
T (θ) =

(
ψ̄∗
T (θ)− ψ̄T

(
θ̂T

))′
W ∗
T

(
ψ̄∗
T (θ)− ψ̄T

(
θ̂T

))
= ψ̄∗′

T (θ)W ∗
T ψ̄

∗
T (θ)− 2ψ̄∗′

T (θ)W ∗
T ψ̄T

(
θ̂T

)
+ ψ̄′

T

(
θ̂T

)
W ∗
T ψ̄T

(
θ̂T

)
≡ ψ̄∗′

T (θ)W ∗
T ψ̄

∗
T (θ) + r∗1T (θ) + r∗2T ,
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which implies that

sup
θ∈Θ

|Q∗
T (θ)−QT (θ)| ≤ sup

θ∈Θ

∣∣ψ̄∗′
T (θ)W ∗

T ψ̄
∗
T (θ)− ψ̄′

T (θ)WT ψ̄T (θ)
∣∣+ sup

θ∈Θ
|r∗1T (θ)|+ r∗2T .

Now, r∗2T ≤
∥∥∥ψ̄T (θ̂T)∥∥∥2W ∗

T = oP (1) × OP∗ (1) = oP∗ (1) in prob-P , given Lemma B.1 and given that

ψ̄T

(
θ̂T

)
= oP (1) and W ∗

T = OP∗ (1) in prob-P . Similarly, we can show that supθ∈Θ |r∗1T (θ)| = oP∗ (1) in

prob-P using in particular the fact that supθ
∥∥ψ̄∗

T (θ)
∥∥ = OP∗ (1) in prob-P. For the first term, note that we can

write

ψ̄∗′
T (θ)W ∗

T ψ̄
∗
T (θ)− ψ̄′

T (θ)WT ψ̄T (θ)

=
(
ψ̄∗
T (θ)− ψ̄T (θ)

)′
W ∗
T ψ̄

∗
T (θ) + ψ̄T (θ)

′
W ∗
T

(
ψ̄∗
T (θ)− ψ̄T (θ)

)
+ ψ̄T (θ)

′
(W ∗

T −WT ) ψ̄T (θ)

≤
∥∥ψ̄∗

T (θ)− ψ̄T (θ)
∥∥ ∥W ∗

T ∥
(∥∥ψ̄∗

T (θ)
∥∥+ ∥∥ψ̄T (θ)

∥∥)+ ∥∥ψ̄T (θ)
∥∥2 ∥W ∗

T −WT ∥ .

Since supθ∈Θ

∥∥ψ̄T (θ)
∥∥ = OP (1); W ∗

T −WT = oP∗ (1); ∥W ∗
T ∥ = OP∗ (1) ; and supθ∈Θ

∥∥ψ̄∗
T (θ)

∥∥ = OP∗ (1) in

prob-P , it suffices to show that supθ∈Θ

∥∥ψ̄∗
T (θ)− ψ̄T (θ)

∥∥ = oP∗ (1) in prob-P. This follows by the bootstrap
law of large numbers of Giné and Zinn (1990, Theorem 3.5), concluding the proof.

Proof of Theorem 3.1. (i) Given Proposition 3.1, θ̂∗T
P∗

→ θ0, prob-P. Let û
∗
T = T 1/4(θ̂∗T − θ0). To show that

û∗T = OP(1), it suffices to show that for some γ1 > 0 and γ2 > 0,

∥û∗T ∥2(γ1 + oP(1)) ≤ γ2OP(1) +
oP(1)

∥û∗T ∥2
+ oP(1).

A second-order mean value expansion of ψ̄∗
c,T (θ̂

∗
T ) around θ0 gives:

√
T ψ̄∗

c,T (θ̂
∗
T ) =

√
T ψ̄∗

c,T (θ0) +
√
T
∂ψ̄∗

c,T

∂θ′
(θ0)(θ̂

∗
T − θ0) +

√
T
1

2
Ḡ∗(θ̄∗T )vec((θ̂

∗
T − θ0)(θ̂

∗
T − θ0)

′),

where θ̄∗T ∈ (θ̂∗T , θ0) and may differ from row to row, and Ḡ∗(θ) is defined the same way as Ḡ(θ) but with
bootstrap data. By a bootstrap uniform law of large numbers (cf. Giné and Zinn, 1990, Theorem 3.5),
supθ∈N ∥Ḡ∗(θ) − Ḡ(θ)∥ = oP(1). This together with supθ∈N ∥Ḡ(θ) − G(θ)∥ = oP (1) and the fact that

θ̂∗T − θ0 = oP (1) imply that Ḡ∗(θ̄∗T ) = G+ oP(1). Also,
√
T
∂ψ̄∗

c,T

∂θ′ (θ0) = OP(1). To see this, write

√
T
∂ψ̄∗

c,T

∂θ′
(θ0) =

√
T

(
∂ψ̄∗

c,T

∂θ′
(θ0)−

∂ψ̄T
∂θ′

(θ0)

)
+
√
T
∂ψ̄T
∂θ′

(θ0)

and note that the first term is OP (1) by a bootstrap CLT applied to
∂ψ̄∗

c,T

∂θ′ (θ0) − ∂ψ̄T

∂θ′ (θ0) whereas the second

term is OP (1) (hence OP (1)) by a CLT for ∂ψ̄T

∂θ′ (θ0) given that the expected value of the Jacobian is zero by
the local identification condition. As a result,

√
T ψ̄∗

c,T (θ̂
∗
T ) =

√
T ψ̄∗

c,T (θ0) +
1

2
Gvec

(
û∗T û

∗′

T

)
+ oP(1) + oP

(
∥û∗T ∥2

)
, (B.7)

where ψ̄∗
c,T (θ0) =

(
ψ̄∗
T (θ0)− ψ̄T (θ0)

)
+ ψ̄T (θ0)− ψ̄T (θ̂T ) = OP(T

−1/2) +OP (T
−1/2) +OP (T

−1/2) = OP(T
−1/2),

and where the order of magnitude of ψ̄T (θ̂T ) is obtained through a second-order Taylor expansion of ψ̄T

(
θ̂T

)
around θ0: √

T ψ̄T (θ̂T ) =
√
T ψ̄T (θ0) +

1

2
Gvec(T 1/4(θ̂T − θ0)T

1/4(θ̂T − θ0)
′) + oP (1). (B.8)

Thus,

T ψ̄∗′
c,T

(
θ̂∗T

)
W ∗
T ψ̄

∗
c,T

(
θ̂∗T

)
= ψ̄∗′

c,T (θ0)Wψ̄∗
c,T (θ0) +

√
T ψ̄∗′

c,T (θ0)WGvec (û∗T û
∗′
T )

+
1

4
vec′ (û∗T û

∗′
T )G

′WGvec (û∗T û
∗′
T ) + oP(1) + oP(∥û∗T ∥2) + oP(∥û∗T ∥4).
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By definition,

T ψ̄∗′
c,T

(
θ̂∗T

)
W ∗
T ψ̄

∗
c,T

(
θ̂∗T

)
≤ T ψ̄∗′

c,T (θ0)Wψ̄∗
c,T (θ0) + oP(1),

which implies that

1

4
vec′ (û∗T û

∗′
T )G

′WGvec (û∗T û
∗′
T ) ≤ −

√
T ψ̄∗′

c,T (θ0)WGvec (û∗T û
∗′
T ) + oP(1) + oP(∥û∗T ∥2) + oP(∥û∗T ∥4).

From Lemma A.1 of D&R (2013) and given Assumption 6(ii), we have that 1
4vec

′ (û∗T û
∗′
T )G

′WGvec (û∗T û
∗′
T ) ≥

γ1∥û∗T ∥4 for some γ1 > 0. Thus, the previous inequality together with Cauchy-Schwarz inequality imply that

γ1∥û∗T ∥4 ≤ γ2∥
√
T ψ̄∗

c,T (θ0) ∥∥û∗T ∥2 + oP(1) + oP(∥û∗T ∥2) + oP(∥û∗T ∥4),

where γ2 = ∥W∥∥G∥, which completes the proof of part (i).
Next, we prove part (ii). We can show that the random vector(√

T ψ̄′
T (θ0) ,

√
T
(
ψ̄∗
T (θ0)− ψ̄T (θ0)

)′
, T 1/4

(
θ̂T − θ0

)′
, T 1/4

(
θ̂∗T − θ̂T

)′)′

= OP (1) .

