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In this paper, we explore the generality of knowledge partitioning, the empirical 
equivalent of mixture-of-experts models. In the present study, we varied 
Lewandowsky et al.’s experimental settings in three ways: the amount of 
background knowledge given to the participants was increased, the size of the 
display was diminished and distracting information was added. The results 
show that increasing the amount of knowledge available to the participants does 
not qualitatively alter their performance. However, increasing the difficulty of 
stimulus estimation resulted in non-linear knowledge partitioning, which 
challenges the adequacy of POLE, a mixture-of-experts model developed to 
explain KP. Finally, adding distracting information to the display resulted in a 
smaller proportion of participants using knowledge partitioning to achieve the 
task. We conclude that mixture-of-experts are adequate psychological models 
but further research is needed to predict the presence and nature of the experts 
used. 

1 Introduction 

Recently, a new learning theory, knowledge partitioning (KP) [1, 2], has been 
proposed in the field of function learning. Lewandowsky and his colleagues were 
particularly interested in the use of cues in expertise. In order to understand their 
original manipulations, we now provide a little background knowledge in the field of 
firefighting.  

Usually, forest fires tend to spread with the wind and uphill. However, when the 
slope of the terrain and the wind direction are in opposition, the fire spread uphill if 
the wind speed is low or downhill if the wind speed is sufficient to overcome the 
fire’s propensity to spread uphill. In short, when the wind speed is low, the speed of 
the fire spread is described by a negative function; when the wind speed is high, it is 
described by a positive-slope function. Overall, the function relating speed of spread 
to wind speed is a concave quadratic function where the vertex indicates the point at 



 

which the force applied by the wind overpowers the tendency of the fire to spread 
uphill. 

Another important aspect of firefighting is the use of back-burning fires to control 
the reach of the to-be-controlled fire. Back-burning fires are lit by firefighters to 
reduce the amount of fuel available to forest fires. Usually, a back-burner is lit when 
wind speed is low; otherwise the firefighters might lose control of this second fire.  

Lewandowsky and Kirsner [1] asked experienced firefighters to estimate the 
spread of fires, after a short time period had elapsed, as a function of wind speed. On 
each trial, a specific wind speed was presented along with a context which identified 
the type of fire (to-be-controlled or back-burner). Results showed that experienced 
firefighters made different estimations of the fire’s spread depending on the context 
associated with the wind speed. Lewandowsky and his colleague argued that, because 
back-burners where usually encountered in low wind speed situations and to-be-
controlled fires in high wind speed situations, the firefighters’ expertise affected their 
responses: these estimations suggested that back-burning fires moved uphill at a 
speed which is negatively related to wind speed, while to-be-controlled fires moved 
downhill, at a speed positively related to wind speed. However, it is obvious that both 
types of fires obey the same physical rules and should have generated the same 
estimates, whichever context was presented. Hence, expertise might have encouraged 
the use of independent parcels of knowledge which are triggered by particular cue 
values (here the context). This is what Lewandowsky et al. called “knowledge 
partitioning”. 

In the preceding experiment, the co-occurrence of particular wind speeds and types 
of fire was learned through many years of field experience. Lewandowsky et al. [2] 
designed a paradigm to test whether novices would also use this strategy in a function 
learning task. In this second experiment, the participants were taught basic 
firefighting background knowledge and trained in a standard function learning 
experiment using a quadratic concave function. Every stimulus (wind speed) was also 
accompanied by a context label, which was associated to a different half of the 
function during training. This manipulation aimed at recreating the bias present in 
experienced firefighters’ knowledge, for which back-burners are usually encountered 
in low wind speed situations and to-be-controlled fires in high wind speed conditions. 
At test, every stimulus was presented twice: once as a back-burner and once as a to-
be-controlled fire. Results showed that participants easily achieved the task, but more 
importantly, that their knowledge led to dramatically different responses to identical 
stimuli presented in different contexts. Back-burners’ speeds were underestimated in 
high wind speed conditions whereas to-be-controlled fires’ speeds were accordingly 
underestimated in low speed wind conditions. Nevertheless, spreading speeds were 
almost perfectly estimated when wind speeds appeared in their usual context. Thus, 
KP might be a useful heuristic to simplify complex relations between stimuli and 
responses. 

