Cell Cycle 13:12, 1840–1858; June 15, 2014; © 2014 Landes Bioscience

Cellular senescence and protein degradation

Breaking down cancer

Xavier Deschênes-Simard¹, Frédéric Lessard¹, Marie-France Gaumont-Leclerc¹, Nabeel Bardeesy², and Gerardo Ferbeyre¹,*

¹Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada; ²Massachusetts General Hospital Cancer Center; Harvard Medical School; Boston, MA USA

Keywords: E3 ligases, ERK kinases, Ras oncogene, ubiquitin, SASP

Submitted: 04/15/2014
Revised: 05/19/2014
Accepted: 05/22/2014
Published Online: 05/27/2014
http://dx.doi.org/10.4161/cc.29335

*Correspondence to: Gerardo Ferbeyre; Email: g.ferbeyre@umontreal.ca

Autophagy and the ubiquitin–proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.

Introduction to Cellular Senescence

The long lifespan and constant cell turnover of complex organisms pose the challenge of dealing with the inevitable accumulation of DNA damage and gene mutations that drive carcinogenesis. Fortunately, multiple mechanisms have evolved to detect DNA aberrations and oncogenic stress and protect against the initiation and progression of neoplastic growth. Among these, cellular senescence is a stable cell cycle arrest triggered by a variety of insults including short telomeres, activated oncogenes, DNA damage, and reactive oxygen species. However, how these stresses converge to regulate a common cellular state is not currently well understood. Senescence is a complex multifaceted cellular phenotype, without an exclusive hallmark, with a broad range of proposed effector mechanisms, and, still, with an ambiguous definition. Indeed, different senescent cells are characterized by a wide range of biomarkers (reviewed in refs. 1 and 2), many of which are neither exclusive to senescence nor universally present in senescent cells. Because of this phenotypic heterogeneity and often imprecise definition, the assessment of senescence should be carefully addressed and should attempt to rigorously define a combination of senescence-associated features. Moreover, it needs to be recognized that this diversity in the phenotypic traits could reflect a concomitant heterogeneity at the level of the effector programs.

At the molecular level, senescence triggers important changes in gene expression patterns, but there is little overlap between different cell types. For example, a comparison between young and senescent human fibroblasts and mammary epithelial cells (HMEC) revealed
a transcriptional fingerprint unique to senescence, but limited similarity between the 2 cell lineages.4 Other gene expression analyses have revealed a proinflammatory gene profile in senescent cells under the regulation of the NF-κB transcription factor5-7 or a downregulation of E2F target genes under the regulation of the retinoblastoma tumor suppressor (RB).8,9 However, cells with inactivation in NF-κB or RB can senesce in response to multiple stressors,5,9 indicating that the programs they control are not essential for the initiation of the process. Several target genes of the tumor suppressor p53 (TP53) were also reported to mediate senescence, such as p21 (CDKN1A),10-12 the tumor suppressor promyelocytic leukemia (PML),13,14 the plasminogen activator inhibitor-1 (PAI-1),15 DEC1, and E2F7.16 Again, a p53-dependent transcriptional pattern is not a prerequisite for senescence, and its relative contribution to the process depends on the cell type and the status of the p16INK4A–RB pathway.17 Our current knowledge thus suggests that senescence is consistent with distinct gene expression profiles and a variety of effector mechanisms, depending on the triggers, cell types, and cellular context.

Beyond transcriptional regulatory networks that characterize senescence, direct control of protein levels also appears strikingly affected. This involves the regulation of mRNA translation and protein stability of specific senescence mediators, such as p5318-20 and PML.21-23 In addition, it is thought that a global upregulation of translation may contribute to senescence, since the key regulator of protein synthesis, mTOR, has been shown to favor senescence in different contexts1 and total protein synthesis is increased in Ras-induced senescent cells.24 Similarly, a more general function of protein degradation now emerges as critical to reorganize the proteome of cells undergoing senescence. Here, we will discuss the impact of protein degradation on the senescence-associated proteome and how this mechanism could contribute to the onset of cellular senescence. Thus, we will effectively address the question: how does a pre-neoplastic cell destroy the machinery required for its subsequent progression to a cancer?

Protein Degradation and Senescence

The lysosomal degradation pathway is the principal system used by eukaryotic cells to degrade and recycle cytosolic components and organelles. A cytoplasmic cargo is engulfed into vesicles and delivered to the lysosome by the process of autophagy, which can be divided into 3 classes: (1) chaperone-mediated autophagy; (2) microautophagy; and (3) macroautophagy.25 The latter is mainly a nonspecific cytoplasmic degradation mechanism that has been shown to support tumorigenesis in Ras-expressing cancer cells,26 pancreatic tumors,27 lymphomas,28 and breast cancer.29 Macroautophagy is required to eliminate abnormal mitochondria, reduce the production of reactive oxygen species and replenish tricarboxylic acid (TCA) cycle metabolites.26,27 Given its catabolic capacity, macroautophagy improves the survival of both normal and cancer cells under metabolic stress by maintaining the availability of building blocks in order to preserve essential cellular functions.30 It is now appreciated that in addition to supporting cell viability in established tumors, macroautophagy has context-specific tumor-suppressor functions. The first evidence of such a function came from the discovery that the haploinsufficiency of the autophagy-related gene Beclin1 (BECN1) leads to cancer predisposition in mice.31 Moreover, many effectors of macroautophagy, including Atg5,32 Atg7,32,33 Atg4C,34 Bif-1,35 and UVRAG,36,37 have been linked to tumor suppression, further supporting its importance in anticancer mechanisms. Mechanistically, macroautophagy may circumvent malignant transformation by inducing autophagic cell death38 or cellular senescence24 in the context of oncogenic stress. Despite the demonstration that chaperone-mediated autophagy is downregulated in senescent cells,39 and that macroautophagy may prevent senescence in some contexts,40 a growing number of observations show a correlation between markers of autophagy and the senescence phenotype.41-43 Also, numerous studies have now demonstrated the critical role of macroautophagy during the establishment of senescence triggered by various stresses.24,44-46 Interestingly, some recent work suggests an intimate relationship between macroautophagy and the senescence-associated secretory phenotype (SASP).50,51 These studies propose that macroautophagy is required to attenuate the proteotoxic stress induced by the high protein synthesis rate involved in the SASP and to supply the process with building blocks and energy.25,52 The SASP has been linked to the deleterious effects of senescence,7,53 but also to the autophagic reinforcement of the phenotype5,34-36 and to the immune clearance of senescent cells,57,60 thereby suggesting that autophagy might play a central function to explain the pathophysiological relevance of senescence.

