Published online 7 May 2010

Nucleic Acids Research, 2010, Vol. 38, No. 13 140
doi:10.1093/nar/gkq354

Designing small multiple-target artificial RNAs

Vincent De Guire', Maxime Caron?, Nicolas Scott?, Catherine Ménard’,
Marie-France Gaumont-Leclerc', Pascal Chartrand’, Francois Major®>* and

Gerardo Ferbeyre'*

"Département de Biochimie and 2Institute for Research in Immunology and Cancer, and Computer Science
Department, RNA Engineering Laboratory, Université de Montréal, Montréal, QC H3C 3J7 Canada

Received December 16, 2009; Revised April 19, 2010; Accepted April 22, 2010

ABSTRACT

MicroRNAs (miRNAs) are naturally occurring small
RNAs that regulate the expression of several genes.
MiRNAs’ targeting rules are based on sequence
complementarity between their mature products
and targeted genes’ mRNAs. Based on our present
understanding of those rules, we developed an al-
gorithm to design artificial miRNAs to target simul-
taneously a set of predetermined genes. To validate
in silico our algorithm, we tested different sets of
genes known to be targeted by a single miRNA.
The algorithm finds the seed of the corresponding
miRNA among the solutions, which also include the
seeds of new artificial miRNA sequences potentially
capable of targeting these genes as well. We also
validated the functionality of some artificial miRNAs
designed to target simultaneously members of the
E2F family. These artificial miRNAs reproduced the
effects of E2Fs inhibition in both normal human
fibroblasts and prostate cancer cells where they
inhibited cell proliferation and induced cellular sen-
escence. We conclude that the current miRNA tar-
geting rules based on the seed sequence work to
design multiple-target artificial miRNAs. This
approach may find applications in both research
and therapeutics.

INTRODUCTION

The lack of good therapeutic strategies to deal with
complex diseases is pressuring scientists to rethink the
way they approach complex human disorders such as
cancer and cardiovascular diseases. Because cancer cell
development involves the deregulation of multiple genes
(1), it is reasonable to believe that inhibiting a single gene

is not the best solution to address the problem. In
addition, the specific gene expression signature of different
cancer cell types suggests we may need to simultaneously
inhibit the expression of multiple genes. SIRNAs are ef-
fective at gene silencing, but they are designed to target
single mRNAs (2). MiRNAs have naturally evolved to
inhibit the expression of several genes (3-5), suggesting
that it could be possible to use them as tools to inhibit
multiple genes.

MiRNA-guide sequences are about 22-nt long and
repress the expression of specific genes by guiding the
RNA-silencing complex (RISC) to complementary se-
quences in messenger RNAs (6,7). The guide sequences
are located on one strand of stem-loop precursor
miRNAs from which they are obtained by enzymatic pro-
cessing. MiRNA-guide sequences tightly bind to the
Argonaute protein of RISCs through their backbone. It
is believed that a fair fraction (~30%) of miRNAs initiate
and stabilize the interaction with their targets by involving
their nucleotides in positions 2-8 (the seed) in Watson—
Crick base pairs with their target mRNAs (7,8). However,
in many cases, the seed nucleotides do not have perfect
(Watson—Crick) matches with their targets (9) and base
pairing with the rest of the miRNAs may compensate to
stabilize the interaction. Nevertheless, we implemented in
a computer program the current rules of miRNA-target
recognition to design artificial miRNAs against gene sets.
As a proof of concept, we also tested successfully a few
artificial sequences generated by our program.

MATERIALS AND METHODS
Cells and tissue culture

PC3 were obtained from American Type Culture
Collection (ATCC) and cultured in RPM1 (GIBCO) sup-
plemented with 10% FBS (Hyclone). IMR90 cells were
obtained from ATCC and cultured in Dulbecco’s
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modified Eagle medium (DMEM, GIBCO) supplemented
with 10% fetal bovine serum (FBS, Hyclone) and 1%
penicillin G/streptomycin sulfate (GIBCO).

