Psy1004 – Section 4:

Statistiques inductives

Plan du cours:

- Varia
- 4.0: Idée générale
- 4.1: Structure d'un test
 - a) les hypothèses
 - b) le seuil
 - c) le test statistique
 - d) appliquer le test et conclure
- 4.2: Tests bicaudal vs. unicaudal
- 4.3: Intervalle de confiance

- 4.4: Le travail du statisticien
- 4.5: Test binomial sur une proportion
- 4.6: Test binomial sur une proportion utilisant l'approximation normale
- 4.7: Test des signes
- 4.8: Test de la médiane
- 4.9: Exemples

Disponible sur: http://mapageweb.umontreal.ca/cousined/home/course/PSY1004

Varia

- Aujourd'hui:
 - Remise du TP1,
 - Énoncé du TP2 disponible sur le site web
- Autre chose?
- Questions sur le cours 3: Probabilités

vrai monde

Et si on buvait de l'alcool pour relâcher le stress?

Votre hypothèse formalisée

Vos intuitions

 H_0 : $\mu_{\text{stress}} = 100$

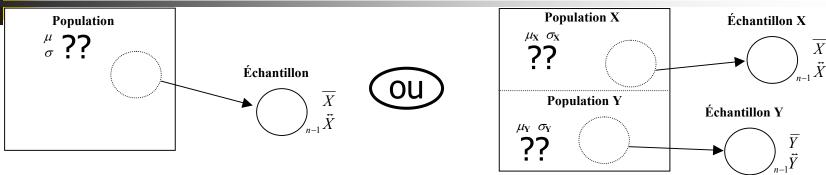
 H_1 : $\mu_{stress} > 100$

où μ est la consommation d'alcool, et 100 (disons), la consommation de base \alcool.

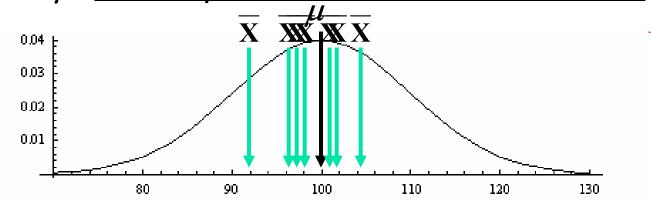
Décider des conditions d'observation Collecter un échantillon représentatif

Décision à savoir si l'hypothèse formelle est rejetée ou pas

4.0: Idée générale (2/3)

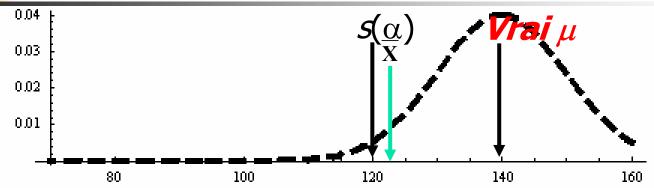


- Les paramètres d'une population sont rarement connus...
- Les statistiques d'un échantillon sont connues.
- Jusqu'à quel point peut-on inférer l'un à partir de l'autre? une moyenne est rarement **exactement** égale au paramètre μ : une moyenne d'échantillon est variable.



PSY1004 A03 - Section 4

4.0: Idée générale (3/3)



- Lorsque l'on fait un test, on doit décider si $\overline{\mathbf{X}}$ confirme que μ est de 100, et jusqu'à quel point.
- La façon de procéder est de se donner un critère de décision, une valeur critique $s(\alpha)$:

si \overline{X} excède $s(\alpha)$, on dira que \overline{X} est incompatible avec l'idée $\mu = 100$

<u>Décision</u>	Dans la réalité, l'hypothèse est:	
On peut conclure:	vraie (i.e. $\mu = 100$)	fausse (i.e. $\mu \neq 100$)
que l'hypothèse n'est pas fausse quand:	$\overline{\mathbf{X}}$ est en deçà de $\underline{s}(\alpha)$ (ERREUR β !)	
que l'hypothèse est	$\overline{\mathbf{X}}$ est au delà de $\underline{s}(lpha)$ (ERREUR $lpha!$)	

4.1: Structure d'un test a) les hypothèses (1/1)

- Poser les hypothèses statistiques H_0 (hypothèse nulle) et H_1 (hypothèse alternative).
 - L'hypothèse nulle est toujours très précise, alors que
 - L'hypothèse alternative inclus une infinité de cas possibles.
 - Les hypothèses portent toujours sur la population, sur des paramètres de la population qui sont inconnus.