During the molecular characterization of the role of the ERK kinases in Ras-induced senescence in human fibroblasts, our group discovered that senescence depends on high-strength ERK signals. In this context, we serendipitously found that some ERK targets were degraded. This initial observation lead to the identification of multiple actively degraded phosphoproteins during Ras-induced senescence.61 Consistent with increased macroautophagy during senescence, we observed an increase in overall protein degradation in oncogenic Ras-expressing senescent cells (Fig. 1A and B) but no increase in the total amount of polyubiquitinated conjugates (Fig. 1C) or upregulation of the proteasome activity as measured with the proteasome activity probe Me4BodipyFL-Ahx3Leu3VS (Fig. 1D).62 However, by in-depth characterization of an array of proteins that we found to be degraded, we discovered that the degradation process involved ubiquitination and the proteasome. This senescence-associated degradation program was conserved in multiple contexts, including mouse fibroblasts and human mammary epithelial cells expressing oncogenic Ras and in human fibroblasts with short telomeres. Thus, the second major degradation system used by eukaryotic cells, the selective degradation by the ubiquitin–proteasome pathway (UPP), is also engaged in senescent cells and allows the degradation of specific proteins. We called the process senescence-associated protein degradation or SAPD.61 Although its exact contribution to senescence needs further
study, depletion of some individual SAPD targets was sufficient to trigger senescence, thereby illustrating the relevance of this mechanism for the onset and/or maintenance of senescence. We hypothesized that under mitogenic stress, such as conferred by hyperactivation of the ERK/MAPK pathway, the downstream effectors of mitogenic signaling undergo proteasome-dependent degradation, and that their depletion accounts for different characteristics of senescent cells. Consistent with this model, a phosphoproteomic analysis of Ras-expressing senescent cells treated with the proteasome inhibitor MG132 revealed many proteasome targets whose downregulation can contribute to senescence (Fig. 2; Table 1). We will thus discuss the features of senescence that are most likely to be induced or affected by the SAPD.

SAPD and the Senescent Phenotype

Mitochondrial dysfunction

Mitochondria are dysfunctional in senescent cells, but the mechanism explaining their alterations is unknown. The ATP synthase enzyme uses the proton gradient generated by the electron transport chain in inner mitochondrial membrane to catalyze ATP production. The ATP synthase subunit ATP5B is degraded by the proteasome in Ras-induced senescence (Table 1), and an increase of its turnover might explain the drop in ATP levels in senescent cells reported in some studies. This might contribute to senescence, since inhibition of ATP synthase with oligomycin has been shown to induce a partial senescence phenotype.

The signal transducer and activator of transcription 3 (STAT3) is a transcription factor activated by the JAK kinases in response to cytokines. However, a pool of this protein has been shown to be imported into mitochondria and incorporated to complex I via GRIM-19. Mitochondrial STAT3 modulates respiration, mainly by promoting the activity of complex I and II of the electron transport chain. This function of STAT3 appears to support Ras-driven transformation and ensures the proper functioning of mitochondria. Indeed, impaired levels or regulation of STAT3 have been shown to induce mitochondrial dysfunction and ROS production. Interestingly, STAT3 is a confirmed SAPD target, and its degradation may thus link senescence to mitochondrial dysfunction (Table 1).}

![Figure 1. Oncogenic Ras increases overall protein degradation, but does not increase proteasome activity.](image-url)
In addition, 3 components of the TOM complex were found to be unstable during Ras-induced senescence: HSP70 (HSP1A1), TOMM70A, and TOMM34 (Table 1). The TOM complex is responsible for the import of matrix mitochondrial proteins involved in the TCA cycle and β-oxidation. This complex is assisted by the chaperone ATPase HSP70, which is very unstable in senescent cells. It is thus possible that defects in mitochondrial protein import due to degradation of TOM complex components contribute to the mitochondrial dysfunction observed in senescent cells. It is known that the TOM complex is regulated by phosphorylation, and we found phosphorylation of serine 91 of TOMM70A and serine 186 of TOMM34 in Ras-induced senescence. It will be of considerable interest to address whether these sites are phosphorylated by the ERKs or other kinases and mediate recognition of E3 ligases. Of note, HSP70 regulates oncogene-induced senescence (OIS), and knockdown of this protein is associated to an increase in ERK activity, perhaps creating a positive feedback loop that plays a role in maintaining OIS.

Proteotoxic stress
Accumulation of damaged and misfolded proteins leads to chronic proteotoxic stress, which is intimately linked to organismal aging and associated pathologies. The oxidative stress resulting from either mitochondrial dysfunction or upregulation of oxidative metabolism can promote protein oxidation, thereby leading to protein misfolding. It is proposed that the high production of secreted cytokines in the SASP overcomes the cellular capacity for accurate protein synthesis and thus produces improper proteins and proteotoxic stress. Conversely, high levels of HSPs support tumorigenesis by circumventing a toxic accumulation of misfolded proteins in cancer cells that frequently experience proteotoxic stress, suggesting a widespread vulnerability that can be targeted therapeutically. Taken together, the observations discussed above strongly suggest that a breakdown of protein...
homeostasis is an important feature of cellular senescence and therefore of tumor suppression.

Beyond these correlative findings, we are tempted to speculate that down-regulation of HSP activity might have a primary and critical role during the establishment of a senescent program. First, the reduction of protein refolding might stimulate abnormal protein clearance by degradation, either by macroautophagy or proteosomal-dependent degradation. Notably, a decrease in HSP levels correlates with an elevated activity of the CHIP ligase during senescence, suggesting that this E3 ligase could play a pivotal role in targeting misfolded proteins to the UPP. Somehow, the directed degradation of HSPs could reinforce the main cellular protein degradation mechanisms in order to eliminate dysfunctional proteins instead of investing energy in protein repair. Senescent cells use energy to support production of signaling molecules and secretion products. Protein degradation produces amino acids used as building blocks and substrates to feed the TCA cycle, thereby supporting metabolite synthesis and energy production. Perhaps protein degradation is a better investment.

