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SOCS1 controls liver regeneration by regulating HGF signaling
in hepatocytes
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Background & Aims: Frequent repression of the Socs1 (suppres- Conclusions: SOCS1 attenuates c-Met signaling and thus nega-

sor of cytokine signaling 1) gene in hepatocellular carcinoma
(HCC) and increased susceptibility of SOCS1-deficient mice to
hepatocarcinogens suggest a tumor suppressor role for SOCS1
in the liver, but the underlying mechanisms remain unclear. Here
we investigated the role of SOCS1 in regulating hepatocyte prolif-
eration following partial hepatectomy and HGF stimulation.
Methods: Because Socs1�/� mice die prematurely due to deregu-
lated IFNc signaling, we used Socs1�/�Ifng�/� mice to study the
role of SOCS1 in liver regeneration following partial hepatectomy.
We examined the activation of signaling molecules downstream
of IL-6 and hepatocyte growth factor (HGF) receptors in the
regenerating liver, primary hepatocytes, and in human hepatoma
cells. We examined the interaction between SOCS1 and the HGF
receptor c-Met by reciprocal immunoprecipitation.
Results: Socs1�/�Ifng�/�mice displayed accelerated liver regener-
ation with increased DNA synthesis compared to Ifng�/� and wild
type mice. The regenerating liver of Socs1�/�Ifng�/� mice did not
show increased IL-6 signaling, but displayed earlier phosphoryla-
tion of Gab1, a signaling adaptor downstream of c-Met. Following
HGF stimulation, hepatocytes from Socs1�/�Ifng�/� mice dis-
played increased phosphorylation of c-Met and Gab1, cell migra-
tion and proliferation. Accordingly, SOCS1 overexpression
attenuated HGF-induced phosphorylation of c-Met, Gab1, and
ERK1/2 in hepatoma cells, and decreased their proliferation and
migration. SOCS1 interacted with the Tpr-Met, an oncogenic form
of the Met receptor.
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tive regulation of HGF signaling could be an important mecha-
nism underlying the anti-tumor role of SOCS1 in the liver.
� 2011 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

Hepatocellular carcinoma (HCC) is an often lethal tumor with
limited therapeutic options. Understanding the molecular mech-
anisms of hepatocarcinogenesis could lead to development of
strategies to arrest, retard or even reverse the disease process
in HCC patients [1]. Development of HCC follows a series of
events involving inflammation, chronic liver injury, and hepato-
cyte proliferation [2]. The mutagenic environment created by
inflammation is believed to facilitate activation of proto-onco-
genes and/or inactivation of tumor suppressors, leading to dereg-
ulated hepatocyte proliferation and progression toward HCC
[1,2]. The Socs1 gene, encoding suppressor of cytokine signaling
1 (SOCS1), is frequently repressed in human HCC [3], and is sup-
pressed by the core protein of hepatitis C virus, an etiologic agent
of HCC [4]. Furthermore, Socs1+/� mice display increased HCC for-
mation in response to the hepatocarcinogen diethylnitrosamine
[5]. Despite such compelling evidence for a tumor suppressor
function of SOCS1 in the liver, the underlying molecular mecha-
nisms remain unknown.

Liver regeneration (LR) following partial hepatectomy (PH) is
widely used to study regulatory mechanisms of hepatocyte prolif-
eration that are also relevant for neoplastic growth [6,7]. Liver
regeneration involves coordinated action of distinct cytokines
and growth factors, which regulate three temporal stages of hepa-
tocyte proliferation, namely, priming, DNA synthesis, and cell
division, followed by growth termination. TNFa and IL-6 are crit-
ical priming factors, which facilitate G0 to G1 transition of hepato-
cytes, rendering them competent to respond to growth factors.
Mice lacking TNF receptor 1 show delayed liver regeneration,
which could be reversed by administration of IL-6, whereas IL-6
deficiency induces severe apoptosis because IL-6-induced STAT3
activation is essential for liver regeneration [8–10]. Following
priming, growth factors provide mitogenic signals that facilitate
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competent hepatocytes to progress through the cell cycle. Among
these mitogenic factors, hepatocyte growth factor (HGF) plays an
important role in hepatocyte proliferation and in the pathogenesis
of HCC [1,7]. Conditional ablation of HGF or its receptor c-Met in
the adult liver impairs liver regeneration [11,12].