• Ex:
$$H_0$$
: $\mu = 100$

$$H_1$$
: $\mu > 100$

← une infinité de cas

• Ex:
$$H_0$$
: $\sigma = 10$

$$H_1: \sigma > 10$$

(l'écart type d'une population)

← une infinité de cas

Ex:

 H_0 : asymétrie = 0

H₁: asymétrie > 0

(L'asymétrie d'une population)

← une infinité de cas

Structure d'un test et Test *Z*

Disponible sur: http://mapageweb.umontreal.ca/cousined/home/course/PSY1004

4.1: Structure d'un test b) le seuil (1/2)

- Comment choisir $s(\alpha)$ de telle façon que l'on ne commettra *pas* l'erreur α *trop souvent*?
- Qu'entend-t-on par: "pas ... trop souvent"?
- Exemples de seuils (présume que H₀ est vraie ET normal):

$$\overline{\mathbf{X}} - \mu > 1SE_{\overline{\mathbf{X}}}$$
 peut se produire 31% du temps par hasard: trop fréquent!

$$\overline{X} - \mu > 2SE_{\overline{X}}$$
 peut se produire 4.6% du temps par hasard: rarement (mieux). (vérifiez ces pourcentages)

La valeur "1" ou "2" ci-haut est la *valeur critique*, exprimée en unité d'erreur type.

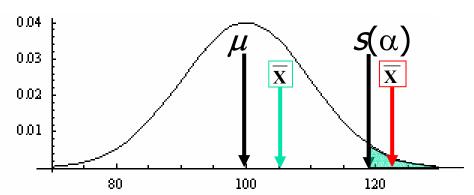
4.1: Structure d'un test b) le seuil (2/2)

• 4.6% n'est pas un chiffre rond, on préfère 5% (1%, 10%) Trouver la <u>valeur critique</u> $s(\alpha)$ telle que:

$$\overline{\mathbf{X}} - \mu > s(\alpha) SE_{\overline{\mathbf{X}}}$$

se produise par hasard seulement 5% du temps (si H₀ est vraie ET normale) (doit être presque 2).

■ Réponse: $s(\alpha)$ doit être placé à 1.64 erreur type de μ .



4.1: Structure d'un test c) le test statistique

La décision se fait suivant la condition:

rejet de
$$H_0$$
 si $\overline{\mathbf{X}} - \mu > s(\alpha)SE_{\overline{\mathbf{X}}}$

• ou encore, si on reformule la condition:

rejet de
$$H_0$$
 si $\frac{\mathbf{X} - \mu}{SE_{\overline{\mathbf{X}}}} > s(\alpha)$

Un grand nombre de tests sont de cette forme:
La distance entre l'hypothèse et l'observé, mesuré en terme d'erreur type.

4.1: Structure d'un test d) appliquer le test et conclure

- Exemple: Soit un échantillon de 25 sujets qui a une moyenne de 106, et un écart type de 10, on peut conclure
 - si les hypothèses H_0 : μ = 100, H_1 : μ > 100, et le seuil de 5%
 - (et si la population est normale), que...
 - l'hypothèse est ... {rejetée/non rejetée} ?

{l'erreur type est de 2 (i.e. $10/\sqrt{25}$), et donc la distance à μ , de 3}

Interprétation;

Le résultat trouvé

"La moyenne observée dans notre échantillon diffère significativement de $100 \ (\underline{z} = 3, \ \underline{p} < .05)$ "

La table utilisée par le test

Le seuil α ; l'alphabet grec n'existait pas sur les vieilles dactylo...

On n'utilise pas les symboles H₀ et H₁ dans un rapport scientifique.

Un test a été effectué

PSY1004 A03 - Section 4 p.