<table>
<thead>
<tr>
<th>Phenotypes</th>
<th>Proteins</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondrial dysfunction</td>
<td>ATP5B</td>
<td>β-Subunit of the ATP synthase catalytic core (F1); ATP synthesis</td>
</tr>
<tr>
<td></td>
<td>STAT3</td>
<td>Modulates respiration via complex I and II</td>
</tr>
<tr>
<td></td>
<td>HSP1A1 (HSP70)</td>
<td>Component of the TOM complex; import of matrix mitochondrial proteins</td>
</tr>
<tr>
<td></td>
<td>TOMM70A</td>
<td>Component of the TOM complex; import of matrix mitochondrial proteins</td>
</tr>
<tr>
<td></td>
<td>TOMM34</td>
<td>Component of the TOM complex; import of matrix mitochondrial proteins</td>
</tr>
<tr>
<td>Proteotoxic stress</td>
<td>HSPA1A (HSP70)</td>
<td>Protein refolding under stress conditions; supports oncogenesis</td>
</tr>
<tr>
<td></td>
<td>HSPA5,7,8 and 9</td>
<td>Protein refolding under stress conditions; supports oncogenesis</td>
</tr>
<tr>
<td></td>
<td>HSPB1 (HSP27)</td>
<td>Protein refolding under stress conditions; suppresses cellular senescence</td>
</tr>
<tr>
<td></td>
<td>HSPD1 (HSP60)</td>
<td>Protein refolding under stress conditions</td>
</tr>
<tr>
<td></td>
<td>HSP90AB1</td>
<td>Protein refolding under stress conditions; supports oncogenesis</td>
</tr>
<tr>
<td>DNA damage response</td>
<td>CCDC6</td>
<td>DNA damage checkpoints and DNA repair</td>
</tr>
<tr>
<td></td>
<td>SOD1</td>
<td>Superoxide detoxification</td>
</tr>
<tr>
<td></td>
<td>TOP2</td>
<td>Relaxes topological constraints during DNA replication; chromosomes segregation</td>
</tr>
<tr>
<td></td>
<td>TERF2IP</td>
<td>Component of the telosome; tethering telomeres to the nuclear envelope; protect telomere ends from NHEJ and HDR</td>
</tr>
<tr>
<td>Nucleolar and ribosome biogenesis dysfunction</td>
<td>NOLC1</td>
<td>Polymerase I coactivator; scaffold protein for nucleolar assembly</td>
</tr>
<tr>
<td></td>
<td>NOP56 and 58</td>
<td>Components of the box C/D snoRNAs</td>
</tr>
<tr>
<td></td>
<td>DDX51</td>
<td>RNA helicase; processing of the 3′ end of the 28S rRNA</td>
</tr>
<tr>
<td></td>
<td>NOL6</td>
<td>Processing of the 18S rRNA</td>
</tr>
<tr>
<td></td>
<td>NOC2L</td>
<td>Processing of the 18S, 28S and 5.8S rRNAs</td>
</tr>
<tr>
<td></td>
<td>NCL</td>
<td>Polynucleotide transcription; rRNA processing; ribosome assembly and transport</td>
</tr>
<tr>
<td></td>
<td>RPLP1</td>
<td>Translational elongation; overexpression bypasses replicative senescence</td>
</tr>
<tr>
<td></td>
<td>RSL1D1</td>
<td>Regulates the nuclear localization of nucleostemin; rRNA processing</td>
</tr>
<tr>
<td></td>
<td>NPM1</td>
<td>Processing of the 32S pre-rRNA to the mature 28S rRNA</td>
</tr>
<tr>
<td>Cell cycle arrest</td>
<td>YAP1</td>
<td>Regulates apoptosis; regulates organ size; liver oncogene</td>
</tr>
<tr>
<td></td>
<td>MCM2</td>
<td>Initiation and progression of DNA replication</td>
</tr>
<tr>
<td></td>
<td>LRWD1 (ORCA)</td>
<td>stabilizes the origin recognition complex (ORC) to chromatin</td>
</tr>
<tr>
<td></td>
<td>MYC</td>
<td>Promotes DNA replication</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>Promotes G1-to-S-phase progression</td>
</tr>
<tr>
<td></td>
<td>KAP1 (TRIM28)</td>
<td>Destabilized the tumor suppressor p53</td>
</tr>
<tr>
<td></td>
<td>TBX2</td>
<td>Repression of P19ARF; repression of the CDK inhibitors p21 and p27</td>
</tr>
<tr>
<td>Impaired mRNA metabolism and translation</td>
<td>YB-1 (YBX1)</td>
<td>mRNA stability, mRNA packaging, splicing and translational initiation; oncogene</td>
</tr>
<tr>
<td></td>
<td>SRm160 (SRRM1)</td>
<td>Coactivator for exonic splicing enhancers and for 3′-end processing of specific pre-mRNAs</td>
</tr>
<tr>
<td></td>
<td>SRm300 (SRRM2)</td>
<td>Coactivator for exonic splicing enhancers and for 3′-end processing of specific pre-mRNA</td>
</tr>
</tbody>
</table>
than protein repair to support the SASP. This could be particularly true if low-cost degradation processes are favored during senescence. In this regard, it has been reported that ubiquitin and ATP-independent proteasomal degradation, accomplished by the 20S proteasomes, is the predominant mechanism to remove damaged proteins in oxidative contexts, as is the case in senescent cells. If this speculation proves true, this may be the designated route to optimize production of building blocks and energy saving.

DNA damage response

Cellular senescence induced by various stresses is characterized by an inability to properly repair DNA breaks and thus by a permanent DNA damage response (DDR). The latter is thought to contribute to both the induction and maintenance of senescence. The coiled-coil domain containing protein 6 (CCDC6) is a component of the DNA damage checkpoint machinery, and its corresponding gene is rearranged in 20% of papillary thyroid carcinomas. During DDR, CCDC6 is stabilized by ATM and contributes to proper DNA repair. Interestingly, we found that CCDC6 is unstable in Ras-induced senescence (Table 1), and its degradation may thus contribute to the persistent DDR observed in senescent cells.

In addition to limiting proper DNA repair, the SAPD could itself promote DNA damage. The DNA breaks that underlie senescence can be triggered by different stresses. One of these is the increase in reactive oxygen species (ROS). Resulting from abnormal mitochondrial activities during senescence as discussed previously. Surprisingly, we found that the copper zinc superoxide dismutase 1 (SOD1) is unstable in Ras-dependent senescent cells (Table 1). Since this enzyme metabolizes superoxide radicals to molecular oxygen and hydrogen peroxide, and therefore is a major component of the antioxidant defenses within the cell, SOD1 depletions could cooperate with mitochondrial generation of ROS to increase the total amount of these reactive ions and concomitant DNA damage. Further supporting this conjecture, SOD1 deficiency has been shown to induce persistent DNA damage in mice and senescence in human fibroblasts. In addition to increased ROS levels, oncogenic activation drives an initial phase of DNA hyper-replication, leading to premature termination of replication forks, thereby producing DNA damage that triggers senescence. Intriguingly, another candidate target of SAPD identified by proteomics is TOP2 (Table 1), which is known to relax topological constraints during DNA replication and to allow chromosome segregation. Accordingly, a deficiency in this topoisomerase could increase fork collapses by preventing their progression, causing aberrant replication intermediates and the activation of DDR. Also, a lack in TOP2 can impair completion of DNA replication by interfering with the proper resolution of replication forks at chromosomal termination regions (TERs), thus generating DNA damage at TERs and even more when cells undergo mitosis. The human ortholog of the yeast telomere-binding protein Rap1, TERF2IP, interacts with PML, a protein forming PML nuclear bodies (PML-NBs) during senescence and that has been implicated in protein degradation. This suggests that senescence-associated PML-NBs could be a specialized compartment where nuclear proteins are degraded during SAPD.