In particular,
√
T ψ̄T (θ0) →d X ∼ N (0,Σ) , implying that the first term is OP (1) (hence OP (1)), whereas by an

application of a bootstrap CLT,
√
T
(
ψ̄∗
T (θ0)− ψ̄T (θ0)

)
→d∗ X∗ ∼ N (0,Σ), implying that the second term is

OP∗ (1) in prob-P (hence, it is OP (1) by Lemma B.1.a3)). Finally, Proposition 2.1 and part (i) of this theorem
justify the OP (1) for the last two terms. By Prohorov’s theorem (cf. van der Vaart and Wellner (1990)), it
follows that this random vector has at least one subsequence5 which converges in distribution under P towards
(X,X∗, V, U∗), say, where X∗ is independent of (X,V ) (to obtain this last result, we apply Lemma 3.1 of Sen,
Banerjee and Woodroofe (2010)). Next, we will show that P (|U∗| > 0) > 0. By the second-order condition for

the minimization problem underlying θ̂∗T ,

∂2

∂θ2
ψ̄∗′
c,T (θ)W ∗

T ψ̄
∗
c,T (θ)

∣∣∣∣
θ=θ̂∗T

≥ 0,

which can be written as
Z̃∗
T +N∗

T ≥ 0, (B.9)

where

Z̃∗
T =

∂2ψ̄∗′
c,T

∂θ2

(
θ̂∗T

)
W ∗
T

√
T ψ̄∗

c,T

(
θ̂∗T

)
and N∗

T =
√
T
∂ψ̄∗

c,T

∂θ

(
θ̂∗T

)
W ∗
T

∂ψ̄∗
c,T

∂θ

(
θ̂∗T

)
.

From part (i) of this theorem, and equations (B.7) and (B.8), we can show that

Z̃∗
T = Z∗

T − 1

2
G′WGv̂2T +

1

2
G′WGû∗

2

T + oP(1),

where Z∗
T = G′W

√
T
(
ψ̄∗
T (θ0)− ψ̄T (θ0)

)
and N∗

T = G′WGû∗
2

T + oP(1). From (B.9), we have that

−Z∗
T +Av̂2T − 3Aû∗

2

T ≤ oP(1),

with A = G′WG/2 > 0 since G ̸= 0 given the second-order identification assumption. By the continuous

mapping theorem, −Z∗
T + Av̂2T − 3Aû∗

2

T →d −Z∗ + AV 2 − 3AU∗2

under P. Using the same arguments as

in Lemma B.2 of D&R (2013b), we can claim that P (−Z∗ + AV 2 − 3AU∗2 ≤ 0) = 1, which implies that

P (U∗2 ̸= 0|Z∗ < 0, V = 0) = 1. Hence, P (U∗ ̸= 0) ≥ P (Z∗ < 0, V = 0). Since Z∗ = G′WX∗ is independent of
V , we have that P (Z∗ < 0, V = 0) = P (Z∗ < 0)P (V = 0), where P (Z∗ < 0) = 1/2 (since Z∗ is a non-degenerate
Gaussian random variable) and we can show (similarly to the proof of Proposition 3.1 of D&R (2013)) that
P (V = 0) = 1/2 when p = 1. As a result, P (U∗ ̸= 0) ≥ 1/4 > 0.

Next, to prove part (iii), we apply Lemma B.5 of D&R (2013b). First, note that Ĵ∗
T (u) and J∗ (u) have

continuous sample paths (in particular, J∗(u) is a polynomial function in u for each value of V and X∗). Also,
HT is a non-decreasing sequence of sets and, since θ0 is interior point in Θ,

∪
T≥0 HT = R. It remains to check

5To simplify the notation, we keep the same index T to denote this subsequence throughout this proof.
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conditions (i)-(iii) of that lemma. (ii) follows from part (i) of this Theorem by choosing u∗T ∈ argminu∈HT Ĵ
∗
T (u)

equal to û∗T . Similarly, we can show that u∗ ∈ argminu∈R J
∗(u) is tight by relying on D&R (2013b)’s Lemma

B.6(ii). To show (i), it suffices to show that Y ∗
T (u) ≡ ψ̄∗

c,T

(
θ0 + T−1/4u

)
converges in distribution under P

towards Y ∗ ≡ X∗ − 1
2GV

2 + 1
2Gu

2, in ℓ∞ (K). For this, since K equipped with the usual metric on R is
totally bounded as any compact subset of R, we show that (a1) The marginals (Y ∗

T (u1), . . . , Y
∗
T (uk)) converge in

distribution to (Y ∗(u1), . . . , Y
∗(uk)) with respect to P for any u1, . . . , uk ∈ K, and (a2) The stochastic process

Y ∗
T (u) is asymptotically equicontinuous, i.e. ∀ϵ > 0,

lim
δ→0

lim sup
T→∞

P

(
sup

u1,u2∈K:|u1−u2|<δ
∥Y ∗

T (u1)− Y ∗
T (u2)∥ > ϵ

)
= 0.

(a1) follows by two second-order mean-value expansions: one for
√
TY ∗

T (u) around 0, and another for
√
T ψ̄T (θ̂T )

around θ0. This implies that

√
TY ∗

T (u) =
√
T
(
ψ̄∗
T (θ0)− ψ̄T (θ0)

)
− 1

2
Gv̂2T +

1

2
Gu2 + oP(1),

where
(√

T
(
ψ̄∗
T (θ0)− ψ̄T (θ0)

)
, v̂T

)
converges in distribution towards (X∗, V ) with respect to P. We can then

apply the continuous mapping theorem and conclude that (Y ∗
T (u1), . . . , Y

∗
T (uk)) converge in distribution to

(Y ∗(u1), . . . , Y
∗(uk)) with respect to P. To prove (a2), observe that

∥Y ∗
T (u1)− Y ∗

T (u2)∥ ≤ C∥G∥∥u1 − u2∥+ oP(1),

for some C > 0 and where the neglected terms are uniformly negligible over K. This implies (a2) and ends the
proof of part (iii). Finally, we prove part (iv). The first-order condition for the problem minu∈R J

∗(u) is((
2X∗′WG−G′WGV 2

)
+G′WGu∗

2
)
u∗ = 0.

Hence, the possible minimizers are u∗ = 0 and u∗ such that G′WGu∗
2

= G′WGV 2−2X∗′WG. The second-order
necessary condition for a minimum imposes that

2X∗′WG−G′WGV 2 + 3G′WGu∗
2

≥ 0.

Thus, if 2X∗′WG−G′WGV 2 ≥ 0, then J∗(u) is minimized at u∗ = 0 and

J∗ = J∗
1 ≡ X∗′WX∗ −X∗′WGV 2 +

1

4
G′WGV 4 =

(
X∗ − 1

2
GV 2

)′

W

(
X∗ − 1

2
GV 2

)
;

otherwise, if 2X∗′WG − G′WGV 2 < 0, then J∗(u) is minimized at u∗ satisfying G′WGu∗
2

= G′WGV 2 −
2X∗′WG, in which case we can show that

J∗ = J∗
2 ≡ X∗′W 1/2

(
IH −W 1/2G(G′WG)−1G′W 1/2

)
W 1/2X∗.

It follows that

E(J∗) = E(J∗
1|2X∗′WG−G′WGV 2 ≥ 0)q∗ + E(J∗

2|2X∗′WG−G′WGV 2 < 0)(1− q∗), (B.10)

with q∗ = P (2X∗′WG−G′WGV 2 ≥ 0). We claim that J∗
2 is independent of V and G′WX∗. To see this, note

that
J∗
2 = X∗′W 1/2MW 1/2GW

1/2X∗,

where MW 1/2G = IH −W 1/2G(G′WG)−1G′W 1/2. It follows that

E
(
G′WX∗

(
X∗′W 1/2MW 1/2G

))
= G′WΣW 1/2MW 1/2G = G′W 1/2MW 1/2G = 0,

where we used the fact that W = Σ−1. Since X∗ is Gaussian, a null covariance amounts to independence,
implying that J∗

2 is independent of G′WX∗. Moreover, J∗
2 is also independent of V because it depends only on

X∗, which is independent of V . As a result, we have that

E(J∗
2|2X∗′WG−G′WGV 2 < 0) = E(J∗

2) = H − 1,
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since J∗
2 ∼ χ2(H − 1). Next, we show that q∗ = 3/8. Using the definition of q∗, we can show that

q∗ = P (G′WX∗ ≥ G′WGV 2/2|V = 0)P (V = 0) + P (G′WX∗ ≥ G′WGV 2/2|V ̸= 0)P (V ̸= 0)
= P (G′WX∗ ≥ 0|V = 0)P (V = 0) + P (G′WX∗ ≥ G′WGV 2/2|V ̸= 0)P (V ̸= 0)
= 1

4 + 1
2P (G

′WX∗ ≥ G′WGV 2/2|V ̸= 0),

where the last equality uses the fact that P (G′WX∗ ≥ 0|V = 0) = P (G′WX∗ ≥ 0) = 1/2 (since X∗ is
independent of V and G′WX∗ is a non-degenerate mean zero Gaussian variable) as well as the fact that

P (V = 0) = P (V ̸= 0) = 1/2 when p = 1. In addition, we can show that V 2 = −2G
′WX

G′WG 1 (G′WX < 0) , which
implies that

P (G′WX∗ ≥ G′WGV 2/2|V ̸= 0) = P (G′WX∗ +G′WX ≥ 0|G′WX < 0)

= P
(
G′WX∗
√
G′WG

+ G′WX√
G′WG

≥ 0
∣∣∣ G′WX√

G′WG
< 0

)
.