Small-RNA expression

To express our smart RNAs, we used a strategy developed
by Paddison et al. (10) where the sequence of the small
RNA of interest is cloned in the miR-30 endogenous
miRNA pri-precursor backbone. The goal is to form a
stem—loop structure where the mature miR-30 sequence
is replaced by the sequence of interest, in our case a
smart RNA. To do so a PCR template is synthesized con-
taining the 5 flanking stem sequence of miR-30, the
sequence of the small RNA of interest, the mir-30 loop
sequence, the complementary sequence of the small RNA
of interest and the 3’ flanking stem sequence of miR-30.
The miR-30 flanking sequences and loop allow an efficient
maturation and expression of the small RNA of interest.
This template is amplified by PCR using universal
primers, with restriction sites at the 5 and 3’ flanking
miR-30 precursor sequences. The sequence of the tem-
plates and universal primers can be found in the
Supplementary Table S1. The PCR product is then
digested with EcoRI and Xhol, and ligated in the MLP
retroviral vector that contain the extending miR-30
flanking sequence. The MLP vector is described in ref.
(41). The miR-20 precursor sequence was also cloned in
MLP vector as described in ref. (16). Retroviral-mediated
gene transfer was performed using retroviral particles
produced in Phoenix packaging cells as previously
described (42). IMR90 and PC3 cell lines were then
infected with the viruses and selected 48 h with puromycin.

miR-20 detection

miR-20 levels in our different cell lines were measured by
qPCR. Total RNA was extract with Trizol reagent
(Invitrogen) and 2 ug were reverse transcribed and then
amplified with a TagMan microRNA Assay kit specific
for miR-20a (Ambion #000580). The level of miR-20 ex-
pression was normalized over the expression of U54.

Luciferase assay

Twenty-four hours before transfection, HeLa cells were
plated at 50 000 cells per well in a 24-well plate. The
pGL3-control plasmids containing the wild type 3’UTR
of E2F1, E2F2 or E2F3 were transfected (50ng) with
pRL-globin (50ng), and the smart RNAs, miR-20 or
hairpin control (250ng) wusing Lipofectamine LTX
(Invitrogen). The luciferase assay was performed 24h
post-transfection using the dual luciferase reporter assay
system (Promega) and firefly luciferase activity was
normalized to Renilla luciferase activity for each trans-
fected well. The experiment was conducted three times in
triplicate.

Western blot

IMRO0 cells were trypsinized and washed one time with
PBS. The pellet was resuspended in 100 pl of Laemmli
buffer and heated 5S5min at 95°C. The proteins were
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quantified with the Bradford reagent and 20pug were
loaded on a 10% SDS-PAGE and transferred to
Immobilon-P membranes (Millipore). The following
antibodies were used for western blot: anti-E2F1 KH-20
mouse (1 pg/ml), anti-E2F2 CCI11 mouse (1 pg/ml),
anti-g-tubulin (B-5-1-2 1:5000 mouse; Abcam ab54945,
1:500), anti-E2F3 (ab54945, 1:500 mouse). Signals were
revealed after incubation with anti-mouse secondary
antibody  (1:1500) coupled to peroxidase (GE
Healthcare) by using ECL (GE Healthcare).

Growth curves

Twenty-five thousand cells per well were plated into
12-well plates. At the indicated times, cells were washed
with PBS, fixed in 4% formaldehyde, and rinsed with dis-
tilled water. Cells were stained with 0.1% crystal violet
(Sigma) for 30min, rinsed extensively, and dried.
Cell-associated dye was extracted with 2.0ml 10% acetic
acid. Aliquots were diluted 1:4 with H>O, transferred to
96-well microtiter plates, and the optical density at 590 nm
was determined. Values were normalized to the optical
density at day O for the appropriate cell type. Within an
experiment, each point was determined in triplicate.

Senescence-associated p-galactosidase

Senescence-associated B-galactosidase activity was detected
as previously described with slight modifications (11). Cells
were washed once with PBS (pH 7.2), fixed with 0.5%
glutaraldehyde (PBS [pH 7.2]), and washed in PBS (pH
7.2) supplemented with 1 mM MgCl,. Cells were stained
in X-gal solution (1 mg/ml X-gal, 0.12mM K;3Fe[CNJg,
0.12mM K4Fe[CN]s, 1mM MgCl, in PBS at pH 6.0)
overnight at 37°C . Blue cells were counted in triplicate.

Colony formation assay

A total of 500 PC3 GFP" cells were plated in a 6-well plate
and were allowed to form colonies for 8-10 days. Colonies
were fixed with glutaraldehyde, stained with crystal violet
and counted manually. Data represent the average of
three experiments.

Energy calculations and folding

All AG and RNA secondary structure predictions were
calculated using the Vienna RNA package (12).

