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Alice ad Bob bcah learned to write posters. At
first, preparing a poster took around 40 lours for both of
them. At the end o training, both Alice axd Bob were

Figure 1: Aliceand Bob's learning curves

w
performing at an average preparation time of 12 hours. :z
Does that mean both leaned in the same way? If two [
different methods were used to train them, does that mean E i;
bath were equally efficient? Not necessarily. In fad, if we :‘:
look at their leaning curves, we can see that Alice leaned

at a much faster rate than Bob. If the aim is to find the
most efficient training method, then the leaning rate is
the qiticd value.

Nposters

What is alearning curve?

The leaning curve describes the dange in
performance throughout training. Data accumulated
during training, for example response times, are plotted as
afunction of trials (or blocks of trials). The simplest form
of leaning curve would be aplot of the raw data as a
function of trials (see left side of fig 2). However, this
curve is usudly very noisy. It can be better to pot
summary values as a function of blocks of trias. For
example, means and standard deviations are often used
(see right side of figure 2). Data points can be fitted with
an ided curve, alearning curve. All learning curves have
two scding parameters in common. The first one is the
asymptote (a) and the second one, amplitude (b). The
identity of the aurve is given by a « core function » often
described by one parameter, the learning rate (c) (See &.
1).

EqQ 1: raw data functions
Learning curve: f(t)=a+ bg(t)
A - Power curve: gpc(t) = t°

B — Exponential curve: gg(t) = e

Eq 2: Averaged data functions
Averaged leaning curve: f(n)= a+ b g(n)

~(c1) ~(c-1)

A - Power curve: g,. (n):ﬁ
-

one _gron

. €
B - Exponential curve: g, (n) =
P Gex (M) cN

Many models of automatization make predictions about the three parameters defining the leaning curve. For
example, Logan asserts that curvature (parameter c) should be egual for means and standard deviations. Cousineau and
Larochelle’'s model makes the same prediction, while Rickart's extension of Logan's instance-based model predicts
differing curvatures for means and standard deviations. One can also argue that strength theories and reural networks
predict no changein curvature, but only in amplitude or asymptote throughout diff erent tasks.

Figure 2: scatter plot of raw vs averaged data

Fitting averages Raw data Averaged data

Although leaning is thought to
occur on atrid by trial basis (Logan,
1988, leaning curves are often plotted
on data averaged by blocks of trias.
Averaged data are used because they —
are less noisy than raw data However,
Heahcote aad Mewhort (1999, and
then Rickart (1997, pointed out that
averaging raw dataresultsin adifferent
curve. For example, if raw data ae best
fitted with a power curve, the averaged
data will no longer be. We show in
figure 3 and equation 2 what is the
resulting core function in case raw data
core function is given. The example
shown is for a power curve, but eq.2
shows how it can be done with an

response mes (ms)

Box 1: fitting averages

With raw data asafunction o trial t
- fiteg. 1

With aver aged data as afunction o block N
- fiteq. 2instead

Figure 3: Raw and averaged data fitted with a power function

Advantages and limitations for each method

Method A:

Estimation and comparison

« Most obvious

*Weak becuse parameter
estimation is dippery

Method B:

Assessment of proportionality

« Powerful with restricted
amount of data

Limited power
— Not recommended for less
than 200 trials or 40 Hocks of trials

Method C:

Normalizing

« Simpleto apply
+ No parameters estimation necessary
— Not subject to biases

« Negls estimation o parametersaand b

Method A: Estimation and comparison

In order to test the predictions of the models cited above, one has to

compare airvatures of learning curves. The most obvious

method is to

estimate the parameters from the data, and then compare the ¢ parameters

for each curve. The method is described in detail sin box 2.

Box 2: Estimation and comparison of ¢ parameter
«Minimization of Root mean square deviation ar x2
«Statistical tests on dbtained estimated ¢ parameters

- example: coefficient of correlation of the observed deta
asafunction of predicted data by estimated curve

(Logan, 1989

This method is flawed with two major biases. The first of these was
identified by Heathcote and Mewhort (1995 who cdled it the « low
asymptote bias ». They noticed, in Logan's (1988 data, that the estimated
asymptotes seemed urredistically low, even though thefit of the parameters
with the data was very good. They found a non-linea relation between
parameters a and c. The consequence of this relation is that a diange in one
of the two parameters will be compensated by a dange in the other without
any deaement of fit. The airvature can therefore be poorly estimated and

invalidate the foll owing comparison.