Hence,

P (G′WX∗ ≥ G′WGV 2/2|V ̸= 0) = P (X1 +X2 ≥ 0|X2 ≤ 0) =
P (X1 +X2 ≥ 0, X2 ≤ 0)

P (X2 ≤ 0)
=

1/8

1/2
=

1

4
,

where P (X2 ≤ 0) = 1/2 (since X2 is zero-mean non degenerate Gaussian on R) and P (X1 +X2 ≥ 0, X2 ≤ 0) =
1/8 (since it equals the probability that a zero-mean non-degenerate R2-valued random vector lies in half of a
quadrant). Thus, q∗ = 3

8 . To finish the proof, we evaluate E(J∗
1|2X∗′WG−G′WGV 2 ≥ 0). We have that

E(J∗
1|2X∗′WG−G′WGV 2 ≥ 0) = (a) + (b),

with
(a) = E(J∗

1|V = 0, 2G′WX∗ −G′WGV 2 ≥ 0)P (V = 0|2G′WX∗ −G′WGV 2 ≥ 0)

and
(b) = E(J∗

1|V ̸= 0, 2G′WX∗ −G′WGV 2 ≥ 0)P (V ̸= 0|2G′WX∗ −G′WGV 2 ≥ 0).

We start with (a). We have that

E(J∗
1|V = 0, 2G′WX∗ −G′WGV 2 ≥ 0) = E(X∗′WX∗|G′WX∗ ≥ 0) = E(X∗′WX∗) = H,

where the first equality follows because V = 0, the second uses the fact that X∗′WX∗ is independent of the
event (G′WX∗ ≥ 0) (see the proof of Corollary 3.2 of D&R (2013) for details on how to obtain this result) and
the third follows because X∗′WX∗ ∼ χ2(H). Moreover,

P (V = 0|2G′WX∗ −G′WGV 2 ≥ 0) = P (V=0,G′WX∗≥0)
q∗ = P (G′WX≥0,G′WX∗≥0)

q∗

=
P(G′WX≥0)P (G′WX∗≥0)

q∗ = 1
4q∗ .

Thus, (a) = H
4q∗ . Let us now derive (b). We can show that

P
(
V ̸= 0|2G′WX∗ −G′WGV 2 ≥ 0

)
= P (G′WX≤0,G′WX∗+G′WX≥0)

q∗

= P (X1≤0,X1+X2≥0)
q∗ = 1

8q∗ ,

using the fact that X1 and X2 are two independent standard normal random variables. In addition,

E(J∗
1|V ̸= 0, 2G′WX∗ −G′WGV 2 ≥ 0)

= E

((
X∗ +GG′WX

G′WG

)′
W
(
X∗ +GG′WX

G′WG

)∣∣∣∣G′WX ≤ 0, G′WX +G′WX∗ ≥ 0

)
= (b1) + 2(b2) + (b3),

where
(b1) = E(X∗′WX∗|G′WX ≤ 0, G′WX +G′WX∗ ≥ 0),

(b2) = E
(
G′WX∗
√
G′WG

G′WX∗
√
G′WG

∣∣∣G′WX ≤ 0, G′WX +G′WX∗ ≥ 0
)
,

(b3) = E
(

(G′WX∗)2

G′WG

∣∣∣G′WX ≤ 0, G′WX +G′WX∗ ≥ 0
)
.
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Since X∗ and X are independent, (b1) = E(X∗′WX∗|G′WX+G′WX∗ ≥ 0). Let Q be the rotation matrix that

transforms the canonical basis of RH into the orthonormal basis (a1, a2, . . . , aH) with aH = W 1/2G√
G′WG

. Let Y ∗ be

the coordinate of W 1/2X∗ in this new basis. We have Y ∗ = Q′W 1/2X∗ and since Q′Q = IH , Y ∗ ∼ N(0, IH),

where the last component of Y ∗ is Y ∗
H = G′WX∗

√
G′WG

and X∗′WX∗ = Y ∗′Y ∗ = Y ∗2

1 + · · ·+ Y ∗2

H−1 + Y ∗2

H , with Y ∗
i ’s

independent and identically distributed N(0, 1). Thus,

(b1) = E(Y ∗2

1 + · · ·+ Y ∗2

H−1 + Y ∗2

H |G′WX +G′WX∗ ≥ 0)

= E(Y ∗2

1 + · · ·+ Y ∗2

H−1) + E(Y ∗2

H |G′WX +G′WX∗ ≥ 0)

= H − 1 + E(Y ∗2

H |G′WX +G′WX∗ ≥ 0).

But E(Y ∗2

H |G′WX +G′WX∗ ≥ 0) = E(X2
1 |X1 +X2 ≥ 0) = 1, with X1 and X2 independent standard normal

random variables (we can prove this last equality by relying on the properties of standard random normal
variables). Thus, (b1) = H. Similarly,

(b2) = E
(
G′WX∗
√
G′WG

G′WX∗
√
G′WG

∣∣∣ G′WX√
G′WG

≤ 0, G′WX√
G′WG

+ G′WX∗
√
G′WG

≥ 0
)

= E(X1X2|X1 ≤ 0, X1 +X2 ≥ 0) = − 2
π ,

by again relying on the properties of standard normal random variables. A similar argument shows that (b3) = 1,
implying that

E(J∗
1|V ̸= 0, 2G′WX∗ −G′WGV 2 ≥ 0) = H − 4

π
+ 1,

and therefore (b) = 1
8q∗

(
H − 4

π + 1
)
. Hence,

E(J∗
1|2X∗′

WG−G′WGV 2 ≥ 0) = (a) + (b) =
H

4q∗
+

1

8q∗

(
H − 4

π
+ 1

)
=

1

8q∗

(
3H − 4

π
+ 1

)
.

Plugging these results in (B.10) gives the expected result.
Proof of Proposition 4.1. The proof follows closely that of Proposition 3.1, so we only highlight the

differences. To prove part (B) in that proof, using the definition of Q
∗(1)
T (θ), we can show that

Q
∗(1)
T (θ) = Q∗

T (θ)− 2
(
ψ̄∗
T (θ)− ψ̄T

(
θ̂T

))′
W

∗(1)
T

∂

∂θ′
ψ̄T

(
θ̂T

)(
θ − θ̂T

)
+
(
θ − θ̂T

)′( ∂

∂θ′
ψ̄T

(
θ̂T

))′

W
∗(1)
T

∂

∂θ′
ψ̄T

(
θ̂T

)(
θ − θ̂T

)
≡ Q∗

T (θ) + S∗
1T (θ) + S∗

2T (θ) ,

where Q∗
T (θ) is as defined in Proposition 3.1 but using the weighting matrix W

∗(1)
T . We proved already that

supθ |Q∗
T (θ)−QT (θ)| = oP∗ (1), in prob-P , thus it suffices to show that the two last terms above are oP∗ (1),

in prob-P , uniformly over Θ. Since ∂
∂θ′ ψ̄T

(
θ̂T

)
→P 0, S∗

2T (θ) is oP∗ (1) in prob-P uniformly over θ ∈ Θ given

in particular the fact that
∥∥∥θ − θ̂T

∥∥∥ is bounded with probability P converging to 1 (given the compactness of Θ

and the fact that θ̂T →P θ0 ∈ Θ). Similarly, we can show that the second term can be bounded by a factor of
sup

∥∥ψ̄∗
T (θ)− ψ̄T (θ)

