Blocking the search and other illusory conjunction

Denis Cousineau, Richard Shiffrin Université de Montréal, Indiana University

Talk available on: http://MaPageWeb.UMontreal.CA/cousined

Two leading ideas...

Most previous experiments and their related analyses were based on the hidden assumption that search starts with the presentation of the stimuli

- however...
 - Search may not start when expected
 - Targets may not be located when expected

Two leading ideas...

If search is serial, then we must expect a FIFO (First-In-First-Out, or FI-10) effect.

Negative trials will not be discussed here...

Target-present indicating a slow, serial search...

Probabilistic FIFO: FI ~1O

True Target-Present FI-10

Can we observe it in a non-trivial way?

Two leading ideas...

 One huge experiment, 74 sessions with four subjects in consistent mapping.

Targets had to be learned; unbeknownst to them:

are diagnostic:

are irrelevant:

It is a search for one of two possible conjunctions of features, explaining why it was so difficult

targets may not be located when expected

RSSP (1/3 of the trials; sessions 30-34; random) 0 Target is either first or last of the stream; ISI were fast (16 ms, 33 ms or 50 ms per slide).

The effect is weak, ~ 1 ISI. This is a FI ~ 10 for D> 1.

Can we do better? yes

targets may not be located when expected

RSSP no circles (1/4) of the trials; sessions 55-59) Again, target is either first or last of the stream; ISI were fast (16 ms, 33 ms or 50 ms per slide).

The effect is stronger, a FI~1.50.

targets may not be located when expected

- Tentative explanation:
 - Attention might be already fixed at one location (since task is difficult). Thus, there would be one useless scan (unless by chance, it is the location of the target).
 - With no circles, the appearance of the target is more salient. Thus, the second scan is more likely to be drawn to that location.
- One last question:
 - why the 16 ISI condition is slower?

Standard condition (1/3 of the trials; sessions 30-34; random)

Can we extract more information from this condition? yes.

- There is a "blank zone" of about 30 ms / d where no response occurred.
- If the search was random, all modes would be equally present. Yet, the blank zone is compensated by a decrease in the modes (that is, less slow responses).

- The blank zone is much smaller, about 10 ms / d;
- The decrease in the modes is also smaller.
- The blank zone seems beneficial. What is it? Could it be an "accommodation" phase reducing "noise", i. e. the uncertainty of the display?

Standard no circles (1/4 of the trials; sessions 55-59; random)

- In both situations, the results were the same:
 RT were slower by ~30 ms.
- By contrast, we saw earlier that in RSSP, no circles helps obtaining the FI~1.5O effect, except at 16 ms ISI.
- What else could occur during the blank zone? something with a very brief time window.

Standard too many circles (1/10 of the trials; sessions 60-64; random)

Whereas anywhere throughout training, P(FA) never exceeded 3% for any subject, it reaches now 25% in the fastest ISI.

Conclusions

- FI~1.50: Search with difficult (conjunctively defined) stimuli tend to favor concentrated attention.
- Blank zone as an accommodation phase:
 - whole objects are not perceived (no response given), but features are (illusory conjunction).
 - dissociation between attention and preattentive search, both occurring in parallel (last mode less likely) in a conjunctive search (modes were ~180 ms apart, but search slope was ~120 ms/item).

thanks