These findings constitute empirical evidence favouring the psychological 
plausibility of mixture-of-experts models [3, 4]. In this type of model, a gating 
network is used to identify the expert which is best suited to achieve a task. In KP, the 
context plays the role of gating cue and the local experts are linear. Lewandowsky 
and his colleagues proposed one such model: Population of Linear Experts (POLE) 
[5]. In POLE, when a stimulus is encountered, a gating mechanism directs it to the 



 

correct expert, which represents one of many linear functions with different slopes 
and intercepts. There are enough experts to cover the entire stimulus space and, in the 
version proposed in [5], only the gating system has adjustable weights. Once an 
expert is chosen, it computes the answer accordingly. 

This model [5] possesses three important properties. First, POLE accounts for all 
past results in the function learning literature by using KP. Second, experts do not 
blend together. Therefore, the system always commits to a cue-value and chooses an 
expert accordingly (KP). Third, each expert represents a linear relationship between 
the stimulus and the response. 

In the present study, we tested the robustness of the empirical support [1, 2, 5, 6] to 
mixtures-of-experts models in general [3, 4] and to POLE in particular [5]. Human 
data were collected by altering Lewandowsky et al.’s [2] experimental settings. First, 
each participant was taught extensive firefighting background knowledge. Second, 
three groups of participants were tested: the first group performed the same task as 
Lewandowsky et al. [2], the second group was trained in the same task with smaller 
stimuli and the third group was trained with settings identical to the second, except 
that distracting information was added to the display (constant visual markers). 

2 Experiment 

2.1 Method 

This experiment is an extension of Lewandowsky et al.’s Experiment 1, systematic 
condition [2]. Therefore, this section bears on their original methodology. 

2.1.1 Participants 
Fifty-four undergraduate students from the Université de Montréal participated in this 
experiment. Eighteen participants were trained in a reproduction of Lewandowsky et 
al. [2] (control group), eighteen were trained with small stimuli (small stimuli group), 
and the remaining participants were trained with a smaller display and distracting 
information (distracting information group). In each group, six participants were 
assigned to the complete condition, six to the left-only condition, and the remaining 
six to the right-only condition. Participants in the complete conditions received 7$ as 
compensation for their time, and those in the left-only or right-only conditions 
received 5$. The experiment was conducted in French. 

2.1.2 Material 
Participants were tested individually. All instructions and stimuli were presented on 
43 cm (17 inch) monitors connected to PCs. Participants were positioned 
approximately 60 cm away from the monitor. The experimental task was programmed 
using Sun Microsystems’ Java J2SDK1.4.1. The program was used to present the 
material and record the participants’ answers. 



 

2.1.3 Stimuli 
Participants were expected to learn a concave quadratic function in which the fire’s 
spreading speed (F) was related to wind speed (W) in the subsequent manner:      
F(W) = 24.2 – 1.8W + 0.05W2. Wind direction always opposed slope, and the vertex 
of the function (W = 18) represented the point at which the force of the wind balanced 
the effect of the slope. To the left of that point, fire speed decreased with increasing 
wind, without changing the direction of the fire spread. Lewandowsky et al. [2] 
referred to these fires as “slope-driven”. To the right of the vertex, fires were “wind-
driven” and their speed increased as a function of wind speed. During training, 36 
stimuli were used, ranging from wind speeds of 0 to 36, omitting the vertex of the 
function. At test, the omitted wind speed of 18 was included, resulting in a total of 37 
transfer stimuli. 

On each trial, a horizontal arrow, whose length was proportional to a particular 
wind speed (henceforth referred to as the stimulus), was shown at the top of the 
display. The minimal arrow length, associated with the value 0, was approximately 
5.8 cm for the small stimuli and distracting information groups and 0.7 cm for the 
control group. The maximal length, associated with the value 36, was approximately 
26 cm for the small stimuli and distracting information groups and 31 cm for the 
control group. Thus, in the small stimuli and the distracting information groups, the 
shortest arrow occupied 1/6 of the display and the longest 5/6. In the control group, 
the arrows spanned the entire monitor. No numerical values for wind or fire speed 
were shown. Participants were to consider each fire in a context represented both by a 
textual label and the color of the arrow (blue for Back-burning and red for 
Firefighting). In the distracting information group, visual markers were added to the 
display to indicate the minimum and maximum possible stimulus lengths. The 
markers were the only difference between the small stimuli group and the distracting 
information group. 

Participants were asked to predict the speed of the fire (notwithstanding its 
direction of spread) by moving a sliding pointer along a 23.3 cm-scale positioned in 
the left part of the display. The scale was labeled slow at the bottom and fast at the 
top, without any incremental values or tick marks. 