4.2: Tests bicaudal vs. unicaudal

Dans certains cas, nos hypothèses de recherches limitent les hypothèses statistiques, par ex:

$$H_0$$
: $\mu = 100$

$$H_1$$
: $\mu \neq 100$

$$H_0$$
: $\mu = 100$

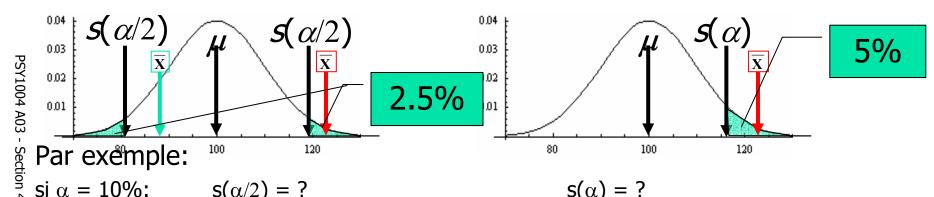
$$H_1$$
: $\mu > 100$

Dans ces cas, on peut utiliser un test plus précis, ayant

2 valeurs critiques

bicaudal/bidirectionnel, | |

1 valeur critique unicaudal/unidirectionnel



si α = 10%:

$$s(\alpha/2) = ?$$

si α = 5%:

$$s(\alpha/2) = 1.96$$

si α = 1%:

$$s(\alpha/2) = ?$$

$$s(\alpha) = ?$$

$$s(\alpha) = ?$$

$$s(\alpha) = ?$$

4.3: Intervalle de confiance

- Un intervalle dans lequel μ , si pas exactement 100, doit se trouver, selon toutes probabilités. Qu'entend-t-on par "selon toutes probabilités"?
 - Très souvent; En général, on prend 1α , par exemple, 95%.

Il s'agit de la même chose que le test statistique!

- Par exemple, si α = 5% (et normal), s(α /2) = 1.96.
 - non rejet de H_0 si $|\mathbf{X} \mu| > s(\alpha/2) SE_{\overline{\mathbf{X}}}$
 - ightarrow μ se trouve à \pm 1.96 $SE_{\overline{\mathbf{X}}}$ de $\overline{\mathbf{X}}$, si μ n'est pas exactement 100

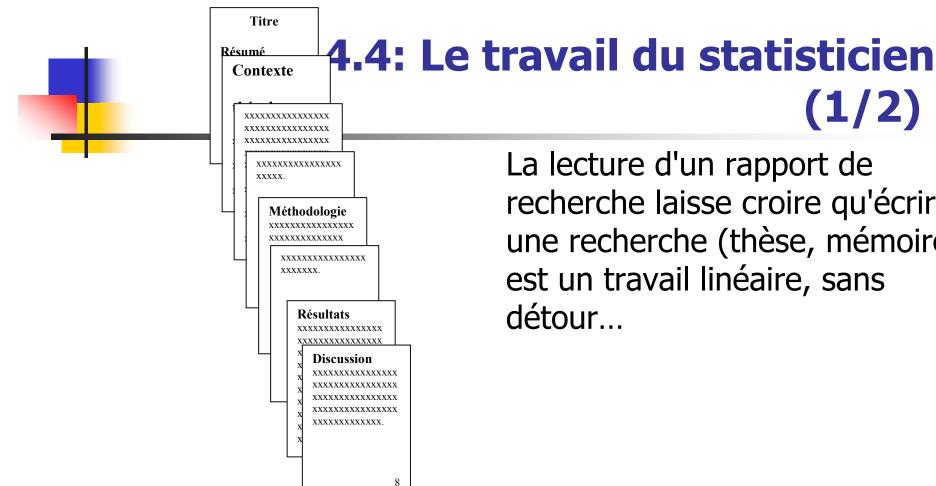
L'intervalle de confiance à 95%

$$\left[\overline{\mathbf{X}} - 1.96 SE_{\overline{\mathbf{X}}}, \overline{\mathbf{X}} + 1.96 SE_{\overline{\mathbf{X}}}\right]$$

contient μ dans 95% des cas (i.e. 19 fois sur 20).

