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Abstract

Value-at-Risk (VaR) is increasingly used in portfolio risk measurement, risk capital allocation

and performance attribution. Financial risk managers are therefore rightfully concerned with

the precision of typical VaR techniques. The purpose of this paper is to assess the precision of

common dynamic models and to quantify the magnitude of the estimation error by constructing

confidence intervals around the point VaR and expected shortfall (ES) forecasts. A key challenge

in constructing proper confidence intervals arises from the conditional variance dynamics typi-

cally found in speculative returns. Our paper suggests a resampling technique which accounts

for parameter estimation error in dynamic models of portfolio variance.
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1 Motivation

Value-at-Risk (VaR) is increasingly used in portfolio risk measurement, risk capital allocation and

performance attribution, and financial risk managers are rightfully concerned with the precision of

typical VaR techniques. VaR is defined as the conditional quantile of the portfolio loss distribution

for a given horizon (typically a day or a week) and for a given coverage rate (typically 1% or 5%),

and the expected shortfall (ES) is defined as the expected loss beyond the VaR. The VaR and ES

measures are thus statements about the left tail of the return distribution and in realistic sample

sizes (500 or 1000 daily observations) such statements are likely to be made with considerable error.

The purpose of this paper is twofold: First, we want to assess the potential loss of accuracy

from estimation error when calculating VaR and ES. Second, we want to assess our ability to

quantify ex-ante the magnitude of this error via the construction of confidence intervals around

the VaR and ES measures. This issue of estimation risk for VaR has been considered previously

in the i.i.d. return case by for example Jorion (1996) and Pritsker (1997). But a key challenge in

constructing proper VaR and ES confidence intervals arises from the conditional variance dynamics

typically found in speculative returns. We quantify these dynamics using the celebrated GARCH

model of Engle (1982) and Bollerslev (1986). Due to its ability to capture salient features of the

return dynamics in very parsimonious and easily estimated specifications, GARCH has become the

workhorse model in financial risk management. Nevertheless, and surprisingly, very little is known

about the uncertainty in the GARCH VaR and ES forecasts arising from parameter estimation

error.1

Our paper extends the resampling technique of Pascual, Romo and Ruiz (2001), which accounts

for parameter estimation error in dynamic models of portfolio variance, to the case of VaR and

ES forecasts. To our knowledge no asymptotic theory has been established for calculating con-

fidence intervals for risk measures in this context. The resampling technique we propose can be

relatively easily extended to longer horizons, to multivariate risk models, and to allowing for model

specification error.

In a Monte Carlo study we find that commonly used practitioner VaR methods such as Historical

Simulation, which calculates the empirical quantile on a moving window of returns, imply nominal

90% confidence intervals for the one-day, 1% VaR that are much too narrow. Historical Simulation

essentially ignores the time varying risk from GARCH and the finding of poor confidence intervals

1Baillie and Bollerslev (1992) construct approximate prediction intervals for GARCH variance forecasts at multiple

horizons but ignore estimation error. Furthermore, risk management suveys and textbooks such as for example

Christoffersen (2003), Duffie and Pan (1997), and Jorion (2000) give little or no attention to the estimation error

issue.
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is therefore not surprising in this case. When we rule out GARCH effects, the bootstrap intervals

work well for Historical Simulation VaRs. Methods which properly account for conditional variance

dynamics, such as Filtered Historical Simulation (FHS) suggested by Hull and White (1998) and

Barone-Adesi et al (1998, 1999), imply 90% VaR confidence intervals that contain close to 90% of

the true VaRs.

In our benchmark case, the average width of the VaR interval for the best model is 27-38% of

the true VaR depending on the estimation sample size. The average width of the ES confidence

interval is 22-42% of the true ES value (again depending on the sample size) for the best model.

Estimation risk is thus found to be substantial even in tightly parameterized models. Importantly,

we find that it is in general more difficult to construct accurate confidence intervals for the ES

measure. Typically, the confidence intervals from risk models we consider tend to contain the true

ES less frequently than the 90% they should.

Accurate confidence intervals reported along with the VaR point estimate will facilitate the use

of VaR in active portfolio management as the following example illustrates: Consider a portfolio

manager who is allowed to take on portfolios with a VaR of up to 15% of the current capital. If

the risk manager calculates the actual point estimate VaR to be 13% with a confidence interval of

10-16% then the cautious portfolio manager should rebalance the portfolio to reduce risk. Relying

instead only on the point estimate of 13% would not signal any need to rebalance.

The remainder of the paper is organized as follows. Section 2 presents our conditionally nonnor-

mal GARCH portfolio return generating process and defines five risk models which we will consider

in the subsequent analysis. Section 3 presents the resampling methods used to generate the VaR

and ES confidence intervals. Section 4 presents the Monte Carlo setup and discusses the results we

obtained. Finally, Section 5 concludes and suggests avenues for future research.

2 Model and Risk Measures

In this paper we model the dynamics of the daily losses (the negative of returns) on a given financial

asset or portfolio according to the model

Lt = σtεt, t = 1, . . . , T, (1)

where εt are i.i.d. with mean zero, variance one, and distribution function G. In particular, we

focus on the case in which G is a standardized Student’s t distribution with d degrees of freedom,2

2The model can be generalized to allow for skewness following Theodossiou (1998). See also, Tsay (2002) Chapter

7.
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i.e. p
d/ (d− 2)εt ∼ t (d) .

To model the volatility dynamics we use a symmetric GARCH(1,1) model for σ2t :

σ2t = ω + αL2t−1 + βσ2t−1,

where α+β < 1. The GARCH(1,1) model with standardized Student’s t innovations has been very

successful in capturing the volatility clustering and nonnormality found in daily asset return data.

See for example Bollerslev (1987) and Baillie and Bollerslev (1989). Although we focus on this

particular model of returns, our approach applies to more complex models of σ2t and/or to other

distributions for εt.

At a given point in time, we are interested in describing the risk in the tails of the conditional

distribution of losses over a given horizon, say one-day, using all the information available at that

time. We consider two popular risk measures. One is the Value-at-Risk (VaR), which is simply

a conditional quantile of the losses distribution. The other is the Expected Shortfall (ES), which

measures the expected losses over the next day given that losses exceed VaR.

The VaR measure for time T + 1 with coverage probability p, based on information at time T ,

is defined as the (positive) value V aRp
T+1 such that

Pr
¡
LT+1 > V aRp

T+1|FT
¢
= p, (2)

where FT denotes the information available at time T . Typically p is a small number, e.g. p = 0.01

or p = 0.05.

Similarly, we define the ES measure for time T+1 with coverage probability p, given information

at time T , as the (positive) value ESp
T+1 such that

ESp
T+1 = E

¡
LT+1|LT+1 > V aRp

T+1,FT
¢
. (3)

Given model (1), we can obtain simplified expressions for V aRp
T+1 and ES

p
T+1. More specifically,

we can show that

V aRp
T+1 = σT+1G

−1
1−p ≡ σT+1c1,p, (4)

where G−11−p denotes the (1− p)-th quantile of G, the distribution of standardized losses εt = Lt/σt,

and σT+1 is the conditional volatility for time T + 1. For instance, if G is the standard normal

distribution Φ and p = 0.05, we have that G−11−p = Φ
−1
0.95 = 1.645, and thus V aR

p
T+1 = 1.645σT+1.