Dysfunction in nucleolar and ribosome biogenesis

The nucleolus is the principal site of ribosome synthesis, where RNA polymerase I (PolI) transcribes rRNA genes (rDNA) to produce the 47S rRNA precursor. The 47S precursor is cleaved and modified by 2′-O-methylation and pseudouridylation of specific nucleotides to form the mature 18S and 28S rRNAs. These processes are guided by small nucleolar RNAs (snoRNAs) assembled into RNA/protein complexes called small nucleolar ribonucleoproteins (snoRNPs). Mature rRNAs are assembled with ribosomal proteins (RPs), inside the nucleolus, to produce the 40S and 60S ribosomal subunits, which then migrate toward the cytoplasm. Approximately 50% of the energy of proliferating eukaryotic cells is dedicated to ribosome biogenesis, and the process requires approximately 200 snoRNAs, more than 80 RPs, and hundreds of accessory proteins. We found that many proteins implicated in rRNA transcription and maturation are unstable in Ras-induced senescence. They include NOLC1, NOP58, NOP56, DDX51, NOL6, and NOC2L. We also found unstable proteins which are implicated in late steps of ribosome synthesis, such as nucleolin (NCL), the ribosomal protein P1 (RPLP1), and the ribosomal protein L23 (RPL23). Although we do not know yet whether the instability of the proteins discussed above causes a decrease in their levels in senescent cells, such a reduction may lead to defects in ribosome biogenesis or may simply be part of a compensatory mechanism that degrades these proteins when ribosome biogenesis is reduced.

We confirmed the proteasome-dependent degradation of the ribosomal L1 domain-containing 1 protein (RSL1D1 or CSIG) and its decrease in Ras-induced...
senescence (Table 1). Interestingly, this protein was previously found downregulated in senescent cells. RSL1D1 regulates the nucleolar localization of nucleostemin (NS), which, in turn, regulates the nucleolar localization of DDX21. Nucleostemin and DDX21 have been shown to be important for the processing of pre-rRNA. Using RNAi screening, a role in rRNA processing was also shown for RSL1D1 together with NOP56, DDX51, NOL6/NRAP, NOC2L/NIR, and nucleolin (NCL). We knocked-down the expression of this protein in normal human fibroblasts, and this resulted in the induction of the senescent phenotype. Hence, a reduction in RSL1D1 can be causative for senescence, and its role in ribosomal biogenesis suggests that defects in this process may be another effector mechanism of senescence.

It has been shown that the alternative reading frame protein (ARF, also known as p19ARF), a well-known inducer of senescence, stabilizes p53 by inhibiting the E3 ubiquitin ligase MDM2 (HDM2). However, ARF also inhibits cell proliferation by targeting nucleophosmin (NPM1/B23) for sumoylation and degradation and in this way regulates the processing of the 32S pre-rRNA to the mature 28S rRNA. Furthermore, ARF and NPM1 control the sub-nuclear localization of the transcription termination factor I (TTF-1), which has been shown to regulate PolI transcription initiation/termination and rRNA processing. Therefore, in addition to inducing the senescence phenotype through the MDM2–p53 axis, ARF affects ribosome biogenesis, and we can hypothesize that this function may also reinforce the senescence program. Supporting this, we found that NPM1 is unstable in Ras-induced senescence (Table 1).

In light of the results presented above, it is tempting to suggest that defects in ribosome biogenesis can be an important mediator of senescence. This is in agreement with recent

Figure 4. Modulation of protein stability for proteins regulated by phosphorylation-driven ubiquitination and proteasome-dependent degradation. (A) Under normal conditions, competition between the activity of kinases vs. phosphatases (PPases) and E3 ubiquitin ligases vs. deubiquitinases (DUBs) ensures the maintenance of appropriate levels of a specific protein. The turnover of this protein can be increased by (B) increasing the activity of its kinases; (C) increasing the activity of its E3 ubiquitin ligases; (D) both (B and C); (E) decreasing the activity of its PPases; (F) decreasing the activity of its DUBs; (G) both (E and F). Of note, different combinations of (B) to (G) can be involved. Also, a similar scenario can be applied for SUMO-dependent ubiquitination; kinases and PPases can be substituted by SUMO E3 ligases and desUMOylase. Ub, ubiquitin; P, phosphorylation.
reports showing that CX-5461, an inhibitor of rRNA synthesis, induces cellular senescence in solid tumor cell lines.156,157 However, a defect in ribosome biogenesis may appear contradictory to the increased global translation reported in senescent cells,24 which could result from the activation of TOR signaling.158 Indeed, this pathway has been shown important to convert cells from a reversible quiescent state to a permanent senescent phenotype,159-162 a phenomenon called geroconversion by Blagosklonny and colleagues,163 and this could be in part due to the translational effects of TOR.164 Although further work will be required to explain how senescent cells can increase translation despite less ribosome biogenesis, it is likely that ribosome turnover decreases in these cells forcing them to use “old” ribosomes to make proteins.

Cell cycle arrest

Impaired proliferation, mainly by an arrest in the G\textsubscript{1} phase of the cell cycle, is an established senescence feature, and the SAPD may be an important player in this process. During G\textsubscript{1}, the D-type cyclins bind the cyclin-dependent kinase (CDK) 4 and 6, and this stimulates the progression toward initiation of S phase.165 We found that the transcription coactivator Yes-associated protein YAP1 has a high turnover in Ras-expressing senescent cells (Table 1).61 Later, it was found reduced by another group during replicative senescence as well.166 YAP1 localizes to PML bodies and can regulate apoptosis via p73.167 In addition, YAP1 is the ortholog of Drosophila Yorkie that regulates organ size as part of the Hippo programs, including proliferation.177 Its downregulation is reported to contribute to senescence,178,179 and its overexpression cooperates with different oncogenes to transform cells by inhibiting cellular senescence.179,181 The downregulation of MYC levels in order to shut down the cell cycle is thus possibly at the crossroads of several senescence-promoting pathways. This not only suggests a role for the CUL4A-DDB1 to the list of E3 ligase candidates that promote SAPD.

Since CUL4A-DDB1 has also been shown to promote proteasome-dependent degradation of MYC via the substrate receptor TRUSS (TRPC4AP),180 a role of this E3 ligase in cell cycle arrest and senescence is even more consistent considering our observation of MYC degradation in Ras-induced senescent cells (Table 1).61 MYC promotes DNA replication and is a master regulator of many cellular programs, including proliferation.177 Its downregulation is reported to contribute to senescence,178,179 and its overexpression cooperates with different oncogenes to transform cells by inhibiting cellular senescence.179,181 The downregulation of MYC levels in order to shut down the cell cycle is thus possibly at the crossroads of several senescence-promoting pathways. This not only suggests a role for the CUL4A-DDB1 to the list of E3 ligase candidates that promote SAPD.