∥∥ = oP∗ (1), in prob-P , where the factor is OP∗ (1), in prob-P. In particular, we have that

|S∗
1T (θ)| ≤

∥∥∥ψ̄∗
T (θ)− ψ̄T (θ) + ψ̄T (θ)− ψ̄T

(
θ̂T

)∥∥∥∥∥∥W ∗(1)
T

∥∥∥ ∥∥∥∥ ∂

∂θ′
ψ̄T

(
θ̂T

)∥∥∥∥∥∥∥θ − θ̂T

∥∥∥
≤

(
sup
θ

∥∥ψ̄∗
T (θ)− ψ̄T (θ)

∥∥+ 2 sup
θ

∥∥ψ̄T (θ)
∥∥)∥∥∥W ∗(1)

T

∥∥∥∥∥∥∥ ∂

∂θ′
ψ̄T

(
θ̂T

)∥∥∥∥∥∥∥θ − θ̂T

∥∥∥ ,
which implies that supθ |S∗

1T (θ)| = oP∗ (1) in prob-P provided sup
∥∥ψ̄∗

T (θ)− ψ̄T (θ)
∥∥ = oP∗ (1), and

∥∥∥W ∗(1)
T

∥∥∥ =

OP∗ (1), in prob-P , given that supθ
∥∥ψ̄T (θ)

∥∥ = OP (1), ∂
∂θ′ ψ̄T

(
θ̂T

)
→P 0, and supθ

∥∥∥θ − θ̂T

∥∥∥ = OP (1) .
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Proof of Proposition 4.2. We follow the proof of Proposition 2.2. (i) A second-order mean value expansion

of ψ̄∗(1)
(
θ̂
∗(1)
T

)
around θ̂T gives

√
T ψ̄

∗(1)
T

(
θ̂
∗(1)
T

)
=

√
T ψ̄

∗(1)
T

(
θ̂T

)
+
√
T
∂ψ̄

∗(1)
T

∂θ′

(
θ̂T

)(
θ̂
∗(1)
T − θ̂T

)
+

1

2
R

∗(1)
T

(
θ̄∗T
)
, (B.11)

where

R
∗(1)
T

(
θ̄∗T
)
=

√
TḠ∗(1) (θ̄∗T ) vec((θ̂∗(1)T − θ̂T

)(
θ̂
∗(1)
T − θ̂T

)′)
≡ Ḡ∗(1) (θ̄∗T ) vec(v̂∗(1)T v̂

∗(1)′
T

)
with θ̄∗T ∈

(
θ̂
∗(1)
T , θ̂T

)
and may differ from row to row and Ḡ∗(1)(θ) is defined the same way as Ḡ(θ) but

with ψ̄T (θ) replaced with ψ̄
∗(1)
T (θ). By Proposition 4.1, θ̂

∗(1)
T = θ0 + oP∗ (1) in prob-P , which implies that

Ḡ∗(1) (θ̄∗T ) = G + oP∗ (1) in prob-P (using the fact that supθ∈Θ ∥Ḡ∗(1)(θ) − Ḡ(θ)∥ = oP∗(1) in prob-P and
supθ∈Θ ∥Ḡ(θ)−G(θ)∥ = oP (1)). Thus,

R
∗(1)
T

(
θ̄∗T
)
= Gvec

(
v̂
∗(1)
T v̂

∗(1)′
T

)
+ oP∗

(∥∥∥v̂∗(1)T

∥∥∥2) ,
in prob-P . By a bootstrap CLT and under our assumptions, we have that

√
T ψ̄

∗(1)
T

(
θ̂T

)
=

√
T
(
ψ̄∗
T

(
θ̂T

)
− ψ̄T

(
θ̂T

))
= OP∗(1), in prob-P, and

√
T
∂ψ̄

∗(1)
T

∂θ′

(
θ̂T

)
=

√
T

(
∂ψ̄∗

T

∂θ′

(
θ̂T

)
− ∂ψ̄T

∂θ′

(
θ̂
))

= OP∗(1) in prob-P.

As a result,

√
T ψ̄

∗(1)
T

(
θ̂
∗(1)
T

)
=

√
T ψ̄

∗(1)
T

(
θ̂T

)
+

1

2
Gvec

(
v̂
∗(1)
T v̂

∗(1)′
T

)
+ oP∗(1) + oP∗

(
∥v̂∗(1)T ∥2

)
, (B.12)

in prob-P . Thus,

T ψ̄
∗(1)′
T

(
θ̂
∗(1)
T

)
W

∗(1)
T ψ̄

∗(1)
T

(
θ̂
∗(1)
T

)
= T ψ̄

∗(1)′
T

(
θ̂T

)
Wψ̄

∗(1)
T

(
θ̂T

)
+

1

4
vec′

(
v̂
∗(1)
T v̂

∗(1)′
T

)
G′WGvec(v̂

∗(1)
T v̂

∗(1)′
T )

+vec′(v̂
∗(1)
T v̂

∗(1)′
T )G′W

√
T ψ̄

∗(1)
T

(
θ̂T

)
+ oP∗(1)

+oP∗(∥v̂∗(1)T ∥2) + oP∗(∥v̂∗(1)T ∥4),

given in particular the fact that W
∗(1)
T =W + oP∗ (1), in prob-P. By definition,

T ψ̄
∗(1)′
T

(
θ̂
∗(1)
T

)
W

∗(1)
T ψ̄

∗(1)
T

(
θ̂
∗(1)
T

)
≤ T ψ̄

∗(1)′
T

(
θ̂T

)
W

∗(1)
T ψ̄

∗(1)
T

(
θ̂T

)
= T ψ̄

∗(1)′
T

(
θ̂T

)
Wψ̄

∗(1)
T

(
θ̂T

)
+ oP∗ (1) ,

in prob-P. Thus,

1

4
vec′

(
v̂
∗(1)
T v̂

∗(1)′
T

)
G′WGvec(v̂

∗(1)
T v̂

∗(1)′
T ) + vec′(v̂

∗(1)
T v̂

∗(1)′
T )G′W

√
T ψ̄

∗(1)
T

(
θ̂T

)
+ oP∗(1) + oP∗(∥v̂∗(1)T ∥2) + oP∗(∥v̂∗(1)T ∥4) ≤ oP∗ (1) ,

in prob-P, implying that

1

4
vec′

(
v̂
∗(1)
T v̂

∗(1)′
T

)
G′WGvec

(
v̂
∗(1)
T v̂

∗(1)′
T

)
≤ vec′(v̂

∗(1)
T v̂

∗(1)′
T )G′W

√
T ψ̄

∗(1)
T

(
θ̂T

)
+oP∗(1) + oP∗(∥v̂∗(1)T ∥2) + oP∗(∥v̂∗(1)T ∥4).

Given Lemma B.1 of D&R (2013) and Assumption 6(ii), we have that

1

4
vec′

(
v̂
∗(1)
T v̂

∗(1)′
T

)
G′WGvec

(
v̂
∗(1)
T v̂

∗(1)′
T

)
≥ γ1∥v̂∗(1)T ∥4
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for some γ1 > 0. Hence,

γ1∥v̂∗(1)T ∥4 ≤ ∥W∥∥G∥∥
√
T ψ̄

∗(1)
T

(
θ̂T

)
∥∥v̂∗(1)T ∥2 + oP∗(1) + oP∗(∥v̂∗(1)T ∥2) + oP∗(∥v̂∗(1)T ∥4),

implying that

∥v̂∗(1)T ∥2(γ1 + oP∗(1)) ≤ ∥W∥∥G∥
∥∥∥√T ψ̄∗(1)

T

(
θ̂T

)∥∥∥+ oP∗(1)

∥v̂∗(1)T ∥2
+ oP∗(1).

This shows that ∥v̂∗(1)T ∥2 is at most of the same order as
∥∥∥√T ψ̄∗(1)

T

(
θ̂T

)∥∥∥, which is OP∗ (1) in prob-P , thus

concluding the proof of part (i). To prove part (ii), note the second order optimality condition for an interior
solution of a minimization problem implies that, for any vector e ∈ Rp,

e′
∂2

∂θ∂θ′

[
ψ̄
∗(1)′
T (θ)W

∗(1)
T ψ̄

∗(1)
T (θ)

]∣∣∣∣
θ=θ̂

∗(1)
T

e ≥ 0.

This can be written as
e′
(
Z̃∗
T +N∗

T

)
e ≥ 0, (B.13)

where

Z̃∗
T =

(
∂2ψ̄

∗(1)
T

∂θi∂θj
(θ̂

∗(1)
T )W

∗(1)
T

√
T ψ̄

∗(1)
T (θ̂

∗(1)
T )

)
1≤i,j≤p

and N∗
T =

√
T
∂ψ̄

∗(1)′
T

∂θ
(θ̂

∗(1)
T )W

∗(1)
T

∂ψ̄
∗(1)
T

∂θ′
(θ̂

∗(1)
T ).