RESULTS AND DISCUSSION

Designing small multiple-target artificial SMART) RNAs
to target multiple genes simultaneously is the reverse of
finding miRNA targets. Therefore, we implemented
known miRNA targeting rules (13) in a computer
program (MultiTar) that starts by searching common
heptamers in the set of 3’'UTRs of the genes we want to
target. These heptamers represent common seed binding
sites (SBS) for potential Smart RNAs for these genes. We
favor SBS that: (i) create low-energy duplexes with the
seed; and (ii) expose globally and locally the SBS in the
mRNA structure. Once a set of SBSs have been identified
and ranked, we use a Tabu search to determine the
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sequence of the rest of the miRNA (nucleotides 9-22; see
Supplementary Methods).

The Tabu search is a local optimization method. It
improves the local search by marking a previously found
and potential solution as ‘taboo’ so to avoid visiting that
solution again (14). We generate a number of sequences by
mutating one nucleotide at a time and compute their
average hybridization affinities with the mRNAs. We
keep the solution that obtains the best average energy at
the end of the search. Known examples suggest that the
seed alone often suffices to make a miRNA repress the
translation of its mRINA targets (8). However, good com-
plementarity in the 3’ region of a miRNA can sometimes
compensate for mismatches in the seed (15). Thus, we
assign the final scores based on the full miIRNA-mRNA
duplex complementarity (positions 1-22).

Because it has been shown that both strands can be
recruited in the RISC complex, we maximize the incorp-
oration of the guide strand to limit the non-specific effect
of the sense strand. To do so, we avoid high thermo-
dynamic stability at the 5'-end of the guide strand, a con-
dition that favors loading into the RISC complex (16,17).
This is accomplished in the program by an optional rule
(asymmetry rule) where the thermodynamic stability of
the 5-end of the guide strand can be reduced by
decreasing its GC content. For more details about the
MultiTar algorithm, see Supplementary Figure SI and

Table 1. Finding endogenous miRNAs
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the Supplementary Information. The code of MultiTar is
available upon request.

We wanted to test whether our algorithm would find the
endogenous miRNAs if we give it the sets of natural genes
they target. Given the 3’UTR sequence of the validated
targets of miR-20 (18-27), miR-206 (28,29) and miR-21
(30-34), our program identified the seed sequences of the
corresponding endogenous miRNAs (Table 1). The
thermodynamic stability of the seed and its match for
these functional miRNAs was highly variable (Table 1).
However, the final seed score that takes into account the
accessibility of the seed (see ‘Materials and Methods’
section) was more homogenous, suggesting that param-
eters other than the simple thermodynamics of base
pairing influence the activity of miRNAs. We compared
the efficiency of MultiTar to TargetCombo, which takes
the intersection of the predictions made by TargetScanS,
Miranda and Pictar. We took the top predictions (Table 1)
for miR-10a and miR-22. In both cases, MultiTar
identified the correct seed sequence of the corresponding
endogenous miRNAs. Interestingly, prediction ranks for
miR-20 and miR-22 improved as the number of targets
increases (Table 1).

Next, we used MultiTar to find Smart RNAs that could
target simultaneously E2F1, E2F2 and E2F3. The E2Fs
are transcription factors that have redundant function in
activating gene expression (35) and on cell cycle

Input genes miRNA and Seed AG Total average
rank score seed score
E2F1, E2F2, E2F3, RBL2 miR20 (66/93) 0.44 0.54
E2F1, E2F2, E2F3, CCNDI, p21 miR-20 (2/8) 0.44 0.52
E2F1, E2F2, E2F3, CCNDI, p21, RBL2 miR-20 (1/2) 0.44 0.56
E2F1, E2F2, E2F3, CCNDI, p21, RBL2 PTPPRO miR-20 (1/3) 0.44 0.55
E2F1, E2F2, E2F3, CCNDI, p21, RBL2 NCOA3 miR-20 (1/1) 0.44 0.56
E2F1,E2F2, E2F3, CCNDI, p21, RBL2, PTPRO, NCOA3, HIF1 TGFBR2 miR-20 (1/1) 0.44 0.55
FSTL1, UTRN, GJAI miR-206 (8/41) 0.34 0.62
PDCD4, BCL2, SPROUTY2, MTAP, SOX5 miR-21 (1/1) 0.38 0.54
PAFAHIBI, CIDSPL, SDC1, CTDSYL, 1D4 miR-10a (3/24) 0.63 0.62
PTEN, NDELI, IL13RA1 miR-22 (2/33) 0.74 0.65
PTEN, NDELI1, IL13RA1, PLAG2, PTPNY, Cul3 miR-22 (1/1) 0.74 0.66

The endogenous miRNAs are found given their corresponding target genes. All these targets have perfect seed binding sites. The ranking refers to the
scores of the solutions found by the algorithm (ranking/number of solutions). The highest scores are ranked first. The scores are between 0 and 1,
where 1 indicates perfect matching (see Supplementary methods for their definition).