In the general case where ε ∼ G, equation (4) shows that we can express V aRp
T+1 as the product

of σT+1 with a constant c1,p ≡ G−11−p, whose value depends on G and on p.
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Similarly, under model (1), we can show that

ESp
T+1 = σT+1E

³
ε|ε > G−11−p

´
≡ σT+1c2,p, (5)

where ε is an i.i.d. random variable with mean zero, variance one, and distribution G. If

ε ∼ N (0, 1), we can show that E (ε|ε > a) = φ(a)
1−Φ(a) , for any constant a, where φ and Φ de-

note the density and the distribution functions of a standard normal random variable. Thus, in

this particular case, ESp
T+1 = σT+1

φ(Φ−11−p)
p and c2,p ≡ φ(Φ−11−p)

p . When ε has a standardized Student

distribution with d degrees of freedom, c2,p is given by a different formula. To describe this formula,

let td be a random variable following a Student-t distribution with d degrees of freedom. Andreev

and Kanto (2004) show that for any a, E (td|td > a) =
³
1 + a2

d

´
d

d−1
f(a)

1−F (a) , where f and F denote

the probability density and the cumulative density functions of td. Using this result, we can show

that in this case,

c2,p ≡ E
³
ε|ε > G−11−p

´
=

1 +Ãr d

d− 2G
−1
1−p

!2
/d

 d

d− 1
f
³q

d
d−2G

−1
1−p
´

p

r
d− 2
d

,

where G−11−p is the (1− p)-th quantile of the distribution of ε. In particular, G−11−p =
q

d−2
d t−1d,1−p,

where t−1d,1−p is the (1− p)-th quantile of the distribution of td.

In practice, we cannot compute the true values of V aRp
T+1 and ESp

T+1, since they depend on

the characteristics of the data generating process (i.e. they depend on G and on the conditional

variance model σ2T+1). Thus, we need to estimate these measures, which introduces estimation risk.

Our ultimate goal in this paper is to quantify the estimation risk by constructing a confidence — or

prediction — interval for the true but unknown risk measures.

We will consider six different estimation methods, divided into three groups.

2.1 Historical Simulation

The first and most commonly used method is referred to as Historical Simulation (HS). It calculates

VaR and ES using the empirical distribution of past losses. In particular, the HS estimate of

V aRp
T+1 is given by

HS-V aRp
T+1 = Q1−p ({Lt}) ,

where Q1−p ({Lt}) denotes the (1− p)-th empirical quantile of the losses data {Lt}Tt=1. In the
simulations below we compute the empirical quantiles by linear interpolation between adjacent
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ordered sample values. The HS estimate of ESp
T+1 is given by

HS-ESp
T+1 =

1

#
¡
Lt > HS-V aRp

T+1

¢
 X

Lt>HS-V aRp
T+1

Lt

 ,

where #
¡
Lt > HS-V aRp

T+1

¢
denotes the number of observations of {Lt}Tt=1 that are above the HS

estimate of the VaR.

The HS method is completely nonparametric and does not depend on any distributional as-

sumption, thus capturing the nonnormality in the data. It nevertheless ignores the potentially

useful information in the volatility dynamics.

The estimation methods that we consider next take into account the volatility dynamics by

explicitly relying on the GARCH(1,1) model for predicting σT+1. In particular, given (4) and (5),

estimates of V aRp
T+1 and ESp

T+1 can be obtained in three steps:

1. Estimate the GARCH(1,1) parameters through Gaussian QMLE, maximizing

lnL ∝ − 1
2

TX
t=1

ln
¡
σ2t
¢
+

µ
Lt

σt

¶2
.

Given the QML estimates
³
ω̂, α̂, β̂

´
, we can compute the variance sequence σ̂2t and the implied

residuals ε̂t = Lt/σ̂t from the past observed squared losses and the past estimated variance

using the recursion

σ̂2t+1 = ω̂ + α̂L2t + β̂σ̂2t ,

where σ̂21 =
ω̂

1−α̂−β̂ , the unconditional variance of Lt. A prediction of σT+1 is given by σ̂T+1,

where

σ̂2T+1 = ω̂ + α̂L2T + β̂σ̂2T .

2. Choose values for the constants c1,p and c2,p. Call these ĉ1,p and ĉ2,p, respectively.

3. Compute the estimates of V aRp
T+1 and ESp

T+1 as

dV aRp

T+1 = σ̂T+1ĉ1,pdESp

T+1 = σ̂T+1ĉ2,p.

We can distinguish between two groups of methods according to rule used to choose the constants

c1,p and c2,p in step 2: the normal model and nonparametric methods.
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2.2 Normal Conditional Distribution

Erroneously imposing the normal distribution on the innovation term εt gives the following estimates

of V aRp
T+1 and ESp

T+1:

N -V aRp
T+1 = σ̂T+1ĉ

N
1,p

N -ESp
T+1 = σ̂T+1ĉ

N
2,p,

where

ĉN1,p = Φ−11−p,

ĉN2,p =
φ
³
Φ−11−p

´
p

,

with Φ−11−p the (1− p)-th quantile of a standard normal distribution. We will call this the “Normal”

method. This method imposes conditional normality, which does not hold for real data, and it is

included only for comparison purposes.

2.3 Nonparametric Methods

These methods estimate c1,p and c2,p using the implied GARCH(1,1) residuals ε̂t = Lt/σ̂t. They

differ in the way they use the residuals to compute ĉ1,p and ĉ2,p.

Extreme Value Theory

The Extreme Value Theory (EVT) approach estimates c1,p and c2,p under the assumption that

the tail of the conditional distribution of the GARCH innovation is well approximated by an heavy-

tailed distribution. This approach was proposed by McNeil and Frey (2000), who derived estimates

of c1,p and c2,p based on the maximum likelihood estimator of the parameters of a Generalized

Pareto Distribution (GPD).

Here, we suppose that the tail of the conditional distribution of εt is well approximated by the

distribution function

F (z) = 1− L (z) z−1/ξ ≈ 1− cz−1/ξ,

whenever εt > u, where L (z) is a slowly varying function that we approximate with a constant

c, and ξ is a positive parameter. u is a threshold value such that all observations above u will

be used in the estimation of ξ. We let Tu denote the number of observations that exceed u. The
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Hill estimator (Hill, 1975) ξ̂ corresponds to the MLE estimator of ξ under the assumption that the

standardized residuals ε̂t are approximately i.i.d. It is defined as

ξ̂ =
1

Tu

TuX
t=1

ln
¡
ε̂(T−Tu+t)

¢− ln (u) ,
where ε̂(t) denote the t-th order statistic of ε̂t (i.e ε̂(t) ≥ ε̂(t−1) for t = 2, . . . , T ). The important

choice of Tu will be discussed at the beginning of the Monte Carlo Results section below.

Given ξ̂, an estimate of the tail distribution F is obtained by choosing c = Tu
T u1/ξ̂, which derives

from imposing the condition 1− F (u) = Tu
T . We thus obtain the following estimate of F :

F̂ (z) = 1− Tu
T

³z
u

´−1/ξ̂
.