From part (i), we can show that

√
T ψ̄

∗(1)
T (θ̂

∗(1)
T ) =

√
T ψ̄

∗(1)
T (θ̂T ) +

1

2
Gvec(v̂

∗(1)
T v̂

∗(1)′
T ) + oP∗(1), and

T 1/4 ∂ψ̄
∗(1)
T

∂θi
(θ̂

∗(1)
T ) =

∂2ρ

∂θi∂θ′
(θ0)T

1/4(θ̂
∗(1)
T − θ̂T ) + oP∗(1),

in prob-P , for i = 1, . . . , p. The last equality follows from the mean-value expansion of ∂ψ̄
∗(1)
T (θ̂

∗(1)
T )/∂θi around

θ̂T ; the uniform convergence of Ḡ∗(θ) and Ḡ(θ) in a neighbourhood of θ0 then allows to replace the sample
means in the second derivatives by the population mean ρ(·). The uniform convergence argument also implies

that ∂2ψ̄
∗(1)
T (θ̂

∗(1)
T )/∂θi∂θj = ∂2ρ(θ0)/∂θi∂θj + oP∗(1), in prob-P . Hence,

Z̃∗
T = Z∗

T +
1

2

(
∂2ρ′

∂θi∂θj
(θ0)WGvec(v̂

∗(1)
T v̂

∗(1)′
T )

)
1≤i,j≤p

+ oP∗(1) and

N∗
T =

(
v̂
∗(1)′
T

∂2ρ′

∂θi∂θ
(θ0)W

∂2ρ

∂θi∂θ′
(θ0)v̂

∗(1)
T

)
1≤i,j≤p

+ oP∗(1),

where Z∗
T =

(
∂2ρ′

∂θi∂θj
(θ0)W

√
T ψ̄

∗(1)
T (θ̂T )

)
1≤i,j≤p

. From (B.13) and some successive applications of the Cauchy-

Schwarz inequality, we can claim that there exists A > 0 such that for any (unit) vector e ∈ Rp,

−e′Z∗
T e−A

∥∥∥v̂∗(1)T

∥∥∥2 ≤ oP∗(1).

Since
(√

T ψ̄
∗(1)′
T (θ̂T ), v̂

∗(1)′
T

)′
= OP∗(1), in prob-P, it follows that

(
Z∗
T , v̂

∗(1)
T

)
= OP (1) (by Lemma B.1). Thus,

by Prohorov’s Theorem (cf. Theorem 2.4 of van der Vaart (1998)), we can find a subsequence of
(
Z∗
T , v̂

∗(1)
T

)
,(

Z∗
T ′ , v̂

∗(1)
T ′

)
say, which converges in distribution to (Z∗, V ∗) under P. Consequently, by the continuous mapping

theorem,

Y ∗
T ′ ≡ −e′Z∗

T ′e−A
∥∥∥v̂∗(1)T ′

∥∥∥2 dP→ Y ∗ ≡ −e′Z∗e−A ∥V ∗∥2 ,

along this subsequence. This means that for any metric d metrizing weak convergence, d (L (Y ∗
T ′) ,L (Y ∗)) →P 0,

where L (·) denotes the law of the random variable in question. A second application of Lemma B.1 implies
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that d (L (Y ∗
T ′) ,L (Y ∗)) →P∗

0 in prob-P along the subsequence indexed by T ′. But this is equivalent to
saying that there is a further subsequence Y ∗

T ′′ of Y ∗
T ′ for which d (L (Y ∗

T ′′) ,L (Y ∗)) →P∗
0 a.s.-P . Fix ω in

the probability set on which this event occurs (whose probability P is one). By the same argument as used by
D&R (2013) in their proof of Proposition 3.2, we can conclude that v∗T ′′ converges in distribution to V ∗ with
P (∥V ∗∥ > 0) geq1−P (Z∗ ≥ 0) ≥ 1/2 ≡ δ for all ω in a set of probability one. This completes the proof of part
(ii).

Proof of Lemma 4.1. Letting Y ∗
T (v) ≡

√
T ψ̄

∗(1)
T (θ̂T + T−1/4v), with v = T 1/4

(
θ − θ̂T

)
, and noting that

J
∗(1)
T (v) = Y ∗

T (v)
′
W

∗(1)
T Y ∗

T (v), by the Continuous Mapping Theorem (see Pollard (1984, p. 70)) it is suffices to
show that (

W
∗(1)
T , Y ∗

T (v)
)
⇒P∗

(W,Y ∗ (v)) , in ℓ∞(K), in prob-P, (B.14)

where Y ∗(v) ≡ X∗ + 1
2Gvec(vv

′) with X∗ ∼ N(0,Σ), implying that Y ∗ (v) =d Y (v) ≡ X + 1
2Gvec (vv

′) . Since

W
∗(1)
T = W + oP∗(1) in prob-P , W

∗(1)
T →d∗ W, in prob-P and since it does not depend on v, it also converges

weakly towardsW in ℓ∞(K), in prob-P . Given thatW is constant, Slutsky’s theorem (Kosorok (2008, Theorem
7.5)) ensures that (B.14) holds once we show that Y ∗

T (v) ⇒P∗
Y ∗(v), in ℓ∞(K), in prob-P. To establish this,

observe that as a compact subset of Rp, K equipped with the usual metric is totally bounded. Following the
proof of Giné and Zinn (1990, Theorem 3.1), it remains to show that

(a) (Y ∗
T (v1) , . . . , Y

∗
T (vk)) →d∗ (Y ∗ (v1) , . . . , Y

∗ (vk)) , in prob-P, for any v1, . . . , vk ∈ K.

(b) For any ϵ > 0, there exists δ > 0 sufficiently small such that

lim sup
T→∞

P

(
E∗

(
sup

∥v1−v2∥<δ,v1,v2∈K
∥Y ∗

T (v1)− Y ∗
T (v2)∥

)
> ϵ

)
= 0.

Starting with (a), by a second-order mean value expansion of Y ∗
T (v) around 0, we have that

Y ∗
T (v) =

√
T ψ̄

∗(1)
T

(
θ̂T

)
+ T 1/4 ∂ψ̄

∗(1)
T

∂θ′

(
θ̂T

)
v +

1

2
Ḡ∗(1)

(
θ̈∗ (v)

)
vec (vv′) ,

where θ̈∗ (v) ∈
(
θ̂T , θ̂T + T−1/4v

)
and may differ from row to row; the matrix Ḡ∗(1) (θ) is defined as in (7) with

ψ̄
∗(1)
T (θ) in place of ψ̄T (θ). We can write

Y ∗
T (v) =

√
T ψ̄

∗(1)
T

(
θ̂T

)
+

1

2
Gvec (vv′) + r∗T (v) ,

where r∗T (v) = r∗1T (v) + r∗2T (v) + r∗3T (v) with

r∗1T (v) =
1

2

(
Ḡ∗(1)

(
θ̂T

)
−G

)
vec(vv′),

r∗2T (v) =
1

2

(
Ḡ
(
θ̈∗ (v)

)
− Ḡ∗(1)

(
θ̂T

))
vec (vv′) and r∗3T (v) = T 1/4 ∂ψ̄

∗(1)
T

∂θ′

(
θ̂T

)
v.

We can show that for j = 1, 2, 3, r∗jT (v) is oP∗ (1) in prob-P uniformly over K. For j = 1, note that

Ḡ∗(1)
(
θ̂T

)
−G = Ḡ∗(1)

(
θ̂T

)
− Ḡ

(
θ̂T

)
+ Ḡ

(
θ̂T

)
−G,

where we can show that Ḡ∗(1)
(
θ̂T

)
−Ḡ

(
θ̂T

)
= oP∗ (1) in prob-P and Ḡ

(
θ̂T

)
−G = oP (1) (for the first result, we

rely on the fact that supθ∈Θ

∥∥Ḡ∗(1) (θ)− Ḡ (θ)
∥∥ = oP∗ (1) in prob-P whereas the second result follows from the

uniform convergence of Ḡ (θ) towards G (θ), the fact that θ̂T →P θ0, and the definition G ≡ G (θ0)). Since v ∈ K,
a compact subset of Rp, this proves the result for j = 1. For j = 2, the result follows from the uniform convergence

of Ḡ∗(1) (θ) towards Ḡ (θ) and the fact that θ̂
∗(1)
T − θ̈∗T →P∗

0, in prob-P (see e.g. Lemma A.6 of Gonçalves

and White (2004)). Finally, r∗3T (v) = oP∗ (1) in prob-P uniformly over K because T 1/2 ∂ψ̄
∗(1)
T