Table 2. Smart RNAs against E2F1-3

Name Sequence M Target site
E2F1 E2F2 E2F3
miR-20 UAAAGUGCUUAUAGUGCAGGUAG NA 363-395 881-913 18001832
956-988 1495-1527
3259-3291
MT-E2Fs(1) UAUCUGACUUACGUGACUGCUU 1 740-772 974-1006 1188-1220
MT-E2Fs(2) UUUCCCAAUUUCGCCCGGCCCU 1 707-739 2019-2051 1838-1870
MT-E2Fs(3) UAGUGGGGAGGGGGUUUCCGGU 2 93-125 2262-2294 709-741
946-978 2734-2766 1219-1251

M, multiplicity rule. miRNA seeds are underlined.
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Figure 1. Artificial miRNAs (Smart RNAs) targeting E2F1,
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MT-E2Fs
1)

E2F2 and E2F3. (A) Base pairing between miR-20, the three MT-E2Fs and the E2Fs

binding sites. (B-D) MT-E2Fs target E2F1-3 luciferase reporters. (B) A reporter luciferase gene fused to E2F1 3'UTR. (C) A reporter luciferase gene
fused to E2F2 3’UTR. (D) A reporter luciferase gene fused to E2F3 3'UTR. (E) Luciferase activity from HeLa cells co-transfected with MT-E2F(1)
and E2F1 3’UTR or a mutant lacking the binding site for MT-E2F1. Paired ¢-test: *P <0.05 and **P <0.02.
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progression (36). Simultaneous inactivation of E2F1-3 by
a conditional gene targeting approach in mice blocks cell
cycle progression. However, cells can proliferate normally
with only one of the three E2F1-3 genes (36). We have
recently shown that these three genes are targeted by
miR-20 (20). MiR-20 is found in the solutions of
MultiTar for E2F1-3. Its low scoring rank (66th solution
of the program) can be explained by the fact that this
miRNA is not optimized for recognition of only these
three genes. As seen in Table 1, miR-20 is the second
best solution when the three E2Fs are combined with
RBL2, another target of miR-20.

We experimentally tested the top solutions obtained
with different options of the program (Table 2).
MT-E2Fs(1) and MT-E2Fs(2) were the best smart
RNAs found when we looked for only one binding site
in each E2Fs with a perfect seed match. MT-E2Fs(3)
targets two sites with one mismatch allowed in the
3'UTR of each E2F (multiplicity option). In all cases
shown in Table 2 we activated the asymmetry rule to fa-
cilitate the loading of the guide strand into the RISC.

To study the ability of these smart RNAs to repress
E2Fs’ activity, we cloned them as DNA cassettes coding

Nucleic Acids Research, 2010, Vol. 38, No. 13 el140

for small hairpin RNAs (shRNAs), which upon expres-
sion in cells are expected to be processed into mature
smart RNAs. The different MT-E2Fs were co-expressed
in HelLa cells with a luciferase reporter containing the
JUTR of E2F1, E2F2 or E2F3 that we used before to
test the ability of miR-20 to regulate these mRNAs (20).
Base-pairing between these smart RNAs and their target
sequences are shown in Figure 1A. When tested with the
reporter having the 3 UTR of E2F1, all three smart RNAs
reduced its expression similarly to miR-20 (Figure 1B). A
similar result was found with the E2F2 reporter. However,
MT-E2Fs(2) did not reduce expression of the E2F2
reporter because its binding site is not present in this
E2F2-3’UTR reporter sequences (14) (Figure 1C). For
the E2F3 3’UTR, the results were identical as for that of
E2F1 (Figure 1D). To show that the inhibition induced by
our smart RNAs depends on the sites predicted by
MultiTar, we mutated the seed match for MT-E2Fs(1)
in the 3’UTR of E2F1 for its complementary sequence.
For the mutated seed match, we observed luciferase
activity up to the control levels (Figure 1E).