In this study, we investigated whether SOCS1 controls hepato-
cyte proliferation by regulating cytokines and growth factors
involved in hepatocyte priming and/or proliferation. To this end,
we first evaluated liver regeneration in SOCS1-deficient mice. In
parallel, we stimulated SOCS1-deficient and control primary hepa-
tocytes with IL-6 or HGF and compared downstream signaling
events. We also examined IL-6 and HGF signaling in murine and
human hepatoma cells overexpressing SOCS1. Our findings sug-
gest that the anti-tumor function of SOCS1 in the liver could result,
at least partly, from the regulation of c-Met receptor signaling.
Materials and methods

Mice and cell lines

Socs1+/�Ifng+/� mice, kindly provided by Dr. J. Ihle [13], have been backcrossed
with Ifng�/� mice in C57BL/6 background (The Jackson Laboratory). All experi-
ments were approved by the institutional Ethics Committee. Murine Hepa1-6
and human Hep3B cells were purchased from ATCC.

Reagents and antibodies

Cytokines and growth factors were from R&D Systems. LPS, bromodeoxyuridine
(BrdU), collagen, and Hoechst nuclear stain were from Sigma–Aldrich.
Collagenase (Blendzyme), and anti-HA, and anti-BrdU antibodies were from
Roche Diagnostics. Phospho-specific antibodies were from Cell Signaling Technol-
ogy and antibodies against total proteins were from Santa Cruz Biotechnology.
Secondary antibodies and enhanced chemiluminescence reagents were from GE
Healthcare Life Sciences.

Partial hepatectomy (PH) and hepatocyte DNA synthesis in vivo

Partial hepatectomy was carried out in 8–10 week-old mice following published
methods [14]. SOCS1-deficient and control mice were always operated in groups.
To evaluate DNA replication in the regenerating liver, hepatectomized mice were
injected with BrdU (40 mg/g body weight, i.p.) 4 h prior to euthanasia. Three
non-serial sections of paraffin-embedded liver per animal were stained with
anti-BrdU-FITC and counterstained with Hoescht nuclear stain. FITC + cells and
Hoescht + cells were counted in ten random fields per slide to calculate the
proportion of cells that have incorporated BrdU into replicating DNA.

Isolation of primary hepatocytes

Primary hepatocytes were isolated following published methods [11]. Hepatocyte
preparations that showed >85% cell viability by trypan blue exclusion, were pla-
ted on collagen (Sigma–Aldrich)-coated culture plates in Ham’s F-12/DMEM with
10% FCS.

Elisa

The amount of IL-6 in serum collected at the indicated time points after partial
hepatectomy was determined by sandwich ELISA using antibody pairs purchased
from BD Pharmingen Biosciences.

Expression of exogenous SOCS1 in Hepatoma cells

Hep3B cells do not express SOCS1 due to promoter methylation of both alleles of
the Socs1 gene [3]. Mouse Socs1 gene, subcloned into pcDNA3.0 with an N-termi-
nal myc-tag, was transiently transfected into Hep3B cells using Qiagen Polyfect�

reagent.
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Cell proliferation

Primary hepatocytes and Hep3B cells were plated in 96-well culture plates
(5 � 103 cells/well) and stimulated with HGF. One lCi of methyl-[3H]-thymidine
(New England Nuclear) was added per well during last 8 h of culture. Cells were
trypsinized, harvested onto glass fiber filter mats and the incorporated radioactiv-
ity was measured using Top Count� microplate reader (Perkin–Elmer).

Wound healing assay

The bottom plates of Petri dishes were marked with parallel lines and 1x105

Hep3B cells transfected with SOCS1/pCDNA3.0 or empty vector were plated
and cultured in DMEM-10% FCS. For primary hepatocytes, Petri dishes were
pre-coated with collagen. When the cells were nearly confluent (>90%), the med-
ium was changed to serum-poor medium (DMEM-0.25% FCS). After 4 h, a scratch
wound was made with a sterile pipette tip and serum-poor medium containing
HGF was added. In some experiments, hydoxyurea (Calbiochem) was added to
induce cell cycle arrest. Wound closure was photographed and the rate of wound
healing was quantified by measuring the distance between the edges of the
scratch wound at several points.