The EVT approach relies on F̂ (z) to estimate the constants c1,p and c2,p. In particular, the estimate

of c1,p is equal to F̂−11−p, the (1− p)th-quantile of the tail distribution F̂ . We can show that

ĉHill
1,p = u

µ
p
T

Tu

¶−ξ̂
.

Similarly, to compute an estimate of c2,p we use F̂ (z) to compute E
³
ε|ε > F̂−11−p

´
, where ε ∼ i.i.d.

F̂ . We can show that the following closed form expression holds true

E
³
ε|ε > F̂−11−p

´
=

F̂−11−p
1− ξ̂

.

This implies the following Hill’s estimate of c2,p:

ĉHill
2,p =

ĉHill
1,p

1− ξ̂
.

The Hill’s estimates of V aRp
T+1 and ESp

T+1 are given by

Hill-V aRp
T+1 = σ̂T+1ĉ

Hill
1,p

Hill-ESp
T+1 = σ̂T+1ĉ

Hill
2,p ,

respectively.

Gram-Charlier and Cornish-Fisher Expansions

This method relies on the Cornish-Fisher and Gram-Charlier expansions to approximate the

conditional density of the standardized losses εt. For a standardized random variable, a Gram-

Charlier expansion produces an approximate density function that can be viewed as an expansion
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of the standard normal density augmented with terms that capture the effects of skewness and

excess kurtosis. Thus, Gram-Charlier expansions are a convenient tool to account for departures

of conditional normality.3

The Cornish-Fisher expansion approximates the inverse cumulative density function directly.

The approximation to c1,p is thus:

CF−11−p = Φ
−1
1−p +

γ1
6

·³
Φ−11−p

´2 − 1¸+ γ2
24

·³
Φ−11−p

´3 − 3Φ−11−p¸− γ21
36

·
2
³
Φ−11−p

´3 − 5Φ−11−p¸ ,
where

γ1 = E
¡
ε3
¢

γ2 = E
¡
ε4
¢− 3,

with ε ∼ G (0, 1). We will refer to the expansions methods generically as GC (for Gram-Charlier).

Thus, we have

ĉGC1,p =dCF−11−p,
wheredCF−11−p is the sample analogue of CF−11−p, i.e. it replaces γ1 and γ2 with their sample analogues
evaluated on the standardized residuals ε̂t = Lt/σ̂t:

γ̂1 =
1

T

TX
t=1

ε̂3t

γ̂2 =
1

T

TX
t=1

ε̂4t − 3.

Thus, we obtain the following estimate of V aRp
T+1:

GC-V aRp
T+1 = σ̂T+1ĉ

GC
1,p .

Similarly, we can define an approximation to c2,p that relies on the Gram-Charlier and Cornish-

Fisher expansions. In particular, we can show that

cGC2,p = E
³
ε|ε > CF−11−p

´
=

φ
³
CF−11−p

´
p

µ
1 +

γ1
6

·³
CF−11−p

´2 − 1¸+ γ2
24

CF−11−p

·³
CF−11−p

´2 − 3¸¶ .

The Gram-Charlier estimate of ESp
T+1 is given by

GC-ESp
T+1 = σ̂T+1ĉ

GC
2,p ,

3For an application of Gram-Charlier expansions in finance, see Backus, Foresi, Li and Wu (1997) and references

therein.
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where ĉGC2,p is obtained from cGC2,p by replacing CF
−1
1−p, γ1 and γ2 with their sample analogues.

When G is the standard normal distribution, the Gram-Charlier estimates of VaR and ES

coincide with those obtained with the “Normal” method.

Filtered Historical Simulation

The Filtered Historical Simulation (FHS) method estimates c1,p and c2,p from the empirical

distribution of the (centered) residuals. Thus it combines a model-based variance with a data-

based conditional quantile. Several papers including Hull and White (1998), Barone-Adesi et al

(1999), and Pritsker (2001) have found the FHS method to perform well.

The FHS estimates of c1,p and c2,p are given by

ĉFHS
1,p = Q1−p

³©
ε̂t − ε̂

ªT
t=1

´
and

ĉFHS
2,p =

1

#
³
ε̂t − ε̂ > ĉFHS

1,p

´
 X

ε̂t>ĉFHS
1,p

¡
ε̂t − ε̂

¢ ,

where ε̂ = T−1
PT

t=1 ε̂t. Centered residuals are considered because their sample average is zero by

construction, thus better mimicking the true mean zero expectation of the standardized errors εt.

If a constant is included in the losses model,
PT

t=1 ε̂t = 0 and centering of the residuals becomes

irrelevant.

This implies the following FHS estimates of V aRp
T+1 and ESp

T+1:

FHS-V aRp
T+1|T = σ̂T+1ĉ

FHS
1,p

ES-V aRp
T+1 = σ̂T+1ĉ

FHS
2,p .

3 Resampling Methods for Estimation Risk

In this section we describe the bootstrap methods we use to assess the estimation risk in the risk

estimates presented above.

Our first bootstrap method applies to Historical Simulation. This bootstrap method ignores

any volatility dynamics and simply treats losses as being i.i.d. This “naive” bootstrap method

generates pseudo losses by resampling with replacement from the set of original losses, according

to the following algorithm:

Bootstrap Algorithm for Historical Simulation Risk Measures
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Step 1. Generate a sample of T bootstrapped losses {L∗t : t = 1, . . . , T} by resampling with
replacement from the original data set {Lt}.

Step 2. Compute the HS estimates of VaR and ES on the bootstrap sample:

HS-V aR∗pT+1 = Qp

³
{L∗t }Tt=1

´
.

HS-ES∗pT+1 =
1

#
¡
L∗t > HS-V aR∗pT+1

¢
 X

L∗t>HS-V aR∗pT+1

L∗t

 .

Step 3. Repeat Steps 1 and 2 a large number of times, B say, and obtain a sequence of bootstrap

HS risk measures. For instance,
n
HS-V aR∗p(i)T+1 : i = 1, . . . , B

o
denotes a sequence of bootstrap VaR

measures. We set B = 999 in our Monte Carlo simulations below.

Step 4. The 100 (1− α)% bootstrap prediction interval for V aRp
T+1 is given by·

Qα/2

µn
HS-V aR∗p(i)T+1

oB
i=1

¶
, Q1−α/2

µn
HS-V aR∗p(i)T+1

oB
i=1

¶¸
,

where Qα (·) is the α−quantile of the empirical distribution of
n
HS-V aR∗p(i)T+1

o
. A similar bootstrap

interval can be computed for ESp
T+1.

Following the Historical Simulation approach, this naive bootstrap method is completely non-

parametric, avoiding any distributional assumptions on the data. However, by implicitly assuming

that returns are i.i.d., this method fails to capture the dependence in returns when it exists. In

particular, as our simulations will show, this method of computing confidence intervals for risk

measures is not appropriate when returns follow a GARCH model.

The validity of the bootstrap for financial data depends crucially on its ability to correctly

mimic the dependence properties of returns. A natural and often used bootstrap method for

GARCH models consists of resampling with replacement the standardized residuals, the idea being

that the standardized errors are i.i.d. in the population. The bootstrap returns are then recursively

generated using the GARCH volatility dynamic equation and the resampled standardized residuals.