∂θ′

(
θ̂T

)
= OP∗ (1)

by a bootstrap CLT applied to T 1/2 ∂ψ̄
∗(1)
T

∂θ′

(
θ̂T

)
(note that its mean is zero given the double recentering). Since
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√
T ψ̄

∗(1)
T

(
θ̂T

)
d∗→ X∗ ∼ N(0,Σ), in prob-P , we conclude that Y ∗

T (v) →d∗ X∗ + 1
2Gvec (vv

′) ≡ Y ∗(v), in prob-P

for any fixed v ∈ K. Similarly, for any fixed (v1, v2, . . . , vk) ∈ Kk, consider c = (c1, . . . , ck) ∈ Rk such that
c′c = 1. It follows that

k∑
j=1

cjY
∗
T (vj) = c′

√
T ψ̄

∗(1)
T

(
θ̂T

)
+

1

2
G

k∑
j=1

cjvec
(
vjv

′
j

)
+

k∑
j=1

cjr
∗
T (vj) ,

where the last term is oP∗ (1) in prob-P uniformly over K by the same arguments as those used above. It follows

that
∑k
j=1 cjY

∗
T (vj) →d∗ c′X∗ + 1

2G
∑k
j=1 cjvec

(
vjv

′
j

)
in prob-P and the result follows by the Cramer-Wold

device.
Next, we establish (b). From the second-order expansion of Y ∗

T (v) above, we can write

Y ∗
T (v1)− Y ∗

T (v2) = T 1/4 ∂ψ̄
∗(1)
T

∂θ′

(
θ̂T

)
(v1 − v2) +

1

2
Ḡ∗(1)

(
θ̈∗ (v1)

)
vec (v1v

′
1) +

1

2
Ḡ∗(1)

(
θ̈∗ (v2)

)
vec (v2v

′
2)

= T 1/4 ∂ψ̄
∗(1)
T

∂θ′

(
θ̂T

)
(v1 − v2) +

1

2
Ḡ∗(1)

(
θ̈∗ (v1)

) [
vec

((
(v1 − v2) v

′
1 − v2 (v1 − v2)

′))]
+

1

2

[
Ḡ∗(1)

(
θ̈∗ (v2)

)
− Ḡ∗(1)

(
θ̈∗ (v1)

)]
vec (v2v

′
2) .

Hence,

∥Y ∗
T (v1)− Y ∗

T (v2)∥ ≤

∥∥∥∥∥T 1/4 ∂ψ̄
∗(1)
T

∂θ′

(
θ̂T

)∥∥∥∥∥ ∥v1 − v2∥+
1

2

∥∥∥Ḡ∗(1)
(
θ̈∗ (v1)

)∥∥∥ ∥v1 − v2∥(∥v1∥+ ∥v2∥)

+
1

2
∥Ḡ∗(1)

(
θ̈∗ (v2)

)
− Ḡ∗(1)

(
θ̈∗ (v1)

)
∥∥v2∥2.

Since K is compact, there exists M > 0 such that

∥Y ∗
T (v1)− Y ∗

T (v2)∥ ≤

∥∥∥∥∥T 1/4 ∂ψ̄
∗(1)
T

∂θ′

(
θ̂T

)∥∥∥∥∥ ∥v1 − v2∥+M
∥∥∥Ḡ∗(1)

(
θ̈∗ (v1)

)∥∥∥ ∥v1 − v2∥

+M∥Ḡ∗(1)
(
θ̈∗ (v2)

)
− Ḡ∗(1)

(
θ̈∗ (v1)

)
∥,

implying that

E∗

(
sup

∥v1−v2∥<δ,v1,v2∈K
∥Y ∗

T (v1)− Y ∗
T (v2)∥

)
≤ E∗

∥∥∥∥∥T 1/4 ∂ψ̄
∗(1)
T

∂θ′

(
θ̂T

)∥∥∥∥∥ δ +ME∗
∥∥∥Ḡ∗(1)

(
θ̈∗ (v1)

)∥∥∥ δ
+ME∗∥Ḡ∗(1)

(
θ̈∗ (v2)

)
− Ḡ∗(1)

(
θ̈∗ (v1)

)
∥.

Thus, for any ϵ > 0, there exists δ > 0 such that

P

[
E∗

(
sup

∥v1−v2∥<δ,v1,v2∈K.
∥Y ∗

T (v1)− Y ∗
T (v2)∥

)
> ϵ

]

≤ P

(
E∗

∥∥∥∥∥T 1/4 ∂ψ̄
∗(1)
T

∂θ′

(
θ̂T

)∥∥∥∥∥ > ϵ

3δ

)
+ P

(
E∗
∥∥∥Ḡ∗(1)

(
θ̈∗ (v1)

)∥∥∥ > ϵ

3Mδ

)
+P

(
E∗∥Ḡ∗(1)

(
θ̈∗ (v2)

)
− Ḡ∗(1)

(
θ̈∗ (v1)

)
∥ > ϵ

3M

)
can be made arbitrarily small as T → ∞. In particular, it is sufficient to show that

(b1) E∗
(∥∥∥∥T 1/4 ∂ψ̄

∗(1)
T

∂θ′

(
θ̂T

)∥∥∥∥) = OP (1),

(b2) E∗
∥∥∥Ḡ∗(1)

(
θ̈∗ (v1)

)∥∥∥ = OP (1), and
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(b3) E∗∥Ḡ∗(1)
(
θ̈∗ (v2)

)
− Ḡ∗(1)

(
θ̈∗ (v1)

)
∥ = oP (1), uniformly on K. Starting with (b1), by Jensen’s inequality,

E∗

(∥∥∥∥∥T 1/4 ∂ψ̄
∗(1)
T

∂θ′
(θ̂T )

∥∥∥∥∥
)

≤

E∗

∥∥∥∥∥T 1/4 ∂ψ̄
∗(1)
T

∂θ′
(θ̂T )

∥∥∥∥∥
2
1/2

.

But,

E∗

∥∥∥∥∥T 1/4 ∂ψ̄
∗(1)
T

∂θ′

(
θ̂T

)∥∥∥∥∥
2
 = T 1/2E∗

 ∑
h=1,...,H
j=1,...,p

(
∂ψ̄

∗(1)
h,T

∂θj

(
θ̂T

))2

 = T 1/2
∑

h=1,...,H
j=1,...,p

E∗

(
∂ψ̄

∗(1)
h,T

∂θj

(
θ̂T

))2

,

where ψ̄
∗(1)
h,T is the h-th component of ψ̄

∗(1)
T . Since

∂ψ̄
∗(1)
h,T

∂θj

(
θ̂T

)
=

1

T

T∑
t=1

(
∂ψh
∂θj

(
X∗
t , θ̂T

)
− ∂ψ̄h,T

∂θj

(
θ̂T

))
,

where X∗
t is i.i.d. from {X1, . . . , Xn}, we have that

E∗

(
∂ψ̄

∗(1)
h,T

∂θj

(
θ̂T

))2

=
1

T 2

T∑
t=1

(
∂ψh
∂θj

(
Xt, θ̂T

)
− ∂ψ̄h,T

∂θj

(
θ̂T

))2

= OP (T
−1).

Thus, E∗

(∥∥∥∥T 1/4 ∂ψ̄
∗(1)
T

∂θ′

(
θ̂T

)∥∥∥∥2
)

= OP (T
−1/2) = oP (1) (uniformly on K since it does not depend on v ∈ K),

showing (b1). For (b2), for some constant C <∞,

∥∥∥Ḡ∗(1)
(
θ̈∗ (v1)

)∥∥∥ ≤ C
H∑
h=1

∥∥∥∥∥∥
∂2ψ̄

∗(1)
h

(
θ̈∗ (v1)

)
∂θ∂θ′

∥∥∥∥∥∥ ≤ C
H∑
h=1

1

T

T∑
t=1

sup
θ∈N

∥∥∥∥∂2ψh (X∗
t , θ)

∂θ∂θ′

∥∥∥∥2 ,
where the last inequality uses the fact that θ̈∗ (v1) ∈

(
θ̂T , θ̂T + T−1/4v

)
, which is included in N , a neighborhood

of θ0, for all T sufficiently large with probability P approaching one (given that θ̂T →P θ0). Hence,

E∗
∥∥∥Ḡ∗(1)

(
θ̈∗ (v1)

)∥∥∥ ≤
H∑
h=1

1

T

T∑
t=1

E∗
(
sup
θ∈N

∥∥∥∥∂2ψh (X∗
t , θ)

∂θ∂θ′

∥∥∥∥) =

H∑
h=1

1

T

T∑
t=1

sup
θ∈N

∥∥∥∥∂2ψh (Xt, θ)

∂θ∂θ′

∥∥∥∥ ,
which is OP (1) uniformly on K given that ∂2ψh(Xt,θ)

∂θ∂θ′ is Lipshitz continuous on N and E
∥∥∥∂2ψh(Xt,θ0)

∂θ∂θ′

∥∥∥ < ∞.