Cell stimulation, Western blot and co-immunoprecipitation

Primary hepatocytes and Hep3B cells, deprived of serum-derived growth factors
by overnight culture in DMEM-0.25% FCS, were stimulated with HGF and lysed in
SDS–PAGE sample buffer. Liver tissues were lysed in hypotonic lysis buffer (Tris
10 mM pH 7.6, NaCl 50 mM, sodium diphosphate 30 mM, EDTA 5 mM) containing
1% Triton-X100 and protease and phosphatase inhibitors. Following Western blot,
images captured using the VersaDOC� system (Bio-Rad) were densitometrically
quantified using NIH ImageJ 1.62 software. To analyze the interaction between
SOCS proteins and Met, COS-7 cells were co-transfected with cDNA constructs
of SOCS proteins and Tpr-Met, an oncogenic form of the c-Met receptor [15] (pro-
vided by Dr. M. Park, McGill University). Protein interaction was analyzed by reci-
procal immunoprecipitation.

Real-time RT-PCR

RNA was extracted using Trizol (Invitrogen) from snap-frozen liver samples and
cDNA was synthesized using M-MLV reverse transcriptase (Invitrogen). The
SOCS1 cDNA, amplified using primers TGGTTGTAGCAGCTTGTGTCTGG (sense)
and CCTGGTTTGTGCAAAGATACTGGG (anti-sense), was quantified using SYBR
Green Supermix and MyiQ™ real-time PCR detection system (Bio-Rad). Samples
from each time point were analyzed in triplicates and normalized for the expres-
sion of TATA-box Binding Protein amplified using primers GTTTCTGCG
GTCGCGTCATTTT (sense) and TCTGGGTTATCTTCACACACCATGA (anti-sense).

Statistical analysis

Mean + standard deviation values are given. Student’s t-test was used to deter-
mine the p values.
Results

SOCS1 deficiency accelerates liver regeneration

To investigate the role of endogenous SOCS1 in regulating hepa-
tocyte proliferation, we resorted to using Socs1�/�Ifng�/� mice
because Socs1�/� mice die within 3 weeks of birth due to dereg-
ulated IFNc signaling [13]. IFNc-deficient mice were previously
shown to display increased rate of liver regeneration [16].
Because IFNc is a strong inducer of Socs1 gene expression in
hepatocytes (Supplementary Fig. 1), it is possible that the
IFNc-mediated control of liver regeneration might be dependent
on SOCS1. Alternatively, SOCS1 may control hepatocyte prolifer-
ation in a manner distinct from IFNc-mediated regulation. To dis-
tinguish these possibilities, we used both Ifng�/� and C57Bl/6
vol. 55 j 1300–1308 1301
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Fig. 1. SOCS1 deficiency increases the rate of liver regeneration and hepato-
cyte DNA synthesis following partial hepatectomy. (A) The liver/body mass
ratio was calculated from 4–8 mice for each of the indicated time points. (B) The
BrdU positive cells undergoing DNA synthesis were enumerated at 48 h post-PH
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mice as controls. First, we evaluated the rate of liver regeneration
in SOCS1-deficient (Socs1�/�Ifng�/�) and control (Ifng�/� and
C57Bl/6) mice following 65–70% partial hepatectomy. Consistent
with the earlier report [16], Ifng�/� mice showed significantly
increased liver regeneration and DNA synthesis compared to
C57Bl/6 mice on day 2 post-PH (Fig. 1A and B). In contrast,
Socs1�/�Ifng�/� mice displayed significantly faster gain in liver
mass compared to both Ifng�/� and C57Bl/6 mice on day 4
post-PH (Fig. 1A), suggesting that SOCS1 and IFNc control liver
regeneration via distinct mechanisms. Despite showing an accel-
erated rate of liver regeneration, the final mass of the regenerated
liver in SOCS1-deficient mice was not increased. BrdU incorpora-
tion assay revealed significantly elevated proportion of hepato-
cytes undergoing DNA replication in Socs1�/�Ifng�/� mice
compared to Ifng�/� and C57Bl/6 mice (Fig. 1B). These results
1302 Journal of Hepatology 2011
suggested that SOCS1 regulates liver regeneration at least partly
by controlling hepatocyte proliferation.