The bootstrap methods that we describe next are based on this general idea.

As described in the previous section, under model (1), the VaR and ES have the following

simplified expressions

V aRp
T+1 = σT+1c1,p, (6)

11



and

ESp
T+1 = σT+1c2,p, (7)

where c1,p and c2,p are a function of G and p, and σT+1 is given by the square root of

σ2T+1 = ω + αL2T + βσ2T . (8)

Given (6) and (7), there are two sources4 of risk associated with predicting V aRp
T+1 and ES

p
T+1

using information available at T . One is the uncertainty in computing c1,p and c2,p. If the risk

model correctly specifies G, then this source of risk is not present. The other source of risk relates

to predicting the volatility σT+1 using day T ’s information. For our GARCH(1,1) model, it is easy

to see that σ2T+1 depends on information available at day T and on the unknown parameters ω, α

and β. In particular, using the GARCH equation (8), we can write σ2T as a function of past losses

as follows:

σ2T =
ω

1− α− β
+ α

∞X
j=0

βj
µ
L2T−j−1 −

ω

1− α− β

¶
.

Replacing ω, α and β with their MLE estimates yields

σ̂2T =
ω̂

1− α̂− β̂
+ α̂

T−2X
j=0

β̂
j
µ
L2T−j−1 −

ω̂

1− α̂− β̂

¶
, (9)

which delivers a point estimate σ̂2T+1 = ω̂ + α̂L2T + β̂σ̂2T . The need to estimate the GARCH para-

meters introduces the second source of estimation risk.

The presence of estimation risk in computing V aRp
T+1 and ESp

T+1 is our main motivation for

using the bootstrap to obtain prediction intervals for these risk measures. The bootstrap methods

we use are based on Pascual, Romo and Ruiz (2001), who proposed a bootstrap method for building

prediction intervals for returns volatility σt based on the GARCH(1,1) model. In particular, for

the nonparametric methods, we extend the Pascual, Romo and Ruiz (2001) resampling scheme to

the case of V aRp
T+1 and ESp

T+1 by using the bootstrap to account for estimation error not only in

σT+1 but also in the constants c1,p and c2,p that multiply σT+1.

Bootstrap Algorithm for GARCH-Based Measures of Risk

Step 1. Estimate the GARCH model by MLE and compute the centered residuals ε̂t− ε̂, where

ε̂t =
Lt
σ̂t
, t = 1, . . . , T. Let ĜT denote the empirical distribution function of ε̂t.

4 In general, model risk is a third source of uncertainty when forecasting V aRp
T+1 and ESpT+1. Here, we abstract

from this source of uncertainty since we take the GARCH model of returns as being correctly specified.
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Step 2. Generate a bootstrap pseudo series of portfolio losses {L∗t : t = 1, . . . , T} using the
recursions

σ̂∗2t = ω̂ + α̂L∗2t−1 + β̂σ̂∗2t−1,

L∗t = σ̂∗t ε
∗
t , for t = 1, . . . , T

where ε∗t ∼ i.i.d.ĜT and where σ̂∗21 = σ̂21 =
ω̂

1−α̂−β̂ .With the bootstrap pseudo-data {L
∗
t }, compute

the bootstrap MLE’s ω̂∗, α̂∗ and β̂
∗
.

Step 3. Obtain a bootstrap prediction of volatility σ̂∗T+1 according to

σ̂∗2T+1 = ω̂∗ + α̂∗L∗2T + β̂
∗
σ̂∗2T ,

given the initial values

L∗T = LT ,

σ̂∗2T =
ω̂∗

1− α̂∗ − β̂
∗ + α̂∗

T−2X
j=0

β̂
∗j
Ã
L2T−j−1 −

ω̂∗

1− α̂∗ − β̂
∗

!
. (10)

Step 4. Compute ĉ∗1,p and ĉ∗2,p, the bootstrap estimates of c1,p and c2,p. These bootstrap estimates
are computed exactly in the same fashion as ĉ1,p and ĉ2,p with the difference that they are evaluated

on the bootstrap data instead of the real data. In particular, for the Normal model we simply set

ĉ∗1,p = ĉN1,p and ĉ∗2,p = ĉN2,p

where ĉi1,p and ĉi2,p are as described before. In contrast, for the nonparametric methods, we first

compute the bootstrap residuals

ε̂∗t =
L∗t
σ̂∗t

,

with σ̂∗2t = ω̂∗ + α̂∗R∗2t−1 + β̂
∗
σ̂∗2t−1 and σ̂∗21 = σ̂21. Next, we evaluate the estimates of c1,p and c2,p

on the data set {ε̂∗t }Tt=1. For instance,

ĉ∗FHS
1,p = Q1−p

µn
ε̂∗t − ε̂∗

oT
t=1

¶
.

Step 5. For each estimation method, compute the bootstrap estimates of V aRp
T+1 and ESp

T+1

using σ̂∗T+1 and ĉ∗1,p and ĉ∗2,p.

Step 6. Identical to steps 3 and 4 in the naive bootstrap.
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Step 3 accounts for the estimation risk in computing σ̂T+1 by replacing the estimates ω̂, α̂ and

β̂ by their bootstrap analogues ω̂∗, α̂∗ and β̂
∗
when computing σ̂∗T+1. In particular, (10) replicates

the way in which σ̂2T is computed in (9). Notice however that σ̂
∗2
T is conditional on the observed

past observations on the losses {Lt : t = 1, . . . , T} , not on the bootstrap losses generated in step 2,
implying that it is small when the (true) losses are small at the end of the sample and large when

they are large.

For the FHS method, bootstrap residuals are centered before computing the empirical quantile

as a way to enforce the mean zero property on the estimated bootstrap residuals (centering of the

residuals is not needed if a constant is included in the returns model since in that case the residuals

have mean zero by construction).

We conclude this section by noting that it may be possible to apply asymptotic approximations

such as the delta-method to calculate prediction intervals for the GARCH variance forecast.5 How-

ever, it is not at all obvious how to calculate prediction intervals for VaR and ES using the delta

method in the nonparametric risk models we consider. Furthermore, even in parametric cases, the

approximate delta-method is likely to perform worse than the resampling techniques considered

here. In the following we therefore restrict attention to prediction intervals calculated via our

resampling technique.

4 Monte Carlo Results

As indicated in the introduction the purpose of our paper is twofold: First, we want to assess the

potential loss of accuracy from estimation error when calculating VaR and ES. Second, we want to

assess our ability to quantify ex-ante the magnitude of this error via the construction of confidence

intervals around the risk measures. This section provides quantitative evidence on these two issues

through a Monte Carlo study. The main focus of our analysis will be the realistic situation of

time varying portfolio risk driven in our case by a GARCH model. However, before venturing

into the more complicated GARCH case it is sensible to apply our analysis to the case of simple,

independent losses.

4.1 Independent Losses

In Table 1 we simulate independent daily loss data from a Student distribution with mean zero

and variance 202/252, implying a volatility of 20% per year. and calculate VaR (top panel) and ES

5This approach is taken for example in Duan (1994).
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(bottom panel) risk measures by Historical Simulation.6 Each line in the table corresponds to one

of four experiments with degrees of freedom equal to 8 or 500, and estimation sample sizes equal to

500 or 1000 days respectively. The table reports the properties of the point estimates (left panel)

of VaR and ES as well as the properties of the corresponding bootstrap intervals (right panel).

