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ginissitiinera model of RT distributicn?
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- \/\/J rn he Noermall (Gaussian) distribution, there are
ghtforward recipes (I.e. direct computations)
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— oIS the sample standard deviation (corrected for the bias)

® Thus, when you estimate the mean u of a
population, you are in fact fitting a model: the
Normal model!




WiaisHitiera model ol RT distrbution?
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JAWIGNS 1O get the population parameters.
y MUSt be estimated
JErestimates must be evaluated through fitting
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Example of the Netherlands Highest annual tide
= Jiey are really concerned with t|d9525 AL
— Tihey have accurate records dating ;s i
back to 1534 =» 12 i
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— They were not interested by the mean tide, and so di
not use the Normal model
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— The spread
— The asymmetry y
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LogNormal distribution
— The position «

— The spread and
asymmetry v& 7

\ The ExGaussian is
undistinguishable
from the LogNormal




D ElevAteNitseNnedel oft RiIFdistribution?

N GIEETRIONRaNdiSHI UL ERRVERIINES ereeduIed:
SYAINGlJECHVE flnCtion
J‘__A fURchen that gives the fit of the parameters to the data
,:_The eSSt cheice Is the likelihood of the data given the parameters

= — A search procedure
® e.9. the simplex (Nelder-Mead method) which plays with the

parameters until the objective function is as large as possible.

® Exists in many computer programs, e.g. Matlab (fmin),
Mathematica (NMinimize), Excel (Solver), etc.




S EWALeNTENmedel ofi Rk distribution?
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" Examples of situations where
= distributions can be used
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a. For screening outliers
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SONLIENS anel RIS that are elther toe small or too
lzairge
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_jaused Py unrelated activities

Siihere exists three techniques to remove outliers:
— Visual inspection of the distribution

— Single cut at £ 3 standard deviations from the mean

— lterative cut at = 3 standard deviations from the mean
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B SCheeningreliiers

X =410

R 0 =, Singlestruncationsait’™= 3 std™
— the lefit tail 1s untouchead

S eNT oA s trimcated
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® |terative truncation at = 3 stad
— the results are undistinguishable

hﬂjﬁ — not worth the trouble

® Visual inspection
— the left tail is problematic

— Because of the asymmetry, no
symmetrical process will detect them




L SClreenimgreuidiers

LHERESTECHNIgUE aldhisynementiis visual
IEJSECTION
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RURdata are always asymmetrical and technigues

"Weigh poth sides identically around the mean
~—are doomed to failed

®  There might exist an alternative based on the most probable smallest/highest
observation... Next year?




9. For getting descriptive statistics




N GELNgNdESEpLive statistics
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> Trie ot st dasergiye sietigies e =

~— the standard deviation — or equivalently —
— the standard error of the mean

® Does the mean hold the key to all the questions?
or should we look at some results through different
lenses?




L GElliRg dEseptive statistics
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®* [he learning curve showing mean RT as a function
of training session.

e \What is the meaning of the mean In this context?




L GElliRg dEseptive statistics

S DESHIIENIIENE PP CICCERIIENNERNNMEY IO aWaYS
SERENEIEVant StatiStic

I
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¢. For testing models




Testlng cmeoel off visualisearch
eneiNiEncden- order) selif- termlnatlug SEAICIH

Four items, target is present

S
C
Go to next Scan

Iocatlon
Is ther
other
cat ions no

Isthisa

target

"Tar qet present”

Time

Four items, target present, variability

¢ The responses are more spread
out for the slow responses
because the variability of the
previous responses is additive...
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RESHIESNGoUsineau & Shiffrin 2004)
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= "”Fg?argets are found more | f: 'f:}?.ifi'jir]? ’[iE;i:'.Ef::'_Efi' ’ii@iﬁ]ﬁ@
=  often on the first or = = e
second scan than

expected.

e =» The order of the
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search Is not random. )
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iestingraMmedel of visual search
IMERSENEIN(iandom-order) self-terminatinGpSEarChiisss
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SeNENEndom-order model could mimic such pattern of results
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BopKing at means only:
BRtiersiopes and the 2:1 slope ratios could favor a serial search model

— __-'- r 2 parallel search model
| _ == s is called mimicking (different models predicting the same

~— _means)
— \Whole distributions cannot be mimicked easily

s \Whereas means are relevant in the context of search
models, they have no power to discriminate between

models.




3= [Deing It with
Mathematica or Excel




Conclusion




- Conclusions

SSCIPIESISHOUICNENEESORAIBIVABIGE

— Jre. ter: than 100 per subject per condition with L
€ on Iealf & [Lanochelle, 1997)

— ater uian 401 per subject per condition with QL
\(© eUsSInEal, Brown & Heathcote, 2004)

-

EEEglieaterthan 25 per subject with distribution averaging
= "‘.‘_"""E "(Cousmeau & Lacouture, submitted)
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- Conclusions

S EVVEIERGIRIIENTIEAIRE
BN ENeally what youl want?
SN SNINVAELE the data desenve?
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; INEVEr miss a chance to look at the BIG picture

— — The empirical distribution shows everything from the

mean to the asymmetry




Thank you

This talk and the demos will be available at:
www.mapageweb.umontreal.ca/cousined/home/talks.html