The G\textsubscript{1}-to-S-phase transition is ensured by the formation of the pre-replication complexes (pre-RCs) on chromatin, which depends on the sequential recruitment of the origin recognition complexes (ORCs), CDC6, and MCM proteins.177 The DNA replication licensing factor MCM2 is an important component of the pre-RCs and was found unstable in Ras-induced senescence (Table 1). Accordingly, degradation of MCM2 could limit the initiation of DNA replication and the progression of the cell cycle.172 In addition, LRWD1/ORCA is a protein that stabilizes the origin recognition complex (ORC) on chromatin.173 LRWD1/ORCA degradation in Ras-triggered senescence (Table 1) is likely to abrogate the binding of the ORC to chromatin, consequently arresting the cells in G\textsubscript{1}. Interestingly, this protein is suspected to be polyubiquitinated by the E3 ligase complex CUL4A-DDB1,174 which has already been linked to p16INK4A upregulation in senescence.175 Hence, we can add CUL4A-DDB1 to the list of E3 ligase complexes (ORCs), CDC6, and MCM proteins.171 The DNA replication licensing factor MCM2 is an important component of the pre-RCs and was found unstable in Ras-induced senescence (Table 1). Accordingly, degradation of MCM2 could limit the initiation of DNA replication and the progression of the cell cycle.172 In addition, LRWD1/ORCA is a protein that stabilizes the origin recognition complex (ORC) on chromatin.173 LRWD1/ORCA degradation in Ras-triggered senescence (Table 1) is likely to abrogate the binding of the ORC to chromatin, consequently arresting the cells in G\textsubscript{1}. Interestingly, this protein is suspected to be polyubiquitinated by the E3 ligase complex CUL4A-DDB1,174 which has already been linked to p16INK4A upregulation in senescence.175 Hence, we can add CUL4A-DDB1 to the list of E3 ligase candidates that promote SAPD.

Since CUL4A-DDB1 has also been shown to promote proteasome-dependent degradation of MYC via the substrate receptor TRUSS (TRPC4AP),180 a role of this E3 ligase in cell cycle arrest and senescence is even more consistent considering our observation of MYC degradation in Ras-induced senescent cells (Table 1).61 MYC promotes DNA replication and is a master regulator of many cellular programs, including proliferation.177 Its downregulation is reported to contribute to senescence,178,179 and its overexpression cooperates with different oncogenes to transform cells by inhibiting cellular senescence.179,181 The downregulation of MYC levels in order to shut down the cell cycle is thus possibly at the crossroads of several senescence-promoting pathways. This not only suggests a role for the CUL4A-DDB1 to the list of E3 ligase complexes (ORCs), CDC6, and MCM proteins.171 The DNA replication licensing factor MCM2 is an important component of the pre-RCs and was found unstable in Ras-induced senescence (Table 1). Accordingly, degradation of MCM2 could limit the initiation of DNA replication and the progression of the cell cycle.172 In addition, LRWD1/ORCA is a protein that stabilizes the origin recognition complex (ORC) on chromatin.173 LRWD1/ORCA degradation in Ras-triggered senescence (Table 1) is likely to abrogate the binding of the ORC to chromatin, consequently arresting the cells in G\textsubscript{1}. Interestingly, this protein is suspected to be polyubiquitinated by the E3 ligase complex CUL4A-DDB1,174 which has already been linked to p16INK4A upregulation in senescence.175 Hence, we can add CUL4A-DDB1 to the list of E3 ligase candidates that promote SAPD.
regulator of cell proliferation found unstable in Ras-induced senescent cells.189 Its downregulation may contribute to a block in G\textsubscript{1}-to-S-phase progression by decreasing the expression of cyclin D\textsubscript{1}190 and elevating the expression of p53 and p21.191

The degradation of the KRAB-associated protein 1 (KAP1, also known as TRIM28 or TIF1\textbeta) (Table 1), a validated SAPD target,61 may block the cell cycle by different mechanisms. First, KAP1 is known to destabilize p53, possibly explaining why high levels of KAP1 are associated with poor prognosis in gastric cancers.192 KAP1 binds and cooperates with the E3 ligase MDM2 to drive p53 degradation.193 Furthermore, the melanoma antigen (MAGE) proteins interact with KAP1 and stimulate its own E3 ligase activity to allow p53 ubiquitination and degradation in a MDM2-independent manner.194 Accordingly, downregulation of KAP1 is likely to stabilize p53, allowing the expression of key cell cycle inhibitors.195 Second, the degradation of KAP1 may relieve its transcriptional repression functions, which have been shown to directly inhibit the transcription of p53-target genes, such as the CDK inhibitor p21.196,197 Third, KAP1 depletion increases the number of PML-NBs.198 These senescence-associated nuclear structures inhibit E2F target gene expression. The latter are critical to initiate DNA synthesis, and inhibiting their transcription arrests cell proliferation.9

The T-box protein 2 (TBX2) is linked to repression of p19ARF gene expression, thereby promoting the MDM2-mediated degradation of p53 and cellular senescence suppression.199 TBX2 further antagonizes senescence by repressing the CDK inhibitors p21 and p27 (CDKN1B).200,201 Finally, TBX2 is reported to be an E2F-target gene repressed by PML, and its repression stimulates the pro-senescence functions of PML.202 Collectively, these results suggest that degradation of TBX2 (Table 1) could initiate the cell cycle arrest characterizing senescence and then reinforce the phenotype by activating a positive loop via the inhibition of its own transcription by PML.

According to a FatiGO single enrichment analysis of proteomics data with the bioinformatics platform Babelomics, the regulation of proliferation is one of the biological functions that is most enriched among unstable proteins in Ras-induced senescence (Fig. 2).62 Here, we have discussed the implication of just a few of the possible SAPD targets involved in cell proliferation. Surprisingly, after further analysis of the proteomics data, we found that the proteins corresponding to the genes identified by Chicas et al. (2010) as downregulated by RB1 in Ras-induced senescent fibroblasts are also unstable (Fig. 3).9 In this context, RB1 predominantly represses the E2F target genes implicated in DNA replication. Although this idea will need further investigation, our results suggest that bulk degradation of the same E2F-induced proteins could cooperate with transcriptional repression to safeguard cell cycle arrest. Does the SAPD cooperate with RB1 and PML-NBs to ensure a rapid and potent shutdown of E2F target genes?

Impaired mRNA metabolism and translation

The Y-Box binding protein 1 (YB-1 or YBX1) is also unstable in Ras-induced senescent cells (Table 1), and its downregulation has been linked to the senescence phenotype,203 whereas its overexpression strongly correlates with aggressive tumors.204 However, YB-1 is a multifunctional protein, and we are still far from understanding how its functions could oppose senescence. One hypothesis is that YB-1 could stimulate the transcription of E2F-target genes by binding to multiple E2F promoters.205 Conversely, it could act as a transcriptional repressor of p53.206 These scenarios suggest that depletion of YB-1 could have a relatively direct effect on cell cycle as discussed in the previous section. Nonetheless, direct evidence also highlights critical functions in mRNA metabolism, including mRNA stability, mRNA packaging, splicing, and translational initiation.204,207 Does the regulation of p53 and E2F-target genes result from these activities? Although the answer is not clear, this could be the case at least for p53. The DNA-damaging stresses prevent YB-1-mediated splicing of
MDM2, leading to an mRNA molecule lacking several exons, and resulting in a non-functional protein. This regulation of MDM2 may contribute to the stabilization of p53 in senescent cells experiencing DDR. Because YB-1 is a putative general regulator of mRNA maturation and translation for mRNAs with YB-1 binding sites, we hypothesize that suppression of these functions could promote senescence by affecting the expression of several proteins. In senescence, the YB-1 functions could be abrogated by its degradation, possibly catalyzed by the E3 ligase activity of RBPP6.