After each training trial, the participant’s response was followed by a feedback 
arrow. The arrow was located next to the response scale to indicate the correct speed 
of spread. Also, a message appeared in a rectangle at the bottom center of the screen 
to encourage the participant to perform better (yellow rectangle) or to indicate that the 
response was satisfying (green rectangle). Predictions deviating by 5 or more units 
(approximately 7.2 cm) from the correct answer were accompanied by the former 
(yellow message) while acceptable performances were accompanied by the latter 
(green message). Participants were required to acknowledge feedback by a mouse 
click. The inter-stimulus interval (ISI) was 2 seconds, and the textual context-label 
always preceded the stimulus by 1 second. At test, feedback was absent. 

2.1.4 Procedure 
The procedure was identical for all groups, and differed only according to conditions. 
In all conditions, each stimulus was presented five times during training. Hence, there 
was a total of 180 trials for the complete conditions, but only 90 trials for the left-only 
and right-only conditions (because training was restrained to one half of the function). 



 

In all conditions, 90% of fire speeds occurred in their respective contexts, and the 
remaining 10% were presented in the opposite context. However, in the left-only and 
the right-only conditions, all stimuli were presented in the same context (back-
burning for left-only and firefighting for right-only). All magnitudes were presented 
once within each block of 36 trials (18 for the left-only and the right-only conditions), 
except during the first block, where magnitudes were presented in a blocked manner. 

After completion of the training trials, participants in all conditions completed the 
same transfer test. The transfer test involved predicting the fire speed of all stimuli in 
both contexts. 

2.2 Results 

The performance of one participant from the small stimuli group, complete condition, 
deteriorated with practice (F(4, 175) = 2.54, p < .05). Therefore, this participant was 
excluded from the following analyses. 

2.2.1 Training 
The participants’ Absolute Deviation from Function (ADF) was used to evaluate 
learning. The learning curves are shown in Fig. 1. As seen, participants in all 
conditions from all groups improved their ADF and were thus able to learn the 
function. Also, Fig. 1 suggests no effects of groups or conditions. 
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Fig. 1. Participants’ ADF during the training phase. The left panel shows performance of 
participants in the distracting information group, the middle panel participants in the small 
stimuli group and the right panel shows the control group 
 

A Group (small stimuli vs. distracting information vs. control) × Condition 
(complete, left-only, right-only) × Block (5, repeated measures) ANOVA was 
performed on the participants’ ADF to corroborate what Fig. 1 hinted. First, the 
participants were able to diminish their ADF with practice: The mean ADF was 2.33 
for the first block and diminished to 1.74 for the fifth block                                    
(F(4, 176) = 14.32, p < .01). However, this effect must be interpreted with care, 
because the Block × Group interaction was significant (F(8, 176) = 10.24, p < .01). 
Thus, the group’s effect was further decomposed within each block. The groups 
significantly differed in the first block of training (F(2, 44) = 28.42, p < .01) but were 



 

similar in all other blocks (all F(2, 44) < 1.63, p > .05). Tukey A post hoc 
comparisons showed that the control group was significantly better than the other two 
at the beginning of the task (both differences > 0.96, p < .01). However, as suggested 
by the absence of group effect in the remaining blocks, this difference disappeared 
with training. 

2.2.2 Group performance at test 
KP can be detected experimentally by a difference in responses to a given stimulus in 
different contexts [2]. Fig. 2 shows transfer performances for participants trained in 
the complete conditions. As seen in the left panel, participants trained with distracting 
information have learned the function quite well. Further, answers in both contexts 
matched the quadratic function and were not affected by context.  
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Fig. 2. Mean responses at test in each context. Panels represent the same groups as in Fig. 1 

Responses of participants trained with small stimuli are shown in the middle panel. 
As expected, their responses at test were affected by the context (compare with the 
left panel), but in a non-systematic way. In comparison, the deviations found by 
Lewandowsky et al. [2] were systematic: low wind speeds resulted in an 
underestimation of the speed of fire spread in the firefighting context and high wind 
speeds accordingly resulted in underestimations in the back-burning context. This is 
exactly the pattern of results found in the control group (see the rightmost panel). In 
the middle panel, the underestimations are present (to a lesser extent), but mid-range 
wind speeds were overestimated. 

A better way to highlight the difference in responses to a given stimulus is to 
compute the signed differences [2]. A signed difference is computed by subtracting 
the answer given at test to each stimulus in the back-burning context from the answer 
given to the same stimulus in the firefighting context. Signed differences randomly 
aggregated around zero would suggest the absence of partitioning, while signed 
differences systematically deviating in one direction would indicate the presence of 
partitioning. 