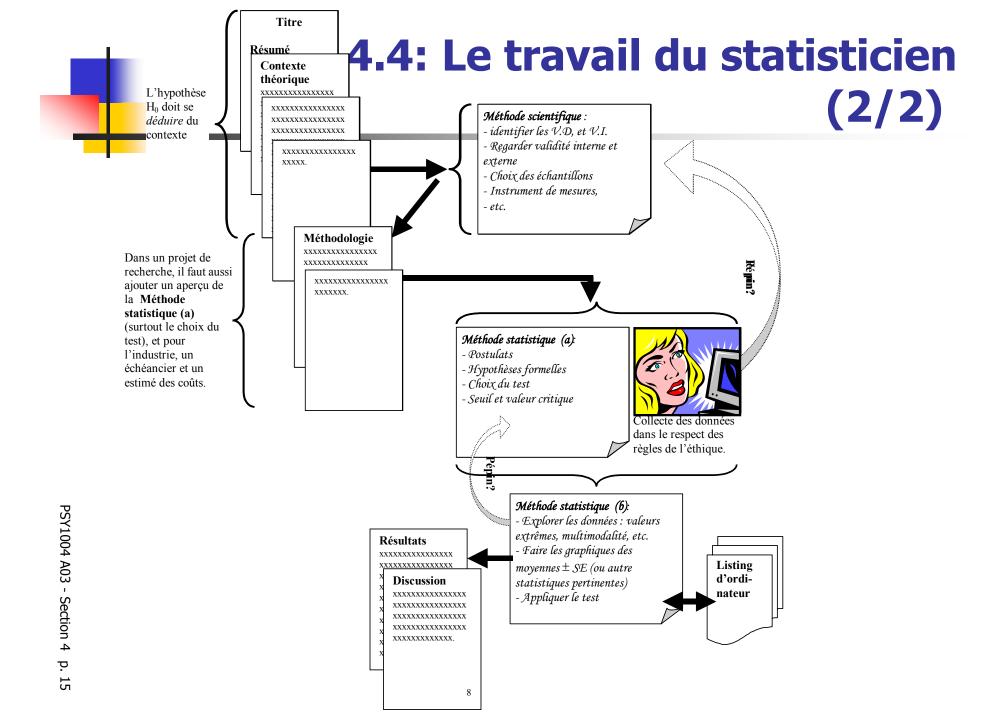
L'intervalle de confiance à 1 - α

$$[\overline{\mathbf{X}} - s(\alpha/2) SE_{\overline{\mathbf{X}}}, \overline{\mathbf{X}} + s(\alpha/2) SE_{\overline{\mathbf{X}}}]$$
 contient μ dans 1- α des cas.



La lecture d'un rapport de recherche laisse croire qu'écrire une recherche (thèse, mémoire) est un travail linéaire, sans détour...

(1/2)



Trois types de tests binomiaux.

Disponible sur: http://mapageweb.umontreal.ca/cousined/home/course/PSY1004

4.5: Test binomial sur une proportion a) méthode mélangeante

Postulats pour que le test soit valable:

- chaque observation est binaire: succès ou échec
- notons le nombre de succès sur n observations: m

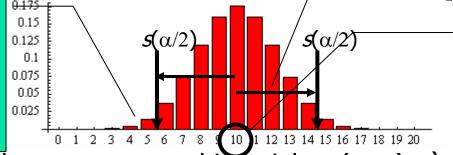
Test du genre:

rejet de H_0 si $|m-np| \ge d(\alpha/2)$

distance $\mathbf{d}(\alpha/2)$ entre la valeur probable et les frontières

• où *n p* est le nombre de succès attendu selon l'hypothèse

La distance critique est 5 car probabilité d'obtenir 0 ou 1 ou 2 ou 3 ou 4 ou 5 = 0.00+0.00+0.00+0.00+0.01= $2.1\% < \alpha/2$



Par exemple, si $p = \frac{1}{2}$ et n = 20, n p = 10.