The top left panel shows that the HS-VaRs have little bias but the root mean squared errors

(RMSEs) indicate that the VaRs are somewhat imprecisely estimated. The RMSE is around 10%

of the true VaR value when the degree of freedom equals 8. The top right panel show that the VaR

confidence intervals from the bootstrap have nominal coverage rates close to the promised 90%.

The average width of the bootstrap intervals is between 17 and 37 percent of the true VaR value

depending on the sample size and on the degrees of freedom. In the most realistic case where d = 8

and T = 500 the average 90% interval width is a substantial 37% of the true VaR value.

The bottom left panel shows that the bias of the ES point estimates are small but again that

the RMSEs are substantial in the leading case where d = 8 and T = 500. Furthermore the bottom

right panel shows that the coverage rates of the 90% confidence intervals are substantially less than

90%. The confidence intervals can therefore not be trusted for the ES risk measures. This finding

is repeated often in the GARCH analysis below.

4.2 GARCH Losses

We will now consider four versions of the GARCH-t(d) data generating process (DGP) below. In

each version we set α = .10 and ω =
¡
202/252

¢ ∗ (1− α− β) . The unconditional volatility is thus

20% per year. Our four chosen parameterizations are:

1) Benchmark: β = .80, d = 8

2) High Persistence: β = .89, d = 8

3) Low Persistence: β = .40, d = 8

4) Normal Distribution: β = .80, d = 500

Recall that before applying the Hill estimator for the extreme value distribution we need to

choose a cut-off point, Tu, which defines the sub-sample of extremes from which the tail index

parameter will be estimated. In order to pick this important parameter we perform an initial

Monte Carlo experiment in which we simulate data from the four DGPs above, estimate the tail

index on a grid of cut-off values, and finally compute the resulting bias and root mean squared

error measures (RMSEs) from the one-day VaR and ES forecasts. Figures 1 and 2 show the results

for the case of 500 and 1000 total estimation sample points respectively. In each case, we choose

6We only analyze the Historical Simulation risk model here as the GARCH based risk models are not identified

when returns are independent.
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a grid of truncation points which correspond to including the 0.5% to 10% largest losses in the

sub-sample of extremes. The horizontal axis in each figure denotes the number of included extreme

observations (out of 500 and 1000 respectively), and the vertical axis shows the bias and RMSEs.

From the viewpoint of minimizing RMSE subject to achieving a bias that is close to zero, and

looking broadly across the four DGPs, it appears that a percentage cut-off of 2% is reasonable for

both VaR and ES. Notice that we do not want to choose the truncation point on a case by case

basis as that would potentially bias the overall results in favor of the Hill-based risk model.

Tables 2-5 contain the Monte Carlo results corresponding to the four DGPs above. The top

half of each table contains the VaR results and the bottom half the ES results. The left half of

each table contains the accuracy properties of the point estimates of the relevant risk measure and

the right half contains the 90% bootstrap interval properties. For both the VaR and ES forecasts

we consider two estimation sample sizes, T = {500, 1000} .
In all the experiments we calculate the properties of the point estimates from 100,000 Monte

Carlo replications. For the properties of the bootstrap prediction intervals, we consider only 5,000

Monte Carlo replications, each with 999 bootstrap replications. Any Monte Carlo study of the

bootstrap is computationally demanding and this is particularly so in our study due to the nonlinear

optimization involved in estimating GARCH.

4.3 Point Predictions of VaR and ES

While the main focus of our paper is on constructing finite sample prediction intervals of the VaR

and ES measures, we first consider the various models’ ability to accurately point forecast the risk

measures. The point prediction results on VaR and ES are reported in terms of bias and root mean

squared error, which are reported in the left half of each table.

4.3.1 The Benchmark Case

The top panel of Table 2 contains the VaR results for our benchmark DGP when the sample size

is T = 500. Considering first the bias of the VaR estimates, the main thing to note is the upward

bias of the HS and the downward bias of the Normal. The latter is of course to be expected as the

Normal imposes a distribution tail which is too thin for the 1% coverage rate. The other models

appear to show only minor biases with the FHS model displaying the smallest bias overall.

In terms of the root mean squared error (RMSE) of the VaR estimates, we see that the HS

has by far the highest RMSE, followed by the GC model. The Hill model in particular, but also

the FHS model are much lower. The RMSE of the Normal is also low but, as mentioned before, it

displays considerable bias.
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Increasing the sample size to 1000 in the second panel of Table 2 implies smaller biases in

general. The HS is still biased upwards and the Normal downwards. In terms of RMSE, the Hill

and FHS methods perform very well.

We next examine the quality of the point predictions of ES by the various models. We now

find a very large downward bias for the GC and again for the Normal model. In comparison with

the VaR results, the various estimated ES models have RMSEs which are considerably larger. The

increase in RMSE is due partly to increases in the bias. The results for the GC model indicate that

it is not useful for ES calculations the way we have implemented it here. Notice that in the ES case

the GC model is an aggregate of two approximations: First, the Cornish-Fisher approximation to

the VaR and second the Gram-Charlier approximation to the cumulative density. Unfortunately,

the two approximation errors appear to compound each other for the purpose of ES calculation.

4.3.2 The High Persistence Case

The top half of Table 3 reports the VaR findings for a DGP of high volatility persistence and

therefore also high kurtosis. We see that the biases and RMSEs are comparable to the benchmark

DGP in Table 2 for the conditional models but not for the HS model. The HS model is now even

more biased and has a RMSE of more than 50% of the average true VaR, which is approximately

2.71. The Hill and FHS models again perform very well.

The bottom half of Table 3 reports results for ES using the high volatility persistence DGP. We

find that the results are very close to the bottom half of Table 2 for the conditional models but

not for HS. This finding matches the results for VaR reported in the top halves of Tables 2 and 3

respectively. As before, the bias and RMSEs of the HS model are very large, and for the ES the

GC model again performs poorly.

4.3.3 The Low Persistence Case

In the top half of Table 4 we consider the VaR case of low volatility persistence. Not surprisingly

the HS model performs much better now. Interestingly, the Hill and FHS models perform very well

here also. The bottom half of the table shows the results for ES forecasting in the low persistence

process. As in the VaR case, we see that the HS model now performs relatively well.

4.3.4 The Conditional Normal Case

The top half of Table 5 contains VaR results for the conditionally normal GARCH DGP. Comparing

with Table 2 we see that the bias and RMSEs are considerably smaller now. It is still the case that
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the HS model is much worse than the conditional models. The Normal model of course performs

very well now as it is the true model. Interestingly, the Hill and FHS models which do not directly

nest the Normal model still perform decently. This is important as the risk manager of course never

knows exactly the degree of conditional non-normality in the return distribution.

The bottom half of Table 5 considers the ES risk measure. Comparing the bottom of Table 5

with the bottom of Table 2 we see that the biases and RMSEs are generally much smaller under

conditional normality. The biases and RMSEs for ES are very much in line with the ones from VaR

in the top half of Table 5. This is sensible from the perspective that under conditional normality

the ES does not contribute information over and beyond the VaR.