The second hiasis cdl ed the « extended-range bias ». It occurs when
Logan's method is applied to means and standard deviations (SDs),
resulting in alinea regression in order to determine quality of fit. However,
data of those two curves have by definition dfferent ranges, SDs being
smdler than means. As can be seen on the right side of figure 4, this
extended range improves r2 when both curves are plotted together rather
than when plotted separately. So the crrelation between the two curves is
significant despite being different as can be seen on left side of figure 4.

Figure4: iilustration of the extended-r ange bias

exponential  curve. Fitting those
averaged leaning functions is easily
achieved by a minimizaion agorithm.
All methods proposed here dlow the
use of averaged or raw data (see Box

1). Therefore, it doesn't make a ‘“¥

difference whether raw or averaged

Power curve (1aw values) Averaged power curve
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data ae used when comparing

curvatures.

Method B: Assessment of proportionality

These biases prompted the quest for aternative methods of comparing
curvatures. The second method proposed here is easy to apply. Asis demonstrated
in box 3, if and only if two curves have the same curvature, they will be
proportional. Plotting ane against the other will result in a linea function. Box 4
ill ustrates how to apply the method.

Method C : Normalizing curves

The normali zation method is based on the asumption that if two curves have the
same aurvature, they should superimpose perfedly after normalization. Box 5 il lustrates
how to apply method C.

Box 3: Assessment of proportionality
If we aede ascatter plot of f, asafunction of f,, wenotethat f,(t) = mfy(t) + h.
Therefore,
el _BO-E)
LARAONAC)
_bgt)+a-bg()-a
hgt)+a-hg()-a
_b@®)-6)
h(Gt)-6())

Thesolution to this equation isa constant if :

1) thereisno curvaturein g, and g,

— Impossbleif g, and g, areleaning curves
2) their differenceis a constant

— Impossble because gs do not have, by definition, an asymptote
3) g, andg, arein fad the same arve

— The only possble solution

BOX 4 : Applying the proportionality method

.Perform regresson between the two data sets.

.Compute Durbin-Watson D statistics
(availablein most statistical
to test lineaity of the function.

Simulated learning curves

Parameters
used t arves
a b c
f, 250 | 400 | 0,7 w00+

tr3es e s g

f, | 250 | 400 [ 12
f, | 150 | 200 07

Note that
(nolow asymptote bias)

estimated

5 plotted against f, 1 plotted against f,

Conclusion
curvatures
arethe same

=975
D= 947,p <05
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)

There is a limit to method B. Systematic deviation from lineaity is very
difficult to deted. Hence, the D test is not very powerful. Therefore, it is not
recommended to use this method with less than 2@ trials or 40 blocks of trids.
Method C is not subject to that limit and can be used with small amount of data

Box 5:Normalization of the curves

« Estimate parameters aand b (visual inspedion of the curvesis
recommended to deted inaccuracies in the normalizing procesg

- estimatea and b like shown for method A
or
- assumethe lowest data point to be the asymptote (vulnerable to
outliers)
or
- estimate the percent of fast errors, find the correspondng cuantile
and assumeit to be the asymptote

« Proceed with the foll owing transformation: fy(t) = M =g(t) .
which isolates the core function b

« If summary values (mean or SDs) are used, compute standard errors
(SE)

- If SE of both curves overlap for al points of the curve, then the two
curves have the same curvature ( but thisis not a statistical test)

— Performan ANOVA of the normalized data with type of curve and
N as variables.

Discussion

Two new methods for comparing learning curves have been described. They both
offer interesting alternatives to the obvious but weak parameters estimation method. They
can be used with both raw and averaged data However, we recommend the use of
averaged data; they are less noisy and more accurate tests can be performed on them.