Two other splicing regulators have an increased turnover in Ras-induced senescence (Table 1). SRm160 (SRRM1) and SRm300 (SRRM2) are splicing coactivators required for the functions of exonic splicing enhancers and for 3′-end processing of specific pre-mRNAs. These proteins are phosphorylated at multiple distinct S/T-P phosphorylation sites in senescent cells, suggesting that they may act as a sensor of ERK signaling strength. Perhaps an accumulation of phosphorylated sites over a given threshold controls the interaction with E3 ligases, promoting the ubiquitination and degradation of hyperphosphorylated SRm160/300 in response to oncogenic stress. Such degradation could consequently promote senescence by impeding normal mRNA maturation of a specific set of genes, including critical regulators of normal cell functions.

Key Remaining Questions

Targeting protein to SAPD: Where?

Proteasomes are widespread in cells, but can interact with some specific cellular structures. In the cytoplasm, proteasomes can bind the cytoskeleton, the outer surface of the endoplasmic reticulum, and the centrosomes. They are also found throughout the nucleoplasm, but, interestingly, they have been shown to be concentrated in PML-NBs, and other focal subdomains. In some particular contexts, proteasomes can also accumulate in nucleoli. Thus, the degradation of SAPD targets could use specific “proteolytic centers”. For example, Wójcik and DeMartino (2003) proposed that cytosolic proteins targeted for degradation are delivered to a master proteolytic complex located at the centrosome via microtubule-mediated transport. Similarly, PML-NBs and nuclear speckles could act as the proteolytic complexes for nucleoplasmic SAPD targets. Speckles are enriched in splicing factors and may thus be the proteolytic center for these proteins we found unstable during Ras-induced senescence, including YBX1, SRm160, and 300 (Table 1). Also, PML-NBs might be a specialized structure for short proteins destined to be degraded vs. these that should not, thereby representing the so-called clastosome previously described as nuclear bodies enriched in proteasome-dependent degradation effectors. Consistent with this idea, several potential and validated SAPD targets colocalize with PML-NBs, including TERF2IP, YAP1, MYC, and STAT3. Furthermore, PML-NBs have been shown to be involved in the degradation of factors for which downregulation is known to mediate a senescence program, such as CREBBP, and MYC. Conversely, PML-NBs might also play an active role in protecting other proteins from degradation, like HIPK2, p73, TOPBP1, and p53. Thus, PML may be critical for the specificity of SAPD.

Targeting protein to SAPD: How?

The pattern of proteins degraded by the proteasome seems dramatically changed during senescence, while there is no apparent modification in total proteasome activity. This is also, even if there is a large amount of unstable proteins, other key senescence mediators are stabilized (e.g., p53). These observations suggest 2 principal mechanisms explaining the proteasome-dependent degradation of a large subset of specific proteins in senescence: the upregulation of specific E3 ligases activity and the targeting of specific proteins for SAPD. Previous work and our recent observations strongly propose that post-translational modifications of proteins play a central role in SAPD. Because PML-NBs could be involved in SAPD target degradation, sumoylation is a candidate modification of particular interest. Indeed, PML-NBs are among the principal sites of sumoylation in cells, since they interact with many SUMO ligases and sumoylated proteins. Furthermore, sumoylation is known to lead to the subsequent ubiquitination and degradation of particular proteins. There is now accumulating evidence that sumoylation at PML-NBs is coupled with the UPP, the SUMO-dependent degradation of N4BP1 and NRF2 being examples. Of note, the degradation of the latter in PML-NBs could limit ROS detoxification, thereby contributing to the induction of senescence. Senescent cells experience oxidative stress, suggesting that protein carboxylation may serve as another modification to distinguish SAPD targets. This modification marks oxidized proteins for degradation, mostly via the 20S proteasome and in an ATP- and ubiquitin-independent manner. Despite the fact that carboxyl-mediated degradation exhibits a certain level of specificity, depending on the intrinsic susceptibility of a protein to oxidative carboxylation, this mechanism is rather unspecific and hardly explains the global proteome of senescent cells.

Our group identified a remarkable number of phosphopeptides from proteins degraded by the proteasome in Ras-induced senescent cells, suggesting that phosphorylation is an important protein modification triggering SAPD. Further strengthening this hypothesis, protein phosphorylation and ubiquitination-dependent degradation are tightly linked. Phosphorylation can drive ubiquitination either by regulating the subcellular localization of target proteins, thereby eliminating a spatial separation between the substrate and its E3 ligase, or by creating a docking site for an E3 ligase. In replicative and Ras-induced senescence, hyperactivation of the ERK/MAPK pathway is essential to mediate SAPD and to maintain the senescent phenotype. This suggests a model where the hyperphosphorylated ERK targets are degraded, creating a negative feedback to mitogenic signaling that promotes senescence. In this model, the sustained phosphorylation of ERK targets is suspected to increase the chance of an interaction with an E3 ligase or to activate a phosphodegron. However, we cannot exclude that...
other kinases play a role in ERK-mediated SAPD. Such kinases could be either hyperactivated downstream of the ERK/ MAPK pathway or contribute to the full activation of phosphodegrons. The SAPD candidates MYC and JUN are 2 examples of proteins regulated by a phosphodegron implicating multiple kinases. Both are first phosphorylated by the ERK kinases, priming them for further phosphorylation by the GSK3 kinase, which is the final act in order to recruit the E3 ligase SCF-FBW7. Supporting an important role for GSK3 in mediating activation of phosphodegrons during SAPD, its inhibition leads to a reduction of MYC ubiquitination. Furthermore, another SAPD candidate in Ras-induced senescence, namely β-catenin (CTNNB1), is a well-known protein undergoing degradation following GSK3-mediated phosphodegron activation. Considering that GSK3 is inactivated by the PI3K/AKT pathway, buffering AKT activity is maybe an important strategy employed to promote SAPD in Ras-induced senescent cells. This could explain, at least in part, why activation of AKT contributes to circumvent RAF and Ras-induced senescence. Nevertheless, we can speculate that hyperactivation of different kinases, including AKT, could also engage the degradation of their targets and thus promote a different pattern of SAPD, but with senescence as a common phenotypic output. SAPD could be a universal response to “phosphorylation stress” to avoid cellular transformation in the context of abnormal mitogenic signaling.

Kinases vs. phosphatases and E3 ligases vs. deubiquitinases: Different weapons, same fight?