Next we tested the effect of our smart RNAs on en-
dogenous E2F1-3 in normal fibroblasts IMR90 using
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Figure 2. MT-E2Fs target E2F1-3 endogenous protein. (A) Immunoblots on endogenous E2F1, E2F2 and E2F3 in IMRY0 cells expressing the smart
RNAs against E2F1-3, control hairpin and miR-20. (B) Measure of the relative miR-20 level by qPCR in the different cell lines expressing the smart
RNAs against E2F1-3, control hairpin and miR-20. (C) Mcm6 immunoblots of IMR90 cells expressing the smart RNAs against E2F1-3, a control
hairpin and miR-20. (D) Quantification of the immunoblots presented in (A and C) showing the relative level of E2F1, E2F2, E2F3 and MCM6

normalized on the tubulin expression for the different cell lines.

0102 ‘82 AInr uo (sanbipoliad) suonisinboy - sanbayiolqig - (eanuo ap ausiaaiun e 610 speuinolpioxo reu//:dny woly papeojumoq


http://nar.oxfordjournals.org

el40 Nucleic Acids Research, 2010, Vol. 38, No. 13

immunoblots. All three MT-E2Fs reduced E2F1-3 expres-
sion as expected (Figure 2A). None of these MT-E2Fs
changed the levels of miR-20, the endogenous miRNA
known to target E2Fs (Figure 2B). Because the main
function of the E2Fs depends on their transcriptional
activity, we measured expression of Mcm6, a transcrip-
tional target of the E2Fs required for DNA replication
(37). The three MT-E2Fs decrease Mcm6 levels in com-
parison to the control hairpin (Figure 2C). The decrease
was comparable to that induced by miR-20, and was more
pronounced for MT-E2Fs(1), which is also the smart
RNAs that had the highest inhibitory effect on the E2Fs.

Next, we verified the biological impact of the decreased
E2Fs’ activity by our smart RNAs. Blocking E2F activity
is expected to arrest cell proliferation, and in some condi-
tions induce cellular senescence (38). We observed a good
correlation between the extent of E2Fs decrease, Mcm6
decrease (Figure 2A and C) and that of inhibition of cell
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Figure 3. MT-E2Fs targeting E2F1-3 functions. (A) Growth curves of
normal human fibroblasts expressing the smart RNAs against E2F1-3,
a control hairpin, miR-20, and RasV12 a positive control for growth
arrest and senescence. (B) Senescence-associated B-galactosidase of
normal human fibroblasts expressing the smart RNAs against
E2F1-3, a control hairpin, miR-20, and RasV12. Cells were stained
at day 8 post-selection. Data represent the average and standard devi-
ation of three independent experiments.
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proliferation by our MT-E2Fs (Figure 3A). This result
suggests that our smart RNAs can efficiently inhibit
their three targets and neutralize the redundant function
of the three E2Fs in cell cycle progression. Maehara et al.
showed that a siRNA against DP1, an essential cofactor
for the transcriptional activity of E2F1-3, induced senes-
cence (38). We thus performed a senescence-associated
[B-galactosidase staining to measure senescence induction
in our cells infected with the three smart RNAs,
and observed senescence induction for all MT-E2Fs
(Figure 3B).

To measure the impact of the inhibition made by our
smart RNAs in cancer cells, we infected PC3 prostate
cancer cells with our retroviral vectors expressing
MT-E2Fs(1) and MT-E2Fs(2). Then, we evaluated cell
growth by clonogenic assays, which are commonly used
to evaluate anti cancer drug efficacy in culture. Again, our
smart RNAs were effective in inhibiting cell proliferation
(Figure 4A). We also observed a decrease in the number of
colonies formed (Figure 4B).