IL-6 signaling is not enhanced in SOCS1-deficient primary
hepatocytes

During liver regeneration, IL-6 plays a pivotal role to maintain the
viability of hepatocytes and to enhance their responsiveness to
growth factors [7,8]. Because SOCS1 deficiency enhances IL-6
production in macrophages [17], we examined whether SOCS1
deficiency facilitated hepatocyte priming via increased IL-6 pro-
duction. In wild type mice, serum IL-6 concentration increased
within 2 h post-PH and attained peak level by about 6 h
(Fig. 2A). Surprisingly, the post-PH serum IL-6 level was markedly
reduced in Socs1�/�Ifng�/� and Ifng�/� mice compared to C57Bl/6
controls. These observations suggested that the accelerated rate
of liver regeneration in SOCS1-deficient mice did not arise from
vol. 55 j 1300–1308
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enhanced IL-6 production, and that IL-6 production following PH
is modulated by IFNc-dependent mechanisms.

Next, we examined whether SOCS1 deficiency enhanced IL-6
signaling, thereby compensating for decreased IL-6 availability.
In Hepa cells, IL-6 induced Socs1 gene transcription and forced
expression of SOCS1 inhibited STAT3 phosphorylation
(Supplementary Fig. 1). However, the magnitude and kinetics of
IL-6-induced STAT3 phosphorylation were comparable between
SOCS1-deficient and control hepatocytes (Fig. 2B), whereas
IFNc-induced STAT1 phosphorylation remained elevated in
SOCS1-deficient cells for a prolonged period (Fig. 2C). The kinetics
of IL-6-induced phosphorylation of AKT and ERK1/2 were also
similar in SOCS1-deficient and control hepatocytes (Fig. 2B, lower
panel). Collectively, these results indicated that endogenous
SOCS1 is dispensable for the control of IL-6 signaling in
hepatocytes.

SOCS1-null liver shows increased phosphorylation of Gab1and ERK1/
2 during regeneration

Next, we examined the key phosphorylation events induced by
cytokine receptor signaling in the regenerating liver. The magni-
tude and kinetics of STAT3 phosphorylation was comparable in
the regenerating livers of Socs1�/�Ifng�/� and Ifng�/� mice
(Fig. 3A and B). However, phosphorylation of ERK1/2 occurred
early and was higher in magnitude in the regenerating livers of
Socs1�/�Ifng�/� mice compared to Ifng�/� controls (Fig. 3B). Phos-
phorylation of p38 MAPK also showed a similar kinetic difference.
Because ERK1/2 is activated not only by IL-6 but also by growth
factors in hepatocytes, we examined phosphorylation of Gab1,
an adaptor molecule downstream of HGF and EGF receptors
[7,18]. Gab1 is phosphorylated on multiple tyrosine residues,
which could serve as docking sites for signaling proteins contain-
ing an SH2 domain [19]. As shown in Fig. 3B, phosphorylation of
Gab1 occurred early in the regenerating liver of SOCS1-deficient
mice, however it was dephosphorylated by 48 h in both control
and SOCS1-deficient mice. The increased phosphorylation of
Gab1 and ERK1/2 corroborated with the kinetics of SOCS1 gene
expression, reaching its peak at 6 h post-PH and returning to
the base level by 12 h (Fig. 3C), largely in agreement with SOCS1
gene expression in regenerating rat liver [20]. These results sug-
gested that the increased rate of liver regeneration in SOCS1-defi-
cient mice could result from increased growth factor signaling.

Primary hepatocytes lacking SOCS1 show increased HGF-induced
Met signaling

Among the growth factors that promote hepatocyte proliferation
following PH, HGF plays an important role in liver regeneration
[7,11,12]. Evaluation of HGF expression in the regenerating livers
did not show appreciable difference between SOCS1-deficient
and control mice (data not shown). Because HGF-induced STAT3
activation was inhibited in the liver following Socs1 gene transfer
[21], we investigated whether endogenous SOCS1 regulates HGF
signaling in hepatocytes. HGF-induced phosphorylation of c-Met,
Gab1 and AKT, but not that of ERK1/2, was significantly increased
in SOCS1-deficient hepatocytes compared to control cells
(Fig. 4A). Lack of c-Met was shown to impair hepatocyte migra-
tion in a wound-healing assay [11]. As shown in Fig. 4B, SOCS1-
null cells displayed faster wound healing in the presence of
HGF. Furthermore, SOCS1-deficient hepatocytes proliferated
Journal of Hepatology 2011
strongly following HGF stimulation (Fig. 4C). These results indi-
cate that endogenous SOCS1 regulates a subset of HGF-induced
signaling events that promote hepatocyte proliferation and
migration.