When we address proteasome-dependent protein degradation, we naturally think of E3 ubiquitin ligases. However, the global picture is much more complicated and involves several players. Proteins can be dynamically ubiquitinated by E3 ligases and deubiquitinated by deubiquitinases. As we discussed in the previous section, ubiquitination can depend on phosphorylation. In this situation, protein degradation is also regulated by kinases and phosphatases. We can thus simplify the situation by presenting kinases and E3 ubiquitin ligases as collaborating to favor protein degradation, whereas phosphatases and deubiquitinases are their respective opponents. A similar logic can be applied for SUMO-dependent ubiquitination; while SUMO E3 ligases cooperate with E3 ubiquitin ligases, deSUMOylases antagonize the process. In normal conditions, a subtle equilibrium between all the players impacting on protein stability ensures determined levels for a specific protein (Fig. 4A). During SAPD, the equilibrium is displaced to favor an increased turnover leading to reduced levels of the same protein. What exactly leads to the displacement of the equilibrium? For a given protein, the process can be mediated mostly by: (1) an increased activity of its kinases/SUMO E3 ligases (Fig. 4B); (2) an increased activity of its E3 ubiquitin ligases (Fig. 4C); (3) both 1 and 2 (Fig. 4D); (4) a decreased activity of its phosphatases/deSUMOylases (Fig. 4E); (5) a decreased activity of its deubiquitinases (Fig. 4F); (6) both 4 and 5 (Fig. 4G); (7) different combinations of 2 to 6. One challenge for the coming years will be to determine how these regulators interact to affect the steady state and what the resulting dynamic is. Is the equilibrium displaced linearly or does the collaboration between different SAPD mediators rather promote switch-like mechanisms? Such switch-like responses could point to competition between regulators with opposite effects on the substrate, which has been shown in the control of the orthologous yeast ERK/MAPK pathway. Finally, another challenge is to evaluate whether there are master regulators of protein degradation in SAPD, allowing opportunities to target the phenotype, or whether each protein or subset of proteins is regulated via distinct machinery.

Is there a master senescence-associated E3 ligase?

The specificity of the UPP is conferred by E3 ubiquitin ligases, a large and complex group of proteins, with an estimated 600 to 1000 members in the human proteome. Based on the structure of their catalytic domain, the E3 ubiquitin ligases are generally classified into 4 main categories: the RING-finger type, the HECT type, the U-box type, and the less characterized PHD domain-containing type. The former is by far the most abundant and is further subdivided as single unit or multiple subunit RING-finger E3 ligases. The latter form complexes grouped into 2 principal families, the anaphase-promoting complex (APC) and the cyclin-dependent ubiquitination (CRB) superfamily. There are 7 cullins expressed in human cells (CUL1, 2, 3, 4A, 4B, 5, and 7) and they interact with specific receptor proteins which provide target specificity, including proteins harboring F-box, SOCS-box, VHL-box, and BTB domains. These complexes are referred to by various names (reviewed in ref. 255), but the most common appellation is probably SCF for the classic complex containing CUL1 and SCF2–5 and 7 for complexes containing the corresponding cullins. In the simplest scenario, one or few E3 ubiquitin ligases could be responsible for SAPD. Such a possibility would likely involve the regulation of the activity of specific E3 ligases. However, current evidence reviewed above points to the specificity being conferred by upstream steps targeting designated proteins for degradation. Considering these data as well as the complexity of the E3 ubiquitin ligase superfamily, we favor the view that SAPD is likely regulated by several E3 ligases, each catalyzing the ubiquitination of its specific targets. However, this more complex picture does not exclude the possibility that some E3 ligases could play a more critical role in the senescent phenotype. Indeed, as discussed previously, SCF-FBW7 is a well-known tumor suppressor and has been recently shown to contribute to senescence, and correspondingly many FBW7 targets are degraded in SAPD. The CUL4A–DDB1 (SCF4) complex and its interacting receptor protein DDB2 are also strong candidates, since both have been shown to drive senescence. Furthermore, the fact that phosphorylation could be a mark to distinguish SAPD targets highlights the interest in investigating the roles of the SCF complexes in senescence. Indeed, this subfamily of E3 ubiquitin ligases is primarily responsible for serine/threonine phosphorylation-dependent ubiquitination. Two classes of F-box proteins are specialized to recognize phosphodegrons, namely, the WD40 F-box proteins (e.g.,...
FBW7 and β-TRCP1/2 and leucine-rich repeat (LRR) F-box proteins (e.g., SKP2).\(^{242}\) The proposed involvement of PML-NBs and SUMO-dependent degradation in SAPD also increases the interest in studying the contribution of the SUMO-targeted ubiquitin ligase (STUbL) family in senescence,\(^{258}\) such as RNF4, which contains a SUMO-interacting motif (SIM).\(^{259}\) Although many E3 ubiquitin ligases have tumor-suppressive functions, including APC, SCF-FBW7, BRCA1, VHL, and FANC, several others are clearly oncogenic and can oppose senescence.\(^{248}\) For example, MDM2 and MDMX are bona fide oncogenes and limit senescence by catalyzing ubiquitination and degradation of p53.\(^{252,248}\) Senescence is also limited by the oncogene SCF-SKP2 that targets p27 and p21 in a p53-independent manner.\(^{260}\) The potential role in cancer of E3 ligases that have a complex array of targets, including both tumor suppressors and oncogenes, is more difficult to ascertain. This is the case for SCF-β-TRCP, functioning primarily as an oncogene by targeting apoptotic proteins, but showing tumor-suppressive activities in some contexts.\(^{248}\) Since SCF-β-TRCP targets preferentially phosphorylated proteins,\(^{242}\) whether it acts as an oncogene or as a tumor suppressor may depend on the pool of phosphorylated substrates in a given context. In light of these dissimilar functions in tumorigenesis, it seems obvious that different members of the large family of E3 ubiquitin ligases use the UPP to compete in opposite directions. We can thus compare the effect of the E3 ligases on cell fate to a delicate balance, where the equilibrium between the activities of oncogenic vs. tumor-suppressive E3 ligases is critical to maintain cells in a normal state (Fig. 5). Under oncogenic stress, depending on whether the balance is tipped in one direction or the other, the UPP could favor transformation into cancer cells or tumor suppression, respectively.

SAPD: A coordinated proteome reprogramming?

The answer to this question first depends on how senescence should be seen. Is it a totally abnormal and non-functional cellular state initiated in response to stress, which is basically avoided in normal organisms? Is it rather one of the fundamental tools that evolution has provided as a defense against the insults inherent to organismal life? The prevailing view at present favors that latter paradigm. Indeed, not only is senescence a gatekeeper response that is acutely triggered by stress stimuli, but it now appears that the process can have important functions in non-stressed conditions, namely in embryonic patterning.\(^{261,262}\) Hence, considering senescence as a “normal” adaptive state, the question is now: what is the fundamental role of SAPD in senescence, and why it was selected during evolution?