Our results indicate that we can engineer smart RNAs
to inhibit the expression of a pre-determined set of genes.
This approach is not limited to sets of genes of the same
family. For instance, the 3'UTR of the E2Fs are hetero-
geneous in length and sequence. A multiple sequence
alignment between the three sequences using EMBL
Clustal W2 gives distances of 0.48651, 0.49250 and
0.48654 for E2FI1, E2F2 and E2F3, respectively. A
similar calculation for the unrelated genes CCNDI,
CDKNI1 and RBL2 gave numbers in the same range
(0.48734, 0.49699 and 0.47777, respectively)

To estimate the upper bound of the number of genes
that can be targeted using the targeting rules employed in
MultiTar, we searched for heptamers common to a group
of n sequences in a collection of randomly generated
sequences of different lengths. For sequences of 3000 nt
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Figure 4. Effect of MT-E2Fs(1) and MT-E2Fs(2) on prostate cancer
cells. (A) Relative cell growth of PC3 cells expressing MT-E2Fs(1),
MT-E2Fs(2) and a hairpin control. (B) Colony formation ability of
PC3 cells expressing MT-E2Fs(1), MT-E2Fs(2) and a hairpin control.
Paired r-test: *P <0.05; **P <0.02.
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(our estimate of the average length of a mammalian
3’UTR), we found common heptamers for up to five se-
quences (Supplementary Figure S2). The probabilities of
finding solutions are even higher when one or two
mismatches in the seed region are allowed. In 124
validated miRNA targets in TarBase, 20% include one
mismatch and 5% two mismatches. In our sets of
randomly generated sequences, one or two mismatches
allow to find many common heptamers for up to 10
genes (Supplementary Figure S2). Since it is now
accepted that miRNAs also target the coding region
(39), this means that our approach can find artificial
miRNAs for more than 10 genes.

The asymmetry rule can be used to maximize the in-
corporation of the sequence of interest in the RISC
complex but could eliminate some potential solutions.
For example, in the in silico validation of MultiTar, this
rule prevented us to find the seed sequence of miR-10a,
miR-21 and miR-22 given their respective known targets.
In fact, these miRNAs contain more than one G or C in
their first four nucleotides. It was reported that endogen-
ous mMiRNAs precursors can express two different
miRNAs that are encoded on each strand of the stem
(40). Hence, natural miRNAs may sometimes avoid the
asymmetry rule. In the case of smart RNAs, it is import-
ant to limit the expression of the sense sequence to
minimize non-specific effects. To maximize the number
of solutions suggested by MultiTar, the asymmetry rule
in the program is optional.

The MultiTar strategy provides a novel approach to the
problem of inhibiting/repressing multiple genes simultan-
eously. Alternative approaches include the co-expression
of one siRNA per gene. For example, Cheng and col-
leagues (41) showed an induction of cell death in
prostate cancer cells using a cassette expressing six
shRNAs. Interestingly, the inhibition of only one gene
by the expression of single-gene targeting shRNNAs was
not enough to induce cell death, suggesting the require-
ment of multi-targeting. Liu et al. (42) developed an ex-
pression cassette based on the miR-17-92 polycistron to
express several shRNAs to target HIV mRNAs. These
strategies achieved good inhibition of the targets, but
necessitated the co-expression of several siRNAs that
may increase non-specific effects. In addition, the use of
several siRNAs can saturate the RISC complex, triggering
toxicity by inhibiting endogenous miRNA functions (43).
Another difference between Smart RNAs and siRNAs is
the degree of target inhibition. SIRNAs inhibit target gene
expression with high efficiency, while Smart RNAs has a
microRNA-like effect inhibiting target gene expression by
1.2- to 2-fold. Therefore, Smart RNAs are not substitutes
of siRNAs and their power of regulation is based on their
effects on multiple targets. For example, it has been shown
that the deletion of one of the E2Fs is not sufficient to
affect cell proliferation (36). However, the simultaneously
moderate inhibition on the three E2Fs induced by our
Smart RNAs was enough to decrease cell proliferation.

Smart RNAs, like siRNAs will have off-target effects as
first described by Jackson er al. (44). The nature and
number of off-target effects will depend on each particular
seed sequence. Therefore, as recommended for siRNAs,

Nucleic Acids Research, 2010, Vol. 38, No. 13 el40

more than one solution should be tested for each gene
set to ensure specificity of any biological effect observed.
It is also plausible that some sequences may have more
targets than others because they recognize certain repeated
patterns in the genome. To minimize as much as possible
the non-specific effects of our Smart RNAs, additional
bioinformatic tools are required to predict whether other
genes could fulfill the recognition criteria for every
MulTar solution. The use of the asymmetry rule, or
modified small RNAs limiting the expression of the pas-
senger strand or pools of smart RNAs could limit the
non-specific off target effects of smart RNAs as well.
Nevertheless, our results with MT-E2Fs support the
concept of custom design miRNAs. These Smart RNAs
with the ability to modulate gene expression patterns
may find multiple applications in both research and
therapeutics.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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