Constitutive expression of SOCS1 attenuates HGF signaling in human
hepatoma cells

Cell-permeable constructs of SOCS1 peptide mimic and full-
length SOCS1 inhibits cytokine signaling in inflammatory cells
and cancer cells [22,23]. To explore the possibility of using such
an approach for HCC therapy, we overexpressed SOCS1 in Hep3B
cells and evaluated their responses to HGF. In Hep3B cells over-
expressing SOCS1, phosphorylation of c-Met, Gab1, and ERK
was markedly diminished, although AKT phosphorylation was
not affected (Fig. 5A). Hep3B cells showed constitutive phosphor-
ylation of STAT3, which was reduced by SOCS1. Functionally,
vol. 55 j 1300–1308 1303
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SOCS1 overexpression diminished the proliferation of Hep3B cells
cultured in the presence of HGF (Fig. 5B) and impaired the HGF-
1304 Journal of Hepatology 2011
induced cell migration during wound healing (Fig. 5C). SOCS1-
overexpressing cells also showed delayed migration when cell
vol. 55 j 1300–1308
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proliferation was inhibited by the cell cycle inhibitor hydoxyurea
(Fig. 5D). These results indicate that restoration of SOCS1 expres-
sion in hepatoma cells does not completely abrogate c-Met acti-
vation, but selectively attenuates a subset of HGF-induced
1306 Journal of Hepatology 2011
signaling pathways, resulting in decreased proliferation and
migration.

SOCS1 interacts with Tpr-Met, an oncogenic form of the Met receptor

The SH2 domain of SOCS1 interacts with several growth factor
receptors, including c-Kit and EGFR, and inhibits their signaling
capacity [24–27]. To investigate whether SOCS1 similarly inter-
acts with c-Met, we used Tpr-Met, a constitutively active onco-
genic form of the Met receptor. Tpr-Met arose from fusion of
the intracellular region of c-Met with the leucine zipper domain
of a translocated promoter region (Tpr) [15]. In COS-7 cells trans-
fected with SOCS1 and Tpr-Met, immunoprecipitates of Tpr-Met
contained SOCS1 and vice versa (Fig. 6). Because SOCS3 is also
implicated in the pathogenesis of HCC and in liver regeneration,
and SOCS3 was shown to inhibit HGF-induced STAT3 phosphory-
lation [21,28–30], we examined whether SOCS3 also interacted
with Tpr-Met. Neither SOCS3 nor another member of the SOCS
family proteins, CIS, interacted with Tpr-Met (Fig. 6B). These
results suggest that attenuation of HGF signaling in hepatocytes
by SOCS1 might rely on its ability to interact with the Met
receptor.
Discussion

Among the SOCS family proteins, SOCS1 and SOCS3 are impli-
cated in hepatocellular carcinoma [3,5,30]. Several lines of evi-
dence suggest that SOCS1 and SOCS3 proteins may regulate
proliferation of hepatocytes. Transcription of Socs1 and Socs3
genes in the liver is induced by PH and following systemic admin-
istration of IL-6 [20,31,32]. IL-6-induced SOCS3 expression occurs
early and lasts longer, whereas SOCS1 expression begins later and
occurs transiently, suggesting very tight regulation of SOCS1
expression. Nevertheless, Socs1 and Socs3 genes appear to be
induced during hepatocyte priming and be down-modulated
before DNA replication. SOCS3 deficiency increases liver regener-
ation through increased activation of STAT3 and ERK signaling
induced by IL-6 and EGF [28,29,33]. Consistent with the impor-
tant role for SOCS3 in regulating hepatocyte proliferation, repres-
sion of the Socs3 gene by CpG methylation was found in 30–50%
of HCC cell lines and human HCC biopsies [30]. In comparison,
repression of the Socs1 gene occurs at a much higher frequency
(�65%) in primary HCC tissues [3,30], yet mechanisms underlying
the putative anti-tumor role of SOCS1 remain unknown.