Cellular senescence was first thought to underlie organismal aging, and this hypothesis steadily gained experimental support.\(^{263}\) The deleterious effects of senescence are caused by the accumulation of senescent cells in aging organisms. However, it is possible that this accumulation is rather the result of an abnormal senescence program, and that evolution has selected a mechanism to avoid the accumulation of senescent cells. The recent literature suggests that this mechanism may be the clearance of senescent cells by the immune system.\(^{37-40}\) The SASP seems critical to activate the immune response by signaling the presence of senescent cells and attracting destructive immune cells.\(^{5}\) If the ultimate destiny of senescent cells is their elimination, the production of signaling molecules during the SASP appears central to ensure a complete and effective senescence phenotype (Fig. 6). An abnormal SASP pattern or a defect in the capacity of the immune system to eliminate senescent cells could thus be the basis of an “abnormal” accumulation of senescent cells and age-related pathologies.\(^{265}\)

The SASP is a costly anabolic process, and senescent cells have to deal with the limited availability of building blocks and energy to support the process. Thus, we can suppose that cells reorganize the distribution of these resources in order to favor the synthesis of cytokines. Does reorganizing the proteome mean realocating resources? Such a link between autophagy and SASP has already been proposed.\(^{25,52}\) Is the SAPD part of this reorganization? The degradation of specific proteins by the UPP could shut down highly energy-consuming functions, such as protein repair, DNA repair, synthesis of new ribosomes, and DNA synthesis. Since senescent cells are destined for clearance, these functions are dispensable for senescent cells, and their inhibition allows more resources to support the SASP (Fig. 6). Protein degradation by UPP consumes ATP, but the resulting amino acids can be used to obtain energy or supply building blocks for anabolic reactions. Overall, the SAPD could be a better investment for senescent cells whose final destiny is to be eliminated.

Breaking down cancer?

Although SAPD could be a powerful mechanism to mediate senescence and tumor suppression, it raises many new questions for further research. The exact contribution of protein degradation to senescence, including SAPD and autophagy, is still mostly speculative. Perhaps it simply brings a balance to cells unable to divide but making more proteins. However, catabolic processes may take a central place to induce cell cycle arrest of premalignant cells and to trigger their elimination by the immune system. Not only could proteolysis redistribute the resources to support the production of cytokines by oncogene-expressing cells, but it could also generate peptides for antigen presentation to ensure their specific recognition and destruction by immune cells (Fig. 6).\(^{264,265}\) This may involve the production of an abnormal quantity of a self-antigen or the generation of abnormal antigens, such as pieces of activated oncogenes or damaged proteins.

A better understanding of the senescence degradome appears essential to have a more global picture of how anabolic and catabolic changes are linked together to trigger a complete senescence phenotype. This could provide insights into how cancer cells circumvent senescence and the role of metabolic changes in this process, thereby suggesting new therapeutic strategies. Targeting components of the UPP and autophagy with small-molecule inhibitors is an emerging area for the treatment of cancer.\(^{266}\) The clinical potential of this strategy has been highlighted by the success of the proteasome inhibitor bortezomib for the treatment of myeloma and lymphoma. Currently, most of the efforts
are invested in the development of proteasome inhibitors, which have a global, and thus non-specific, effect on the UPP-mediated degradation. Such an approach can preferentially affect cancer cells where the pattern of E3 ubiquitin ligase activities and UPP-targeted substrates clearly support tumorigenesis and cancer progression (Fig. 5). However, the UPP has a fundamental role in normal cellular functions and in tumor suppression as well. This suggests caution in the clinical use of proteasome inhibitors and may explain the toxicity associated with these compounds. A better comprehension of SAPD and its dysfunction in cancer cells will certainly uncover new pharmacologic vulnerabilities to allow the rational development of new targeted therapies. Can we reverse the advantages given by the SAPD, such as the elimination of precancerous cells by the immune system, and at the same time inhibit UPP-driven oncogenesis? In other words, can we tip the balance of protein breakdown to break down cancer?

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
X.D.-S. is a fellow of the Vanier Canada Graduate Scholarships Program and Michael Smith Foreign Study Supplements Program. F.L. is a fellow of FRQS (Fonds de recherche du Québec - Santé). N.B. is supported by grants from the National Institutes of Health (R01 CA133557-05 and P01 CA117969-07) and the Linda J. Verville Cancer Research Foundation. G.F. is a FRQS national research fellow.

References
2. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. Senescence? In other words, can we tip the balance of protein breakdown to break down cancer?

10. Ferbeyre G, de Stanchina E, Querido E, Narita M, Zhang M, Lowe SW. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 2010; 17:376-87; PMID:20238536; http://dx.doi.org/10.1016/j.ccr.2010.01.023
aging involves recruitment of the macroautophagy pathway. Exp Gerontol 2003; 38:887-95; PMID:12915210 ; http://dx.doi.org/10.1016/S0749-9648(02)00132-3

43. Sasaki M, Miyazaki M, Sato Y, Nakamura Y. Autophagy mediates the process of cellular senescence characterizing bile duct damages in primary biliary cirrhosis. Lab Invest 2010; 90:835-43; PMID:22125499 ; http://dx.doi.org/10.1038/labinvest.2010.20301

91. Murphy ME. The HSP70 family and cancer. Carcinogenesis 2013; 34:1181-8; PMID:23563090; http://dx.doi.org/10.1093/carcin/bgt111

115. Elchuri S, Oberley TD, Qi W, Einstein RS, Jiang L, Van Remmen H, Epstein CJ, Huang TT. Ca2+Zn2+ deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 2005; 24:367-80; PMID:15533199; http://dx.doi.org/10.1038/sj.onc.1208407

117. Bae J, Baek NS, Srafford J, Baumann P. Human RAP1 inhibits non-homologous end joining at telomeres. EMBO J 2009; 28:3590-9; PMID:19763083; http://dx.doi.org/10.1038/embj.2009.275

118. Sarthy J, Bae NS, Srafford J, Baumann P. Human RAP1 inhibits non-homologous end joining at telomeres. EMBO J 2009; 28:3590-9; PMID:19763083; http://dx.doi.org/10.1038/embj.2009.275

166. Konstantinova OA, Demidenko ZN, Blagosklonny MV. MEK drives cyclin D1 hyperrepression during geroncrosis. Cell Death Differ 2013; 20:1241-9; PMID:23585269; http://dx.doi.org/10.1038/cdd.2013.86

168. Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology decelerates cellular senescence. Cell Cycle 2012; 11:2391-401; PMID:22672671; http://dx.doi.org/10.4161/cc.20.11.20683

172. Labib K, Tercero JA. Difley JF. Uninterrupted cell cycle progression and apoptosis by distinct mechanisms. Dev Cell 2010; 24:72-85; PMID:20048001; http://dx.doi.org/10.1016/j.devcel.2010.03.027

174. Labib K, Tercero JA, Diffley JF. Uninterrupted cell cycle progression and apoptosis by distinct mechanisms. Dev Cell 2010; 24:72-85; PMID:20048001; http://dx.doi.org/10.1016/j.devcel.2010.03.027

177. Wisdom R, Johnson RS, Moore C. c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 2005; 24:3279-89; PMID:15941222; http://dx.doi.org/10.1038/sj.emboj.7600546

1858 Cell Cycle Volume 13 Issue 12

259. Sun H, Lewson JD, Hunter T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 2007; 26:4012-12; PMID:17762864; http://dx.doi.org/10.1038/sj.emboj.7601839

265. Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol 2008; 8:607-18; PMID:18641466; http://dx.doi.org/10.1038/nri2368