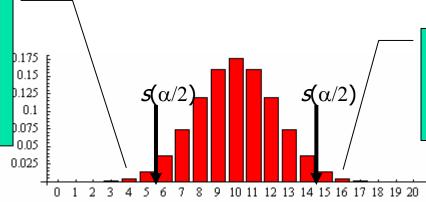
- m se distribue comme une binomiale $\mathcal{B}(n, p)$ où p est le contenu de l'hypothèse H_0 .
- On choisi donc $s(\alpha)$ dans une table $\mathcal{B}(n, p)$ tel que l'aire à l'extérieur du critère ne dépasse pas α .

4.5: Test binomial sur une proportion b) méthode avec zone de rejet

Test du genre:

rejet de H_0 si $m \in zone \ rejet$

La zone de rejet contient les histogrammes tel que leur total ne dépasse pas $\alpha/2$ à gauche et $\alpha/2$ à droite (si bicaudal)



Les histogrammes pour 15 à 20 totalisent 2.1% (rajouter l'histogramme 14 excède 2.5%)

- m se distribue comme une binomiale $\mathcal{B}(n, p)$ où p est le contenu de l'hypothèse H_0 .
- Par exemple, pour n = 20 et $p = \frac{1}{2}$, la zone de rejet est $\{0, 1, 2, 3, 4, 5 \text{ et } 15, 16, 17, 18, 19, 20\}$

4.5: Test binomial sur une proportion c) exemple

Soit une pièce de monnaie que l'on soupçonne truquée

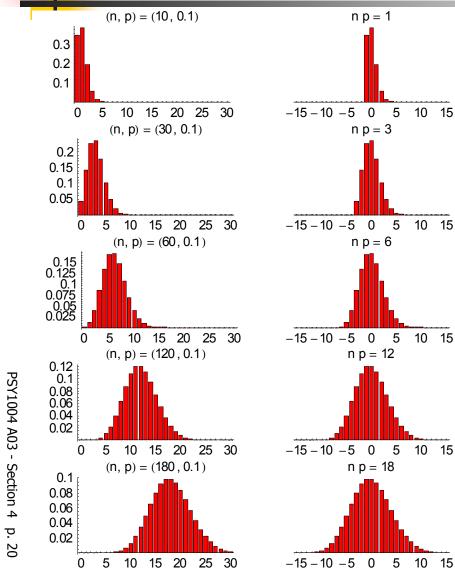
- a) H_0 : $p = \frac{1}{2}$, H_1 : $p \neq \frac{1}{2}$ {donc bicaudal}
- b) Seuil à 5%

{a priori, avant de voir les données}

Collecte des données: n = 20, m = 6

- Chaque lancée est binaire \rightarrow s($\alpha/2$) est lue sur une table binomiale, et utilise le test: rejet de H_0 si $m \in zone \ rejet$
- Calcul (de la zone de rejet) et conclusion: "Sur 20 lancés, nous avons obtenu 6 piles. La pièce ne diffère pas significativement d'une pièce non truquée ($\mathcal{B}(20,\frac{1}{2}) = 6$, $\underline{p} > .05$)"

4.6: Test binomial sur une proportion utilisant l'approximation normale (1/3)



On remarque que plus n p est grand, plus la distribution binomiale tend à être symétrique (colonne de gauche, où p = 1/10, très petit)

Si on centre à zéro la moyenne de ces graphes, on a des histogrammes qui ressemblent de plus en plus à une courbe normale standardisée

(en fait, l'asymétrie tend vers zéro et la kurtose vers 3, peu importe *p*);

Ceci a lieu quand:

$$n > 20$$
 et $n p > 10$;

Dans ces cas, on dit que la normale approxime la distribution binomiale

PSY1004 A03 - Section 4 p. 21

4.6: Test binomial sur une proportion utilisant l'approximation normale (2/3)

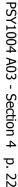
Postulats pour que le test soit valable:

- chaque observation est binaire: succès ou échec;
- n > 20 et np > 10;
- notons la proportion de succès sur *n* observations: $\overline{\mathbf{X}} = \frac{m}{n}$

Test du genre (si bicaudal):

rejet de H₀ si
$$\frac{|\overline{\mathbf{X}} - p|}{\sqrt{\frac{p(1-p)}{n}}} > s(\alpha/2)$$

- où n p est le nombre de succès attendu selon l'hypothèse
- La partie de gauche se distribue \approx comme une normal $\mathcal{N}(0, 1)$.
- On choisi donc $s(\alpha/2)$ dans une table $\mathcal{N}(0, 1)$ tel que l'aire à l'extérieur du critère égale α .



