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Figure 1 : Alice and Bob’s learning curves
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Alice and Bob both learned to write posters. At 

first, preparing a poster took around 40 hours for both of 

them. At the end of training, both Alice and Bob were 

performing at an average preparation time of 12 hours. 

Does that mean both learned in the same way? If two 

different methods were used to train them, does that mean 

both were equally efficient? Not necessarily. In fact, i f we 

look at their learning curves, we can see that Alice learned 

at a much faster rate than Bob. If the aim is to find the 

most efficient training method, then the learning rate is 

the criti cal value.

What is a learning curve?
The learning curve describes the change in 

performance throughout training. Data accumulated 

during training, for example response times, are plotted as 

a function of trials (or blocks of trials). The simplest form 

of learning curve would be a plot of the raw data as a 

function of trials (see left side of fig 2). However, this 

curve is usually very noisy. It can be better to plot 

summary values as a function of blocks of trials. For 

example, means and standard deviations are often used 

(see right side of figure 2). Data points can be fitted with 

an ideal curve, a learning curve. All l earning curves have 

two scaling parameters in common. The first one is the 

asymptote (a) and the second one, amplitude (b). The 

identity of the curve is given by a « core function » often 

described by one parameter, the learning rate (c) (See eq. 

1). 

Eq 1 : raw data functions

Learning curve: f (t) = a + b g (t)

A → Power curve :  g PC (t) = t-c

B → Exponential curve :  g EX(t) = e-ct

Fitting averages

Although learning is thought to 

occur on a trial by trial basis (Logan, 

1988), learning curves are often plotted 

on data averaged by blocks of trials. 

Averaged data are used because they 

are less noisy than raw data. However, 

Heathcote and Mewhort (1995), and 

then Rickart (1997), pointed out that 

averaging raw data results in a different 

curve. For example, i f raw data are best 

fitted with a power curve, the averaged 

data will no longer be. We show in 

figure 3 and equation 2 what is the 

resulting core function in case raw data 

core function is given. The example 

shown is for a power curve, but eq.2 

shows how it can be done with an 

exponential curve.  Fitting those 

averaged learning functions is easily 

achieved by a minimization algorithm. 

All methods proposed here allow the 

use of averaged or raw data (see Box 

1). Therefore, it doesn’ t make a 

difference whether raw or averaged 

data are used when comparing 

curvatures. 

Figure 3 : Raw and averaged data fitted with a power function
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Box 1 : fitting averages

With raw data as a function of trial t

→ fit eq. 1

With averaged data as a function of block N

→ fit eq. 2 instead

Method A: Estimation and comparison

In order to test the predictions of the models cited above, one has to 

compare curvatures of learning curves. The most obvious method is to 

estimate the parameters from the data, and then compare  the c parameters 

for each curve. The method is described in details in box 2.

Box 2 : Estimation and comparison of c parameter

•Minimization of Root mean square deviation or χ2

•Statistical tests on obtained estimated c parameters

→ example : coefficient of correlation of the observed data  
as a function of predicted data by estimated curve 
(Logan, 1988)

This method is flawed with two major biases. The first of these was 

identified by Heathcote and Mewhort (1995) who called it the « low 

asymptote bias ». They noticed, in Logan’ s (1988) data, that the estimated 

asymptotes seemed unrealistically low, even though the fit of the parameters 

with the data was very good. They found a non-linear relation between 

parameters a and c. The consequence of this relation is that a change in one 

of the two parameters will be compensated by a change in the other without 

any decrement of fit. The curvature can therefore be poorly estimated and 

invalidate the following comparison. 

The second bias is called the « extended-range bias ». It occurs when 

Logan’s method is applied to means and standard deviations (SDs), 

resulting in a linear regression in order to determine quali ty of fi t. However, 

data of those two curves have by definition different ranges, SDs being 

smaller than means. As can be seen on the right side of figure 4, this 

extended range improves r2 when both curves are plotted together rather 

than when plotted separately. So the correlation between the two curves is 

significant despite being different as can be seen on left side of figure 4. 

Figure 4 : Illustration of the extended-range bias
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Method B: Assessment of proportionality

These biases prompted the quest for alternative methods of comparing 

curvatures. The second method proposed here is easy to apply. As is demonstrated 

in box 3, if and only i f two curves have the same curvature, they will be 

proportional. Plotting one against the other will result in a linear function. Box 4 

ill ustrates how to apply the method.

Box 3:  Assessment of proportionality

If we create a scatter plot of f1 as a function of f2, we note that  f2(t) = m f1(t) + h. 
Therefore, 

The solution to this equation is a constant if :

1) there is no curvature in g1 and g2

→

�

Impossible if g1 and g2 are learning curves

2) their difference is a constant

→
�

Impossible because gs do not have, by definition, an asymptote

3) g1 and g2 are in fact the same curve

→

�

The only possible solution 
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Method C : Normalizing curves

The normalization method is based on the assumption that i f two curves have the 

same curvature, they should superimpose perfectly after normalization. Box 5 il lustrates 

how to apply method C.

Eq 2 : Averaged data functions

Averaged leaning curve : = a + b 

A → Power curve : 

B → Exponential curve : 
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Figure 2 : Scatter plot of raw vs averaged data
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Advantages and limitations for each method

Method A:

Estimation and comparison

Method B:

Assessment of proportionality

Method C:

Normalizing

• Most obvious

• Simple to apply
• No parameters estimation necessary

→ Not subject to biases

• Powerful with restricted 
amount of data

•Weak because parameter 
estimation is slippery

•Limited power
→ Not recommended for less           

than 200 trials or 40 blocks of trials

• Needs estimation of parameters a and b

Box 5 :Normalization of the curves

• Estimate parameters a and b (visual inspection of the curves is

recommended to detect inaccuracies in the normalizing process)

→ estimate a and b like shown for method A 

or

→ assume the lowest data point to be the asymptote (vulnerable to

outliers)

or

→ estimate the percent of fast errors, find the corresponding quantile 

and assume it to be the asymptote

• Proceed with the following transformation:                     ,

which isolates the core function

• If summary values (mean or SDs) are used, compute standard errors  

(SE)

→ If  SE of both curves overlap for all points of the curve, then the two 

curves have the same curvature ( but this is not a statistical test)

→ Perform an ANOVA of the normalized data with type of curve and 

N as variables.

)(
)(
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r2 = 1.000
D = 1.634

Box 4 : Applying the proportionality method

.Perform regression between the two data sets. 

.Compute Durbin-Watson D statistics  
(available in most statistical packages) 
to test linearity of the function.

S im ula te d le a rning  c urv e s
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Conclusion: 
curvatures differ

Many models of automatization make predictions about the three parameters defining the learning curve. For 

example, Logan asserts that curvature (parameter c) should be equal for means and standard deviations. Cousineau and 

Larochelle’s model makes the same prediction, while Rickart’s extension of Logan’s instance-based model predicts 

differing curvatures for means and standard deviations. One can also argue that strength theories and neural networks 

predict no change in curvature, but only in amplitude or asymptote throughout different tasks. 

There is a limit to method B. Systematic deviation from linearity is very 

difficult to detect. Hence, the D test is not very powerful. Therefore, it is not 

recommended to use this method with less than 200 trials or 40 blocks of trials. 

Method C is not subject to that limit and can be used with small amount of data.
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Discussion

Two new methods for comparing learning curves have been described. They both 

offer interesting alternatives to the obvious but weak parameters estimation method. They 

can be used with both raw and averaged data. However, we recommend the use of 

averaged data; they are less noisy and more accurate tests can be performed on them. 