Similarly, we have that

∥∥∥Ḡ∗(1)(θ̈∗(v1))− Ḡ∗(1)(θ̈∗ (v2))
∥∥∥ ≤ C

H∑
h=1

1

T

T∑
t=1

∥∥∥∥∥∥
∂2ψ

(1)
h

(
X∗
t , θ̈

∗ (v1)
)

∂θ∂θ′
−
∂2ψ

(1)
h

(
X∗
t , θ̈

∗ (v2)
)

∂θ∂θ′

∥∥∥∥∥∥
≤ C

H∑
h=1

1

T

T∑
t=1

m (X∗
t )
∥∥∥θ̈∗ (v1)− θ̈∗ (v2)

∥∥∥ ≤
H∑
h=1

(
1

T

T∑
t=1

m (X∗
t )

)
T−1/4C,

where the last inequality uses the fact that supv1,v2∈K

∥∥∥θ̈∗ (v1)− θ̈∗ (v2)
∥∥∥ ≤ CT−1/4 for some constant C < ∞

given the definitions of θ̈∗ (v1) and θ̈
∗ (v2) .

Because X∗
t is i.i.d. on {X1, . . . , Xn}, E∗

(
1
T

∑T
t=1m (X∗

t )
)
= 1

T

∑T
t=1m (Xt) = OP (1) given Assumption

4(i) and we conclude that

E∗
∥∥∥Ḡ∗(1)(θ̈∗(v1))− Ḡ∗(1)(θ̈∗ (v2))

∥∥∥ ≤
H∑
h=1

(
1

T

T∑
t=1

E∗ (m (X∗
t ))

)
T−1/4C = OP

(
T−1/4

)
= oP (1) ,
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uniformly in v1 and v2.
Proof of Theorem 4.1. Part (i) follows by Lemmas 4.1 and B.2. In particular, v̂ ∈ argminv∈Rp J (v) = OP (1)

by Lemma B.6(ii) of D&R (2013). Similarly, v̂
∗(1)
T = T 1/4

(
θ̂
∗(1)
T − θ̂T

)
∈ argminv∈VT J

∗(1)
T (v) is OP∗ (1) in

prob-P by Proposition 4.2 (i). Note that we can show that v̂
∗(1)
T is also the minimizer of J

∗(1)
T (v) over Rp since

θ̂T →P θ0, an interior point of Θ, which implies that with probability P approaching one, the union of VT over
all T ≥ 1 covers Rp. Part (ii) follows from Polya’s Theorem given that J (v) is continuous from Theorem 2.4.
Proof of Proposition 4.3. The proof follows by the same arguments as the proof of Proposition 3.1. In
particular, under the new global identification (Assumption 8), θ0 is the unique argminθ Q

(2) (θ), where

Q(2) (θ) = E (Φ′ (X1, θ))WE (Φ (X1, θ)) .

Thus, the result follows if we show that with probability P converging to 1,

sup
θ∈Θ

∣∣∣Q∗(2)
T (θ)−Q(2) (θ)

∣∣∣→P∗
0. (B.15)

Letting Q
(2)
T (θ) = Φ̄′

T (θ)WT Φ̄T (θ), where Φ̄T (θ) = ψ̄T (θ) − ∂
∂θ′ ψ̄T (θ) (θ − θ0) , (B.15) follows from: (A)

supθ∈Θ

∣∣∣Q∗(2)
T (θ)−Q

(2)
T (θ)

∣∣∣→P∗
0, in prob-P ; and (B) supθ∈Θ

∣∣∣Q(2)
T (θ)−Q(2) (θ)

∣∣∣→P 0. We can show that

ψ̄
∗(2)
T (θ) = ψ̄∗

T (θ)− E∗
(
ψ̄∗
T

(
θ̂T

))
− E∗

(
∂

∂θ′
ψ̄∗
T (θ)

)(
θ − θ̂T

)
= ψ̄∗

c,T (θ)−
(
∂

∂θ′
ψ̄T (θ)

)(
θ − θ̂T

)
,

where ψ̄∗
c,T (θ) ≡ ψ̄∗

T (θ)− E∗
(
ψ̄∗
T

(
θ̂T

))
= ψ̄∗

T (θ)− ψ̄T

(
θ̂T

)
. This implies that

Q
∗(2)
T (θ) = ψ̄

∗(2)′
T (θ)W

∗(2)
T ψ̄

∗(2)
T (θ)

= Q∗
T (θ)− 2ψ̄∗

c,T (θ)
′
W

∗(2)
T

∂

∂θ′
ψ̄T (θ)

(
θ − θ̂T

)
+
(
θ − θ̂T

)′( ∂

∂θ′
ψ̄T (θ)

)′

W
∗(2)
T

∂

∂θ′
ψ̄T (θ)

(
θ − θ̂T

)
≡ Q∗

T (θ) +R∗
1T (θ) +R∗

2T (θ) ,

where Q∗
T (θ) is as defined in Proposition 3.1 but using the weighting matrix W

∗(2)
T . Similarly, we can write

Q
(2)
T (θ) = Φ̄′

T (θ)WT Φ̄T (θ)

= ψ̄T (θ)
′
WT ψ̄T (θ)− 2ψ̄T (θ)

′
WT

∂

∂θ′
ψ̄T (θ) (θ − θ0)

+ (θ − θ0)
′
(
∂

∂θ′
ψ̄T (θ)

)′

WT
∂

∂θ′
ψ̄T (θ) (θ − θ0)

≡ QT (θ) +R1T (θ) +R2T (θ) .

Thus, to show (A), it suffices to show that

sup
θ∈Θ

|Q∗
T (θ)−QT (θ)| = oP∗ (1) , in prob-P ; (B.16)

sup
θ∈Θ

|R∗
1T (θ)−R1T (θ)| = oP∗ (1) , in prob-P ; and (B.17)

sup
θ∈Θ

|R∗
2T (θ)−R2T (θ)| = oP∗ (1) , in prob-P. (B.18)

Proposition 3.1 implies (B.16) whereas we can show that (B.17) and (B.18) follow by relying on the fact that

θ̂T →P θ0; and that supθ∈Θ

∣∣ψ̄∗
c,T (θ)− ψ̄T (θ)

∣∣ = oP∗ (1) and W
∗(2)
T −WT = oP∗ (1), in prob-P.

41



To prove (B), let µ(θ) = E(ψ(X1, θ)) and d(θ) = E
(
∂ψ(X1,θ)

∂θ′

)
. We have that

Q
(2)
T (θ)−Q(2)(θ) =

[
ψ̄′
T (θ)WT ψ̄T (θ)− µ′(θ)Wµ(θ)

]
− 2

[
ψ̄′
T (θ)WT

∂ψ̄T (θ)

∂θ′
− µ′(θ)Wd(θ)

]
(θ − θ0)

+(θ − θ0)
′
[
∂ψ̄′

T (θ)

∂θ
WT

∂ψ̄T (θ)

∂θ′
− d′(θ)Wd(θ)

]
(θ − θ0)

≡ [1] + [2] + [3].

By definition, [1] = QT (θ)−Q(θ) = oP (1) uniformly over Θ (see proof of Proposition 3.1). Moreover,

supθ∈Θ

∣∣ 1
2 [2]
∣∣ ≤ (supθ∈Θ ∥θ∥+ ∥θ0∥)×

(
supθ∈Θ ∥ψ̄T (θ)− µ(θ)∥∥WT ∥ 1

T

∑T
t=1 supθ∈Θ

∥∥∥∂ψ̄T (θ)
∂θ′

∥∥∥
+supθ∈Θ ∥µ(θ)∥∥WT −W∥ 1

T

∑T
t=1 supθ∈Θ

∥∥∥∂ψ̄T (θ)
∂θ′

∥∥∥
+supθ∈Θ ∥µ(θ)∥∥W∥ supθ∈Θ

∥∥∥∂ψ̄T (θ)
∂θ′ − d(θ)

∥∥∥) .
We can show that [2] = oP (1) uniformly on Θ by relying in particular on the fact that supθ∈Θ ∥ψ̄T (θ)−µ(θ)∥ =

oP (1), ∥WT −W∥ = oP (1), and supθ∈Θ

∥∥∥∂ψ̄T (θ)
∂θ′ − d(θ)

∥∥∥ = oP (1) under our assumptions. The proof that [3] =

oP (1) uniformly on Θ follows by similar arguments once we show that
∂ψ̄′

T (θ)
∂θ WT

∂ψ̄T (θ)
∂θ′ − d′(θ)Wd(θ) = oP (1)

uniformly on Θ.