The left panel of Fig. 3 shows that participants trained with distracting information 
are not partitioning their knowledge: their signed differences are randomly aggregated 
around the abscissa. However, the signed differences of participants trained with 
small stimuli are more intriguing (middle panel): they are substantially deviating from 
the abscissa in a sine-like way. Individual analyses might explain these results. 



 

Finally, participants in the control group showed the expected pattern of results: 
signed differences are negative to the left of the vertex and positive to the right. 
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Fig. 3. Signed differences of the participants at test. Panels represent the same groups as in Fig. 
1 

2.2.3 Individual results at test 
The preceding section showed that, at a group level, participants trained with 
distracting information did not seem to partition their knowledge while those trained 
without visual markers (small stimuli and control groups) did. However, the 
preceding analyses may not tell the whole story, considering that Lewandowsky et al. 
[2] found important individual differences relating to KP. Precisely, previous research 
found between 13% [6] and 50% [5] of participants who were not partitioning their 
knowledge. Therefore, it is relevant to verify if the effects found in section 2.2.2 were 
representative of the entire groups of participants. 

One way of classifying the participants as partitioners (P) or non-partitioners (NP) 
is to individually plot their signed differences and estimate the best-fitting linear 
model using a linear regression. A slope which is significantly different from zero 
suggests a systematic effect of context, namely KP. On the other hand, a slope of zero 
suggests no clear effect of context. Table 1 shows the slope and intercept individually 
estimated for each participant. 

Table 1 shows that, in the group trained with distracting information, all but one 
participant fit a model with an absolute slope of 0.05 or less. Because these slopes did 
not differ significantly from zero (p = .05), participants were classified as non-
partitioners (NPs). The exact opposite was true of participants in the small stimuli 
group: All but one participant had an absolute slope greater than 0.20. Hence, these 
participants were classified as partitioners (Ps). In the control group, the best-fitting 
slope of two of the six participants was smaller than 0.10: these slopes did not 
significantly differ from zero (p = .05) and these participants were classified as NP. 
The four remaining participants were classified as Ps. 

The proportion of Ps in the small stimuli group significantly differed from the 
proportion of Ps in the distracting information group according to a binomial test 
(B(5, 1/6) = 4, p < .01). The proportion of Ps in the small stimuli group (80%) is well 
in range with past literature while the proportion of Ps in the group trained with 
distracting information (16.7%) is below past results. The proportion of Ps in the 
control group (67%) is similar to Lewandowsky et al.’s results [2] and does not 



 

significantly differ from the small stimuli group (B(6, 4/5) = 4, p > .05). However, 
this proportion of Ps differs from the proportion found in the distracting information 
group (B(6, 1/6) = 4, p < .01). 

Table 1. Estimated Parameters for the Best-Fitting Linear Models 

   
Estimated 
Parameters   

  Participant Slope Intercept r2 Classification 
Distracting Information     
  110 -0.03 0.63 0.02 NP 
  111 0.00 -0.13 0.00 NP 
  112 -0.25 5.48 0.34 P 
  120 -0.02 0.37 0.01 NP 
  121 0.05 -1.45 0.07 NP 
  122 0.01 -1.51 0.00 NP 
Small Stimuli      
  210 -0.41 8.03 0.58 P 
  211 -0.02 0.19 0.00 NP 
  212 0.22 -4.19 0.29 P 
  220 0.63 -9.04 0.93 P 
  221 -0.23 2.68 0.32 P 
Control      
  310 0.60 -10.7 0.87 P 
  311 -0.02 0.17 0.01 NP 
  312 -0.07 2.16 0.09 NP 
  320 0.54 -9.45 0.69 P 
  321 0.13 -2.61 0.14 P 
    322 0.65 -8.88 0.89 P 
Note. P = Partitionners; NP = Non-Partitionners   

 
Together, these results suggest that when distracting information is present in the 

display, fewer participants use the KP heuristic. Also, it is noteworthy that all the Ps 
in the control group showed positive slopes, which is consistent with the linear 
experts hypothesis [2, 5]. However, half of the Ps in the small stimuli group and the 
only P in the distracting information group had negative slopes, which is consistent 
with the sine-like pattern of Fig. 3. The overestimation of moderate wind speeds is 
also present in the middle panel of Fig. 2 and further inspection of the middle panel 
suggests a partitioning of the stimuli in two quadratic functions with skewed vertices. 
Therefore, diminishing the stimulus’ length does not prevent participants from using 
KP but entails a different, non-linear, type of partitioning, which is not consistent with 
POLE’s predictions [5]. 