4.4 Bootstrap Prediction Intervals for VaR and ES

The above discussion was concerned with the precision of the VaR and ES point forecasts. We now

turn our attention to the results for the bootstrap prediction intervals from the different VaR and

ES models. That is, we want to assess the ability of the bootstrap to reliably predict ex ante the

accuracy of each method in predicting the 1-day-ahead 1% VaR and ES. The prediction interval

results are reported in the right hand side of each table. We show the true coverage rate of nominal

90% intervals as well as the average limits of the confidence intervals and the average width of the

confidence interval as a percentage of the true VaR point forecast.

4.4.1 The Benchmark Case

Turning back to Table 2 and looking at the top panel, we remark that the historical simulation

VaR (HS) intervals (calculated from the i.i.d. bootstrap) have a terribly low effective coverage for

a promised nominal coverage of 90%. Furthermore, the confidence intervals are on average very

wide. The HS method ignores the dynamics in the DGP which is costly both in terms of coverage

and width.7

The VaR imposing the conditional normal distribution (Normal) has a coverage which is as bad

as the HS model but which has a much smaller average width. The small width does of course

not offer much comfort here as the nominal coverage is much too small. The GC model has larger

coverage than the Hill but has wider intervals. Finally, the FHS model has slight over-coverage,

7We also calculated GARCH-bootstrap confidence intervals for the HS model. These performed better than the

iid bootstrap intervals reported in the tables but they were still very inaccurate and were therefore not included in

the tables. The iid boostrap is shown here because it is arguably most in line with the model-free spirit of the HS

model.
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which is arguably to be preferred to under-coverage, but it also has a fairly wide average coverage

intervals.

In the second panel of Table 2 we increase the risk manager’s sample size to 1000 past return

observations in each simulation. Comparing with the top panel in Table 2 the result are as follows:

The HS model coverage actually gets worse with sample size. In the short (500 observations) sample

the HS model is able to pick up some of the dynamics in the return process, but it is less able to do

so as the sample size increases. The average width is smaller as the sample size increases due to the

higher precision in estimating the (unconditional) VaR. The Normal model also has worse coverage

and better width. This may seem puzzling, but note that there is no reason to believe that a larger

sample size will improve the coverage of a misspecified model. The Hill and GC models both have

better coverages and widths now. Finally, notice that the FHS model also benefits from the larger

estimation samples and show better coverages and lower widths.

The bottom half of Table 2 reports results for the bootstrap prediction intervals from the

different ES models. We notice the following: The Historical Simulation ES intervals (calculated

from the i.i.d. bootstrap) have a low effective coverage for a promised nominal coverage of 90%.

Furthermore the confidence intervals on average are quite wide. The HS results for ES are roughly

comparable with those for VaR in Table 2. The ES imposing the conditional normal distribution

(Normal) has a surprisingly low coverage. Thus, while the normal distribution is bad for VaR

prediction intervals it is much worse for ES prediction intervals. The Hill model has the best

coverage but is quite wide. The GC model has very low coverage and quite wide intervals. Finally,

the FHS model has considerable under-coverage. This is in contrast with the VaR intervals in the

top half of the table.

Looking more broadly at the results in Table 2, we see that the Hill model has the best coverage

followed by the FHS model. The HS, Normal and GC models have poor coverage. Compared with

the top half of the table it thus appears that while the FHS performs well for VaR prediction

interval calculation, it is less useful for ES prediction intervals. The Hill estimator appears to be

preferable here. Generally the coverage rates are considerably worse for ES than for VaR.

4.4.2 The High Persistence Case

The top right hand side of Table 3 reports VaR interval results from a return generating process

with relatively high persistence. Comparing panel for panel with the benchmark process in Table

2, we notice that the HS model has worse coverage and worse width, whereas the Normal model

has better coverage. The GC model has similar coverage but wider intervals. The FHS has good

coverage under high persistence but the intervals are wider here as well. Thus, the higher persistence
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associated with higher kurtosis leads to wider prediction intervals overall.

The bottom right hand side of Table 3 reports ES results. Comparing the VaR and ES results

in Table 3 we see that the coverage rates are typically much worse for ES than VaR.

A comparison of the results for ES against the benchmark process in Table 2 reveals that the

HS model has worse coverage and worse width. The Normal model has very poor coverage still.

The Hill model generally has better coverage but wider intervals. The GC model still has very poor

coverage. Finally, the FHS has roughly the same coverage under high persistence but the widths

are worse here as well. The higher persistence again leads to wider prediction intervals overall.

4.4.3 The Low Persistence Case

The top right hand side of Table 4 reports VaR results from returns with low variance persistence.

Not surprisingly the results are reversed from Table 3, which contained high persistence variances.

We now find that the HS model has much better coverage and slightly better widths. The low

persistence process is closer to i.i.d., the only assumption under which the HS model is truly

justified. The Normal model has worse coverages but it has better widths. The Hill and GC

models have similar coverages and better widths than before. Finally, the FHS model has worse

coverages, but the widths are slightly better.

The bottom right hand side of Table 4 reports ES results from returns with low variance

persistence. We now find that the HS performs much better as we are closer to the i.i.d. case but

otherwise the results are similar to the benchmarks in Table 2.

4.4.4 The Conditional Normal Case

In Table 5 we generate returns which are close to conditionally normally distributed. Comparing

the VaR panels in Table 5 with the corresponding panels in Table 2, where the conditional returns

were t(8), we see the following: The HS model now has worse coverage but also lower width than

before. The Normal model has better coverage and better width. This is not surprising as the

Normal model is now closer to the truth. The Hill and GC models have similar coverage and better

width than before. The FHS model also has roughly the same coverage under conditional normality

but better width than under the conditional t(8). Not surprisingly, the models generally perform

better under conditional normality. It is perhaps surprising that the Hill model performs well under

conditional normality as the tail index parameter may be biased in this case.

In the bottom half of Table 5 we report the ES results. As expected, the models generally

perform better under conditional normality in terms of coverage. The HS model is again notably
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worse than the other models, the FHS is also worse than the others. The Normal model and the

GC model which nests the normal models naturally have very good coverages.

4.5 Summary of Results

Based on the results in Tables 2-5, we reach the conclusion that the HS model not only gives bad

point estimates of VaR and ES estimates (see also Pritsker 2001) but it also implies very poor

confidence intervals. This is true even when the degree of volatility persistence is relatively modest.

The Normal model of course works reasonably well when the normality assumption is close to

true in the data but otherwise not. The Hill and FHS models perform quite well, even for the

conditionally normal distribution. We noticed also that the GC model has serious problems when

calculating ES point estimates and intervals for conditionally non-normal returns. Finally, the FHS

model works particularly well for VaR calculations.

In general we found that the RMSEs were much higher (relative to the true value) when cal-

culating ES compared to VaR measures. Thus, while the ES measure in theory conveys more

information about the loss distribution tail, it is also harder to estimate precisely. This point is

important to consider when arguing over the relative merits of the two risk measures.