To prove Theorem 4.2, we first prove the following two auxiliary results, which are the continuously-corrected
bootstrap analogues of Proposition 4.2 and Lemma 4.1, respectively.

Lemma B.3 Under Assumptions 1-8, if W
∗(2)
T →P∗

W in prob-P , (i)
∥∥∥θ̂∗(2)T − θ̂T

∥∥∥ = OP∗
(
T−1/4

)
in prob-P ,

and (ii) T 1/4
(
θ̂
∗(2)
T − θ̂T

)
has at least a subsequence that converges in distribution to some random variable V ∗

under P ∗, a.s. -P , such that for some δ > 0, P (∥V ∗∥ ̸= 0) ≥ δ.

Lemma B.4 Under Assumptions 1-9, if W
∗(2)
T →P∗

W in prob-P , we have that J
∗(2)
T (v) ⇒P∗

J (v) in ℓ∞ (K) ,

in prob-P, where J
∗(2)
T (v) is defined as J

∗(1)
T (v) but with ψ̄

∗(1)
T and W

∗(1)
T replaced with ψ̄

∗(2)
T and W

∗(2)
T , respec-

tively.

Proof of Proposition B.3. We follow the proof of Proposition 4.2. First, note that for all i, j = 1, . . . , p,

∂

∂θi
ψ̄
∗(2)
T (θ) =

∂

∂θi
ψ̄∗
T (θ)− ∂

∂θi

(
∂

∂θ′
ψ̄T (θ)

)(
θ − θ̂T

)
− ∂

∂θi
ψ̄T (θ)

and
∂2

∂θi∂θj
ψ̄
∗(2)
T (θ) =

∂2

∂θi∂θj
ψ̄∗
T (θ)− ∂2

∂θi∂θj

(
∂

∂θ′
ψ̄T (θ)

)(
θ − θ̂T

)
− 2

∂2

∂θi∂θj
ψ̄T (θ) .

Hence,

ψ̄
∗(2)
T

(
θ̂T

)
= ψ̄

∗(1)
T

(
θ̂T

)
and

∂

∂θi
ψ̄
∗(2)
T

(
θ̂T

)
=

∂

∂θi
ψ̄
∗(1)
T

(
θ̂T

)
for i = 1, . . . , p.

By a second-order mean value expansion of ψ̄
∗(2)
T

(
θ̂
∗(2)
T

)
around θ̂T , we can then write

√
T ψ̄

∗(2)
T

(
θ̂
∗(2)
T

)
=

√
T ψ̄

∗(1)
T

(
θ̂T

)
+
√
T
∂ψ̄

∗(1)
T

∂θ′

(
θ̂T

)(
θ̂
∗(2)
T − θ̂T

)
+

1

2
R

∗(2)
T

(
θ̄∗T
)
,

where R
∗(2)
T

(
θ̄∗T
)
= Ḡ∗(2) (θ̄∗T ) vec(v̂∗(2)T v̂

∗(2)′
T

)
and v̂

∗(2)
T ≡ T 1/4

(
θ̂
∗(2)
T − θ̂T

)
and θ̄∗T lies between θ̂

∗(2)
T and

θ̂T . Here, Ḡ∗(2)(θ) is as Ḡ∗(1)(θ) but with ψ̄
∗(1)
T (θ) replaced with ψ̄

∗(2)
T (θ). By a standard bootstrap uni-

form law of large numbers (see e.g. Giné and Zinn (1990)) and the fact that θ̂T →P θ0, we can show that

supθ

∣∣∣ ∂2

∂θi∂θj
ψ̄
∗(2)
T (θ)− κi,j (θ)

∣∣∣ = oP∗ (1), in prob-P , where

κi,j (θ) ≡ − ∂2

∂θi∂θj

(
∂

∂θ′
ρ (θ)

)
(θ − θ0)−

∂2

∂θi∂θj
ρ (θ) .
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By the continuous mapping theorem, κi,j
(
θ̄∗T
)
= − ∂2

∂θi∂θj
ρ (θ) + oP∗ (1), in prob-P , which implies that

√
T ψ̄

∗(2)
T

(
θ̂
∗(2)
T

)
=

√
T ψ̄

∗(1)
T

(
θ̂T

)
− 1

2
Gvec

(
v̂
∗(2)
T v̂

∗(2)′
T

)
+ oP∗ (1) + oP∗

(∥∥∥v̂∗(2)T

∥∥∥) . (B.19)

We can now follow exactly the same arguments as in the proof of Proposition 4.2.(i). To prove part (ii), we also
follow the proof of Proposition 4.2.(ii). We can show that

√
T ψ̄

∗(2)
T (θ̂

∗(2)
T ) =

√
T ψ̄

∗(1)
T (θ̂T )−

1

2
Gvec(v̂

∗(2)
T v̂

∗(2)′
T ) + oP∗(1), and

T 1/4 ∂ψ̄
∗(2)
T

∂θi
(θ̂

∗(2)
T ) = − ∂2ρ

∂θi∂θ′
(θ0)v̂

∗(2)
T + oP∗(1),

in prob-P , for i = 1, . . . , p. Hence, the second order optimality condition for an interior solution of the mini-

mization problem that θ̂
∗(2)
T solves implies that for any vector e ∈ Rp,

e′
(
Z̃∗
T +N∗

T

)
e ≥ 0,

where now

Z̃∗
T = −Z∗

T − 1

2

(
∂2ρ′

∂θi∂θj
(θ0)WGvec(v̂

∗(2)
T v̂

∗(2)′
T )

)
1≤i,j≤p

+ oP∗(1) and

N∗
T =

(
v̂
∗(2)′
T

∂2ρ′

∂θi∂θ
(θ0)W

∂2ρ

∂θi∂θ′
(θ0)v̂

∗(2)
T

)
1≤i,j≤p

+ oP∗(1),

where Z∗
T =

(
∂2ρ′

∂θi∂θj
(θ0)W

√
T ψ̄

∗(1)
T (θ̂T )

)
1≤i,j≤p

. Thus, there exists A > 0 such that for any (unit) vector

e ∈ Rp,
e′Z∗

T e−A
∥∥∥v̂∗(2)T

∥∥∥2 ≤ oP∗(1).

Following the same argument as in the proof of Proposition 4.2, we can show that there is a subsequence of(
Z∗
T , v̂

∗(2)
T

)
which converges in distribution to (Z∗, V ∗) under P, where Z∗ is a deterministic linear function of

a Gaussian vector. Thus,

Y ∗
T ′ ≡ e′Z∗

T ′e−A
∥∥∥v̂∗(2)T ′

∥∥∥2 dP→ Y ∗ ≡ e′Z∗e−A ∥V ∗∥2 ,

along this subsequence. Because Z∗ is a linear function of a Gaussian vector, Y ∗ is equal in distribution to
−e′Z∗e − A ∥V ∗∥2 and the argument of D&R (2013) can now be applied to this limiting process to show that

there exists a further subsequence of v̂
∗(2)
T that converges in distribution to V ∗ such that P (∥V ∗∥ > 0) > δ.

Proof of Lemma B.4. The proof follows exactly that of Lemma 4.1, given Lemma B.3. The main difference is

that the stochastic process Y ∗
T (v) ≡

√
T ψ̄

∗(2)
T

(
θ̂T + T−1/4v

)
now converges weakly in prob-P towards Ÿ (v) =

X− 1
2Gvec (vv

′) . Since X ∼ N (0,Σ), then X =d −X, where =d denotes equality in distribution, which implies

that Ÿ (v) =d −Y (v) = −
(
X + 1

2Gvec (vv
′)
)
, where Y (v) was defined in Lemma 4.1. Thus, J

∗(2)
T (v) =

Y ∗
T (v)

′
W

∗(2)
T Y ∗

T (v) ⇒P∗ −Y (v)
′
W (−Y (v)) = Y (v)

′
WY (v) ≡ J (v), given that W

∗(2)
T →P∗

W , in prob-P ,
concluding the proof.
Proof of Theorem 4.2. Part (i) follows as the proof of Theorem 4.1, given Lemmas B.4 and B.2 whereas part
(ii) follows from Polya’s Theorem.
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