4.6: Test binomial sur une proportion utilisant l'approximation normale (3/3)

Exemple 2:

Soit la même pièce de monnaie que l'on soupçonne truquée

- a) H_0 : $p = \frac{1}{2}$, H_1 : $p \neq \frac{1}{2}$ {donc bicaudal}
- b) Seuil à 5%

{a priori, avant de voir les données}

Collecte des données: n = 200, m = 90

Chaque lancée est binaire, mais n > 20 et $n p > 10 \implies s(\alpha/2)$ est lue sur une table normale $\mathcal{N}(0,1)$, et utilise le test: rejet de H_0 si

$$\frac{|\overline{\mathbf{X}} - p|}{\sqrt{\frac{p(1-p)/n}{n}}} > s(\alpha/2)$$

Calcul et conclusion: "Sur 200 lancés, nous avons obtenu 90 piles. La pièce ne diffère pas significativement d'une pièce non truquée (z = 1.41, p > .05)"

1

4.7: Test des signes a) idée

Lorsque l'on veut tester des données du type avant-après. Postulats pour que le test soit valable:

- La population n'est pas du tout normale, soit très asymétrique ou multimodale (sinon, voir Section 5)
- notons par un + les scores qui sont meilleurs après qu'avant, et par un – les autres scores, et notons le nombre de + par m.
- Le signe est binaire, et sa probabilité doit être de 1/2.

Continuez avec un test

- binomial utilisant l'approximation normale si n > 20 et n p > 10
- binomial standard sinon.

PSY1004 A03 - Section 4 p. 24

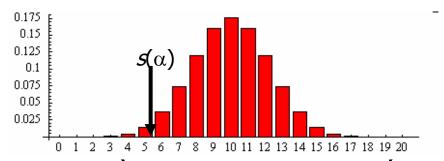
4.7: Test des signes b) exemple

Sommes-nous plus intelligents les mercredi que les lundi? On mesure le QI de 20 personnes, une fois un mercredi, une fois un lundi (ordre aléatoire).

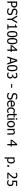
- a) H_0 : $QI_{lundi} = QI_{mercredi}$; H_1 : $QI_{lundi} < QI_{mercredi}$;
- b) seuil $\alpha = 5\%$

Collecte des données: m = 7 sur n = 20 personnes

- c) Choisir le test: test des signes (test binomial avec $p = \frac{1}{2}$)
- a) Calcul de la zone de rejet: {0, 1, 2, 3, 4, 5}; conclure: "Sur 20 personnes, 7 ont montré une baisse du QI



lorsque mesuré un mercredi par rapport à lorsqu'ils sont mesuré un lundi, ce qui n'est pas significatif ($\underline{B}(20, \frac{1}{2}) = 7, \underline{p} > .05$)."



4.8: Test de la médiane a) la même idée

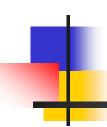
Lorsque l'on veut tester une tendance centrale d'un échantillon de score.

Postulats pour que le test soit valable:

- La population n'est pas du tout normale, soit très asymétrique ou multimodale (sinon, un test sur une moyenne est préférable; voir Section 5)
- notons par un + les scores qui sont supérieurs à la médiane, et par un − les autres scores, et notons le nombre de + par m.
- Le signe est binaire, et sa probabilité doit être de 1/2.

Continuez avec un test

- binomial utilisant l'approximation normale n > 20 et n p > 10
- binomial standard sinon.



4.9: Exemples

Soit ces données

2. Soit ces données avant-après

$$\mathbf{X} = \{1,1,1,1,1,2,2,8,9,9,9,9,11,12\}$$
 et

$$\mathbf{Y} = \{0,1,0,2,1,2,4,9,10,11,8,7,13,11\},$$

est-ce que les scores ont changés après comparés à avant?

Quel signe met-on si le score est inchangé?