Unfortunately, it is also much harder to reliably assess ex ante the accuracy of ES measures

compared with the VaR measures. While the Hill, GC and particularly the FHS model give

quite reliable coverage rates for the 90% confidence intervals around the VaR point forecast, the

corresponding coverage rates for the ES measure are typically much lower than 90% and thus

unreliable. We suspect that the higher bias of the ES forecasts is the culprit of the under-coverage

in this case. Notice that from a conservative risk management perspective over-coverage would be

preferred to under-coverage.

Finally, while the FHS model appears to be preferable for calculating VaR forecasts and forecasts

intervals, the Hill model performs well in the ES case. The distribution-free FHS model is useful for

quantile forecasting but when the mean beyond the quantile must be forecast, then the functional

form estimation implicit in the Hill method adds value.

5 Conclusions

Risk managers and portfolio managers often haggle over the precision of a VaR estimate. A trader

faced with a point estimate VaR which exceeds the agreed upon VaR limit may be forced to

rebalance the portfolio at an inopportune time. Quantifying the uncertainty of the VaR point

estimate is important because it allows for risk managers to make more informed decisions when
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dictating a portfolio rebalance.

Consequently we suggest a bootstrap method for calculating confidence intervals around the VaR

point estimate. The procedure is valid even under conditional heteroskedasticity and nonnormality,

which are important features of speculative asset returns. We find that the FHS VaR models yield

confidence intervals which have correct coverage but which are also quite wide. In our benchmark

case, the average width of the VaR interval for the FHS model is 27-38% of the true VaR depending

on the sample size. VaR models based on the normal distribution are much narrower but also often

too narrow causing under-coverage of the intervals. We also find that the accuracy of ES forecasts

is typically much lower than that of VaR forecasts. Furthermore the accuracy of the ES forecasts

is harder to quantify ex ante. In our benchmark case the average width of the ES confidence

interval is 22-42% of the true ES value (again depending on the sample size) for the best model.

We believe that this quantification of the level of estimation risk in common risk models have

important implications for the choice of risk model and risk measure.8

We have studied the effects of estimation risk at the portfolio level only (See Benson and Zangari,

1997, Engle and Manganelli, 2004, and Zangari, 1997). Many banks rely instead on multivariate

risk factor models such as those considered in Glasserman, Heidelberger, and Shahabuddin (2000

and 2002). We conjecture that the issue of estimation risk is probably even more important in the

more richly parameterized multivariate case.

8Note that one of the industry benchmarks, namely RiskMetrics, relies on calibrated rather than estimated para-

meters and does not allow for the calculation of estimation risk. The issue of VaR uncertainty is nevertheless crucial

in those models as well but it is not easily quantified.
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Figure 1: RMSE and Bias of Hill Estimator for Various Samples of Extremes

The Total Sample Consists of 500 Daily Loss Observations
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Notes to Figure: We perform a Monte Carlo study of the choice of sample size of extremes in EVT

parameter estimation. The figure shows the root mean squared error (dashed) and bias (solid) of

the VaR (left panel) and ES (right panel) estimates against the extremes estimation sample size.

The total sample size is 500 observations.
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Figure 2: RMSE and Bias of Hill Estimator for Various Samples of Extremes

The Total Sample Consists of 1000 Daily Loss Observations
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Notes to Figure: We perform a Monte Carlo study of the choice of sample size of extremes in EVT

parameter estimation. The figure shows the root mean squared error (dashed) and bias (solid) of

the VaR (left panel) and ES (right panel) estimates against the extremes estimation sample size.

The total sample size is 1000 observations.
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Table 1: Historical Simulation method when losses are i.i.d.

DGP: Lt ∼ i.i.d. t (d) with E (Lt) = 0 and V ar (Lt) =
(20)2

252

VaR Properties VaR Bootstrap Intervals Properties

d T Average Bias RMSE
Coverage

Rate

Lower

Limit

Upper

Limit

Width

% VaR

8 500 3.200 0.040 0.339 89.44 2.70 3.87 37.18

1000 3.165 0.004 0.229 88.58 2.81 3.56 23.75

500 500 2.950 0.016 0.221 88.52 2.60 3.35 25.27

1000 2.929 −0.006 0.152 88.46 2.69 3.18 16.86

ES Properties ES Bootstrap Intervals Properties

Average Bias RMSE
Coverage

Rate

Lower

Limit

Upper

Limit

Width

% ES

8 500 3.823 −0.095 0.496 71.74 3.08 4.42 34.06

1000 3.859 −0.058 0.353 79.44 3.30 4.35 26.73

500 500 3.304 −0.053 0.267 75.74 2.86 3.61 22.39

1000 3.324 −0.033 0.190 81.38 3.00 3.58 17.08

Notes to Table: We simulate T independent daily Student’s t(d) losses and calculate VaR (top panel)

and ES (bottom panel) risk measures by Historical Simulation. The four experiments correspond

to degrees of freedom equal to 8 and 500, and estimation sample sizes equal to 500 and 1000 days.

The table reports the properties of the point estimates (left panel) of VaR and ES as well as the

properties of the corresponding bootstrap intervals (right panel).
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Table 2. 90% Prediction Intervals for 1% VaR and ES: Benchmark Case

DGP: GARCH-t (d) with α = 0.10, β = 0.80 and d = 8

VaR Properties VaR Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage

Rate

Lower

Limit

Upper

Limit

Width

% VaR

500 HS 3.282 0.175 0.748 61.00 2.73 4.02 41.65

Normal 2.866 −0.240 0.331 60.18 2.53 3.18 20.99

Hill 3.043 −0.064 0.327 84.88 2.55 3.50 30.79

GC 3.194 0.088 0.493 85.20 2.60 3.66 34.13

FHS 3.138 0.032 0.383 91.32 2.57 3.76 38.40

1000 HS 3.240 0.134 0.671 47.64 2.85 3.69 27.07

Normal 2.872 −0.234 0.289 41.22 2.63 3.09 14.86

Hill 3.051 −0.055 0.238 84.94 2.69 3.38 22.09

GC 3.245 0.139 0.435 87.46 2.77 3.62 27.39

FHS 3.106 0.000 0.268 90.58 2.70 3.52 26.65

ES Properties ES Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage

Rate

Lower

Limit

Upper

Limit

Width

% ES

500 HS 3.966 0.115 0.978 60.86 3.15 4.60 37.76

Normal 3.283 −0.568 0.631 19.10 2.90 3.64 19.39

Hill 3.806 −0.046 0.561 81.60 2.99 4.60 41.73

GC 2.609 −1.242 1.435 41.58 1.98 3.79 47.02

FHS 3.728 −0.123 0.539 74.62 2.95 4.35 36.50

1000 HS 4.020 0.169 0.893 53.34 3.40 4.56 30.28

Normal 3.289 −0.561 0.601 6.22 3.01 3.54 13.73

Hill 3.865 0.014 0.411 87.18 2.69 3.38 22.09

GC 2.490 −1.360 1.484 12.94 1.99 3.33 34.64

FHS 3.771 −0.079 0.394 79.30 3.18 4.27 28.23

Notes to Table: We simulate T daily GARCH(1,1) losses with Student’s t(d) innovations (bench-

mark parameter configuration) and calculate VaR (top panel) and ES (bottom panel) risk measures

by various methods. The two experiments correspond to estimation sample sizes equal to 500 and