In this report, we show an increased rate of liver regeneration
in SOCS1-deficient mice during the early phase that encompasses
DNA synthesis and cell division. However, the mass of the
completely regenerated liver was comparable between SOCS1-
deficient and control groups of mice, suggesting SOCS1-indepen-
dent regulatory mechanisms operating at later stages of liver
growth. Cessation of hepatocyte proliferation following restora-
tion of the functional liver mass is mediated, at least partly, by
TGFb [7,34]. This inhibitory effect of TGFb could be relieved by
IFNc [35]. Because SOCS1-deficient mice used in our study also
lacked IFNc, the TGFb-mediated growth control could have
occurred more efficiently. Nevertheless, the accelerated rate of
liver regeneration in SOCS1-deficient mice, within a narrow time
window during the rapid growth phase, suggests that SOCS1
primarily controls cytokines and growth factors that promote
hepatocyte proliferation.
vol. 55 j 1300–1308
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IL-6-induced STAT3 activation is not only essential for liver

regeneration but is also implicated in hepatocarcinogenesis
[8,36]. Because SOCS1 is a negative regulator of LPS-induced
IL-6 production in macrophages [17], we expected an increase in
serum IL-6 level following PH in SOCS1-deficient mice. Contrarily,
both Socs1�/�Ifng�/� and Ifng�/� mice produced significantly less
IL-6 than wild type controls. The IFNc-deficient mice also showed
increased rate of liver regeneration, in agreement with an earlier
report [16]. The reason for decreased IL-6 production in the
absence of IFNc is currently unclear. One possible explanation
could be that IL-6 production following partial hepatectomy might
rely on IFNc derived from NK cells, which are implicated in liver
regeneration [16]. Despite the lower level of IL-6, STAT3 activation
occurs efficiently in the regenerating liver of both Socs1�/�Ifng�/�

and Ifng�/� mice (Fig. 3A and B), suggesting that the IL-6-depen-
dent hepatocyte priming is not compromised in these mice. In this
context, it is noteworthy that MyD88 knockout mice show severely
impaired IL-6 production, STAT3 activation and decreased liver
regeneration at 2–3 days after PH, yet display a normal recovery
phase by day 4 [37], indicating that minimal IL-6 is sufficient to
achieve complete liver regeneration.

A recent study showed that adenoviral vector-mediated deliv-
ery of SOCS1 to hepatocytes in vivo inhibited STAT3 phosphoryla-
tion induced by HGF [21]. However, this study did not address
whether endogenous SOCS1 was necessary to attenuate HGF sig-
naling in hepatocytes. This possibility is supported by our find-
ings showing increased phosphorylation of Gab1 and ERK1/2 in
the regenerating liver of SOCS1-deficient mice (Fig. 3B). Further-
more, we observed strong phosphorylation of c-Met, Gab1 and
AKT in SOCS1-deficient primary hepatocytes stimulated with
HGF (Fig. 4). Thus, our findings demonstrate that endogenous
SOCS1 is a critical regulator of at least a subset of HGF-induced
signaling pathways.

SOCS1 is implicated in the regulation of several growth factor
receptors in different cell types. Overexpressed SOCS1 inhibited
stem cell factor (SCF)-induced proliferation of hematopoietic cells
via binding to c-Kit as well as its downstream signaling molecules
Grb2 and Vav [24]. Similarly, SOCS1 was shown to interact with
insulin receptor and attenuate phosphorylation of ERK and AKT
[25]. SOCS1 also attenuates proliferation of hematopoietic cells
induced by limiting concentrations of M-CSF by interacting with
its receptor [26]. In chondrocytes, SOCS1 interacts with the FGF
receptor FGFR3 and inhibits STAT1 activation [27]. In the light
of these reports, the interaction of SOCS1 with Trp-Met suggests
that SOCS1 could diminish the kinase activity of c-Met and/or
interfere with the recruitment of downstream signaling mole-
cules. Clearly, further studies are needed to elucidate the molec-
ular determinants of the interaction between SOCS1 and c-Met.

In this study, we have shown that HGF stimulation induces
strong proliferation and increased cell migration in SOCS1-defi-
cient hepatocytes. Accordingly, overexpression of SOCS1 attenu-
ates Met signaling and significantly diminishes HGF-induced
proliferation and migration of human hepatoma cells. It has been
reported that exogenous addition of cell-permeable SOCS1
mimetic peptide or full-length SOCS1 molecule blocked IFNc sig-
naling in macrophages and inhibited proliferation of prostate
cancer cells [22,23]. We envisage that cell-permeable analogs of
SOCS1 or its peptide derivatives that attenuate HGF signaling in
hepatoma cells could be tested for their ability to hinder the
growth of experimental HCC and eventually be evaluated for
treatment in human patients.
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