 

2.2.4 Independence of knowledge parcels 
As Lewandowsky et al. [2] pointed out, participants who were uniquely trained on the 
left or right part of the function represent extreme cases of KP: they possess a single 
expert, associated with a single context. Therefore, if the knowledge of Ps in each 
context is truly independent, their responses should be similar to the left-only 
condition in the back-burning context and the right-only condition in the firefighting 
context. In the case of non-linear Ps, responses in the back-burning context were 
similar to responses from participants uniquely trained in this particular context (left-
only condition: r = 0.87). However, the correlation between partitioners’ responses in 
the firefighting context and those from the right-only condition was smaller               
(r = 0.69). This difference is significant according to Fisher’s Z transform test          
(Z = 2, p < .05). Therefore, the back-burning parcel of knowledge seems more 
hermetic than the firefighting parcel. Also, results from Lewandowsky et al. 
suggested higher correlation coefficients [2]. 

In the case of linear Ps, responses from knowledge partitioners were similar to 
responses from participants trained in the left-only (r = 0.81) and right-only (r = 0.83) 
conditions (in the back-burning and firefighting contexts respectively). Also, the 
difference between correlation coefficients is not statistically significant                    
(Z = 0.25, p > .05). Knowledge about the other half of the function acquired in 
another context did not affect the participants’ responses, suggesting that knowledge 
was completely partitioned. 

3 General discussion 

In the Experiment, the usual settings used to assess the presence of KP [2, 5] were 
varied to check the robustness of this phenomenon. Precisely, three modifications 
were made: adding details in the cover story, reducing the length of the stimuli, and 
adding distracting information. First, increasing the level of detail in the cover story 
did not qualitatively alter performance. However, participants who received detailed 
cover stories (control group) seemed to have better performed than those in [2]. 
Second, it is well established that diminishing the span of the stimuli increases 
discrimination difficulty [7], hence making stimulus estimation more difficult. In the 
small stimuli group, participants used KP to partition their knowledge but showed 
negatively-sloped best-fitting linear models (Table 1). This counter-intuitive result 
was first hinted by sine-like signed differences (Fig. 3) and the use of non-linear 
expert functions with skewed vertices (Fig. 2). Finally, adding distracting information 
to the display resulted in fewer participants using KP to achieve the task (distracting 
information group). However, these participants, who did not use KP to simplify the 
function, were still able to learn it (as shown by an absence of group effect in the 
ANOVA). 

3.1 Implications for current cognitive modeling 

These findings have numerous implications for cognitive modeling. Results from the 
control group confirmed the adequacy of our reproduction of [2] and suggested that 



 

background knowledge, which is not contradictory with task demands [8], do not 
qualitatively alter the participants’ performance: it only helps to perform better. 
However, results from the small stimuli group are challenging the POLE model [5]: 
when stimuli are more difficult to estimate, participants still partition their knowledge 
but non-linear experts are used. This strategy may be adaptive because it minimizes 
the error resulting from an erroneous choice of expert: if the input is uncertain, the 
probability of wrongfully gating the input to an inadequate expert is increased. 
However, if the experts are more complex (in this case quadratic instead of linear), 
the estimation of a sub-optimal expert results in a smaller error. Therefore, the results 
from the small stimuli group, while challenging to POLE’s predictions, do not 
invalidate mixture-of-experts models in general [3, 4]. 

The results from the distracting information group are more problematic to both 
POLE [5] and general mixture-of-experts models [3, 4], because they show that when 
distracting information is present in the display, participants do not seem to be using 
the KP heuristic. Instead, participants are learning the quadratic function by simple 
associative learning. These findings might still be explained by the degenerate case of 
the mixture-of-experts, in which a single quadratic expert is used. 

Together, these results confirms that KP [1, 2, 5, 6], which is the empirical 
counterpart to mixture-of-experts models [3, 4], is a strategy used to achieve 
psychological tasks. However, this heuristic is less ubiquitous than Lewandowsky and 
his colleagues previously thought [5] and the constraint of using linear experts is too 
restrictive. Therefore, mixture-of-experts are adequate models of human cognition but 
further research is needed to detect the presence of experts (to distinguish simple 
associative learning from the degenerate case of using a single expert) as well as to 
determine the nature of the experts used to achieve particular tasks. 
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