
a) Turning a supervised network (such as the Race Network) into a network with a 
2-dimension surface of output units is not a problem. Further, both standard and 
redefined matrix operations are readily generalized using tensoroperations.

b) Turning the ∆ rule into an unsupervised learning rule:
In PRN, zero is the wanted signal; 
By convolving:
(1 – Hat) function centered on the winner 

with

the observed responses, 
we get

the expected responses E.
Thus: (E – O) = (1 – Hat)O – O = – Hat O.

This error correction signal is inserted in the ∆rule:
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A New Notation

Most neural networks are built using matrix 
notations.

An inner product joins pairs of value using ×
and aggregates columns using Σ. This can be 
made explicit with:

A race model needs to find the smallest of 
additive delays. This can be turned into vector-
and-matrix notation with:

Likewise for outer product:            or 

Overview of the 
supervised networks

Overview of the 
Kohonen networks

Representation Transmission Learning       .
Perceptrons: {1, 0}
(strength-based)

Race networks: {0, ∞}
(time-based)

A limitation of these networks: they are supervised…

They are supervised because a teacher provides E, 
the expected response. In the ∆ rule, changes are 
proportional to the size of the input and the 
amplitude of the error.

Repres. Training Learning          .

{0, ∞}

α(t) and σ(t) are still time-dependant parameters…

However, assuming that the Hatis not perfect (height 
fixed at α, say 0.80), we obtain that                        , 
an exponential function.

As of σ(t), it seems to depend on how rapid the response 
Min(O) is (a rich-gets-richer effect, found empirically in 
ref. d)

In conclusion
• The parameters α and σ may have a simple physical 
explanation in the context of a race model;
• The Hat function suggests that lateral activation is a 
signal that requires time to travel, again a natural 
assumption in the context of a race model;
•The rich-gets-richer effect might be related to a 
massive amount of redundancy at a micro level.

ResultsGeneral approach
Sampling models, such as random walk 

and race models, are very powerful and 
plausible psychological models. However, 
there is no learning rule for such models. 
This reduces their range of applicability in 
psychology.

In ref. (a) and (b), we showed how to 
transform a race model into a race network
using a feed-forward architecture and a 
modified ∆rule.

Along the way, we generalizedthe 
matrix operations, which turned out to be 
useful to summarize many different types of 
networks.

The objective of this poster is to 
describe an unsupervisedrace network. It is 
built around the notion of Self-Organizing 
Map (SOM) developed by Kohonen in (c).

Objective
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where the Hatis always centered on the winner Min(O).

Problems with this network:
i) The height α(t) and width σ(t) of the neighborhood are time-dependant 
parameters reducing with practice. They are unprincipled.
ii) There is no privileged representation. Hence, the ∆rule is inapplicable.
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Kohonen networks learn to recognize patterns, but 
more importantly, they organize the knowledge using 
proximity relations. It uses the notion of neighborhood 
during learning (Hat) whose width reduces with 
learning: 

(a) Cousineau, Lacroix, Hélie (in press). Redefining the rules. Connection Science.

(b) Cousineau, D. (submitted). Merging race models and adaptive networks. Psychonomic 
Bulletin & Review.

(c) Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer-Verlag.

(d) Huber & Cousineau (in press). A race model of forced-choice RT. Cognitive Science.

Appendices
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