1000 days. The table reports the properties of the point estimates (left panel) of VaR and ES as

well as the properties of the corresponding bootstrap intervals (right panel).
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Table 3. 90% Prediction Intervals 1% VaR and ES: High Persistence

DGP: GARCH-t (d) with α = 0.10, β = 0.89 and d = 8

VaR Properties VaR Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage

Rate

Lower

Limit

Upper

Limit

Width

% VaR

500 HS 3.242 0.537 1.958 32.98 2.61 4.04 53.03

Normal 2.471 −0.235 0.341 61.30 2.11 2.81 25.91

Hill 2.654 −0.051 0.345 84.56 2.14 3.10 35.42

GC 2.771 0.066 0.556 86.34 2.18 3.30 41.63

FHS 2.738 0.033 0.418 90.82 2.17 3.32 43.03

1000 HS 3.330 0.619 2.064 20.68 2.84 3.91 40.34

Normal 2.485 −0.226 0.299 45.86 2.22 2.65 16.35

Hill 2.663 −0.048 0.247 85.14 2.27 2.89 23.41

GC 2.821 0.110 0.549 87.76 2.35 3.15 30.01

FHS 2.711 0.001 0.280 91.02 2.28 3.02 27.79

ES Properties ES Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage

Rate

Lower

Limit

Upper

Limit

Width

% ES

500 HS 3.968 0.614 2.444 32.40 3.08 4.62 46.04

Normal 2.830 −0.524 0.650 32.24 2.42 3.22 23.93

Hill 3.328 −0.026 0.603 83.50 2.53 4.10 47.07

GC 2.222 −1.132 1.571 43.54 1.60 3.30 50.81

FHS 3.260 −0.094 0.576 77.18 2.49 3.88 41.59

1000 HS 4.286 0.926 2.751 22.92 3.52 4.95 43.49

Normal 2.846 −0.514 0.617 12.76 2.54 3.03 15.10

Hill 3.380 0.020 0.446 87.04 2.75 3.84 33.29

GC 2.135 −1.225 1.592 13.28 1.64 2.82 36.09

FHS 3.298 −0.062 0.417 80.54 2.70 3.68 29.84

Notes to Table: We simulate T daily GARCH(1,1) losses with Student’s t(d) innovations (high

persistence parameter configuration) and calculate VaR (top panel) and ES (bottom panel) risk

measures by various methods. The two experiments correspond to estimation sample sizes equal

to 500 and 1000 days. The table reports the properties of the point estimates (left panel) of VaR

and ES as well as the properties of the corresponding bootstrap intervals (right panel).
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Table 4. 90% Prediction Intervals 1% VaR and ES: Low Persistence

DGP: GARCH-t (d) with α = 0.10, β = 0.4 and d = 8

VaR Properties VaR Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage

Rate

Lower

Limit

Upper

Limit

Width

% VaR

500 HS 3.226 0.078 0.464 82.14 2.71 3.93 38.84

Normal 2.910 −0.238 0.321 52.02 2.63 3.19 18.08

Hill 3.083 −0.065 0.318 84.24 2.63 3.53 28.73

GC 3.245 0.096 0.497 84.92 2.69 3.71 32.55

FHS 3.180 0.031 0.374 91.28 2.65 3.80 36.80

1000 HS 3.186 0.039 0.382 75.10 2.83 3.60 24.61

Normal 2.914 −0.233 0.284 36.22 2.70 3.13 13.65

Hill 3.091 −0.056 0.234 85.56 2.76 3.43 21.31

GC 3.291 0.144 0.437 86.98 2.84 3.70 27.20

FHS 3.147 0.000 0.263 90.46 2.76 3.58 25.97

ES Properties ES Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage

Rate

Lower

Limit

Upper

Limit

Width

% ES

500 HS 3.867 −0.036 0.638 73.14 3.11 4.50 35.77

Normal 3.333 −0.570 0.622 12.70 3.01 3.66 16.70

Hill 3.857 −0.047 0.552 81.70 3.08 4.67 40.97

GC 2.648 −1.255 1.425 40.54 2.01 3.83 46.85

FHS 3.778 −0.125 0.533 73.52 3.03 4.41 35.33

1000 HS 3.901 −0.001 0.524 75.56 3.33 4.42 27.80

Normal 3.337 −0.564 0.595 5.68 3.09 3.59 12.61

Hill 3.915 0.014 0.406 86.74 3.32 4.55 31.53

GC 2.528 −1.373 1.473 12.18 2.01 3.36 34.67

FHS 3.820 −0.081 0.389 79.50 3.25 4.34 27.90

Notes to Table: We simulate T daily GARCH(1,1) losses with Student’s t(d) innovations (low

persistence parameter configuration) and calculate VaR (top panel) and ES (bottom panel) risk

measures by various methods. The two experiments correspond to estimation sample sizes equal

to 500 and 1000 days. The table reports the properties of the point estimates (left panel) of VaR

and ES as well as the properties of the corresponding bootstrap intervals (right panel).
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Table 5. 90% Prediction Intervals 1% VaR and ES: Approximately Normal Distribution

DGP: GARCH-t (d) with α = 0.10, β = 0.80 and d = 500

VaR Properties VaR Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage

Rate

Lower

Limit

Upper

Limit

Width

% VaR

500 HS 3.023 0.123 0.545 55.96 2.63 3.50 29.95

Normal 2.889 -0.011 0.172 88.76 2.61 3.13 17.96

Hill 2.835 -0.065 0.227 83.62 2.48 3.14 23.13

GC 2.874 -0.026 0.209 87.06 2.54 3.16 21.68

FHS 2.903 0.003 0.255 91.30 2.49 3.30 27.95

1000 HS 2.999 0.097 0.502 39.96 2.72 3.30 19.77

Normal 2.895 -0.008 0.124 89.54 2.70 3.07 12.72

Hill 2.845 -0.057 0.166 84.32 2.59 3.07 16.52

GC 2.889 -0.014 0.150 87.92 2.65 3.11 15.65

FHS 2.888 -0.014 0.180 90.36 2.60 3.17 19.54

ES Properties ES Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage

Rate

Lower

Limit

Upper

Limit

Width

% ES

500 HS 3.447 0.129 0.647 54.48 2.92 3.83 27.26

Normal 3.309 −0.009 0.196 88.82 2.99 3.59 17.98

Hill 3.302 −0.016 0.318 85.56 2.79 3.74 28.82

GC 3.416 0.098 0.489 87.92 2.79 4.31 45.91

FHS 3.347 −0.070 0.308 80.00 2.76 3.62 26.25

1000 HS 3.480 0.160 0.608 41.90 3.09 3.80 21.25

Normal 3.315 −0.005 0.141 89.76 3.10 3.52 12.73

Hill 3.343 0.023 0.232 89.20 2.97 3.62 21.42

GC 3.365 0.045 0.340 89.82 2.91 3.97 32.12

FHS 3.274 −0.046 0.220 83.58 2.92 3.57 19.60

Notes to Table: We simulate T daily GARCH(1,1) losses with approximately normal innovations

and calculate VaR (top panel) and ES (bottom panel) risk measures by various methods. The two

experiments correspond to estimation sample sizes equal to 500 and 1000 days. The table reports

the properties of the point estimates (left panel) of VaR and ES as well as the properties of the

corresponding bootstrap intervals (right panel).
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