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Abstract 

We introduce a connectionist model that reproduces the 
attentional blink effect during a rapid serial visual 
presentation task. The model is composed of two layers, a 
competitive one that acts as an identification layer and a 
recurrent one that acts like short term memory where the 
main mechanisms is the presence of an inhibition gate and 
a neural fatigue. Simulations show that the model generates 
data that are as variables as the one obtained from human 
participants and the mean performance is identical to the 
performance obtained by human participants.  

Introduction 
During visual scanning, the eyes gaze at a given area 

then make a saccade to another area. Between the 
saccades, they receive brief images. How the brain can 
process such a flow of information is studied in the 
laboratory using the Rapid Serial Visual Presentation 
(RSVP) task. In this experimental setting, stimuli are 
presented in rapid succession, usually, 6 to 20 stimuli per 
second, at a same spatial location. Within the stream, 
there is usually a target which is marked by a different 
attribute (e.g. color) and the task is to identify it. Thus, the 
RSVP can be seen as a visual search without saccade. 

The attentional blink (AB) effect is characterized by a 
decrease in performance for a second target when a first 
target has been identified (T2|T1). The performance for 
recalling a second target will decrease if it is presented 
within 200 to 500 milliseconds of the first. However, if 
the second target is presented next to the first target, there 
is no decrease in performance. This phenomenon is called 
lag of 1 sparing effect. Figure 1 shows a typical AB curve 
with human participants obtained from our lab. 

Many independent models have been postulated to 
explain the AB phenomenon.The first explanation is 
given by Raymond, Shapiro & Arnell (1992) and is based 
on the postulate of an inhibition process. When a first 
target is perceived, the perceptual system is inhibited to 
avoid confusion with subsequent items. However, the 

inhibition is slow to start, so that if a second target is next 
to the first, it will be processed along the way. 

 
Figure 1: Results with human participants in the AB 

task from our lab. 
 
Shapiro, Ward & Duncan (1997) challenged this 

explanation by showing that the second target could 
facilitate the processing of a third target. If perception was 
inhibited, there should be no facilitation, according to 
Raymond & al. (1992).  

Another explanation was proposed by Chun & Potter 
(1995) who postulated a two-stage model. The first stage 
operates rapidly and decides which of the stimuli is sent 
to the second stage for encoding. The second stage is slow 
and can process only one item at a time. Meanwhile, the 
second target is left in a waiting stage. Thus, as time 
passes the probability of encoding the second target 
correctly decreases. However, if the second target is 
presented next to the first target, it will be encoded 

Finally, the most recent explanation comes from 
Jolicoeur (1998). He proposed a modified version of the 
two-stage model by adding a third stage. According to 
Jolicoeur, the first and last stages are the perception and 
recall stage respectively. The second stage is used to 
encode the targets in short term memory and is 
characterize by its limited capacity (1 item at a time). This 
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bottleneck delays the processing of a second target. The 
probability of correctly encoding the second target 
decreases as a function of the delay. 

These three explanations seem to capture the data in a 
qualitative manner. However, few formal simulations 
were ever proposed (Bowman, Wyble and Barnard, 
1994). Without form simulation it is difficult to evaluate 
them quantitatively. This paper introduces a connectionist 
model of perception and short-term memory that accounts 
for the AB effect. The paper is divided as follow: the first 
section presents the general methodology used with 
human participant to obtain the AB effect. The second 
section presents the model, and gives the methodology 
used for the simulations. The third section compares the 
results obtained by the model with the one obtain by 
human participants. Finally, the last section gives a brief 
conclusion. 

Description of the RSVP Task 
The typical task used to obtain the AB effect consists in 
presenting a RSVP stream of 16 items. Each item is a 
number between 0 and 9. A target item is red whereas a 
distractor is green. An item is presented during a period of 
100 milliseconds. What is controlled is the position of the 
second target relative to the first target, a variable named 
lag. For example, a lag of 1 indicates that the second 
target is presented immediately after the first target and a 
lag of 2 indicates that there is one distractor between the 
first and the second target. The participant performances 
are obtained by calculating the recall percentage of the 
second target when the first target is correctly detected. 
Figure 2 shows a typical RSVP used to obtain AB effect. 

 

 
 

Figure 2: Six frames of an RSVP stream showing the 
two targets (4 and 1), the second occurring at a lag of 3. 
 

Description of the AB Model 
The proposed model is based partially on Chun & 

Potter (1995) and Jolicoeur (1998) models, where the first 
stage identifies the stimulus and the second stage stores 

the input into a short term memory (STM). The overall 
model is illustrated in Figure 3. However, as seen latter, 
the model also has the characteristic of Raymond, Shapiro 
and Arnell (1992) model, an inhibition process. 

As seen in Figure 3, the input is distributed and is 
decomposed into its attributes. The identification stage is 
composed of 2 competitive networks (Kohonen, 1982, 
1984). One competitive network identifies which letter is 
presented and the second network identifies which color 
is presented. In this modelization, the color determines if 
the stimulus is a target or a distractor. This information is 
thus the decision criterion used to decide if a given letter 
must proceed to STM. The STM memory is represented 
by an autoassociative layer (Hopfield, 1982). 
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Figure 3: Model architecture 

 
The main characteristic of the model is the presence of 

a dual mechanism that accounts for the decrease in the 
overall performance and the lag of 1 sparing effect. The 
first mechanism is the comparison process: once a target 
has been identified, it is compared to the desired 
attributes. If the stimulus attribute corresponds to the 
desired one, two things occur: a) a gate to STM is open so 
that the stimulus starts being encoded; b) an inhibitive 
process takes place making further comparison harder for 
a given period of time. This can be viewed as a 
psychological refractory period (PRP) as described by 
Pashler (1994). In addition, the comparison time is also 
involved to close the gate to STM. 

The second mechanism takes place at the STM layer. 
At this stage, while learning of the first target occurs, a 
neural fatigue takes place diminishing the learning 
strength over time (Tsodyks & Markam, 1997). These 
mechanisms are illustrated in Figure 4 for a target 
presented at lag of 1, 2 and 3. The figure shows that the 
memory trace is function of both learning strength and 
comparison time. Thus, the amount of learning is given by 
the trapezoidal area. 

The responses of the model are the two items that are 
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the most learned in STM. Yet, the memory is not perfect: 
because the comparison time is slow, not only the targets 
are memorized but also the distractor following a target. 
As a consequence the model predicts intrusion effects (the 
participant reports the distractor following a target instead 
of the target) as well as inversion effects (the participant 
reports the two targets in reversed order). 

Model Description 
In this section, we give the details of the identification 

network, implemented by a competitive model, and the 
short-term memory, implemented by an autoassociative 
model. As for any artificial neural network, these 
networks are entirely described by their architectures, 
their transmission rules and their learning rules.  
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Figure 4: Illustration of the model main mechanisms 
 

Competitive Model of Identification 
Figure 5 illustrates the architecture of a typical 

competitive model (Kohonen, 1982). As we can see, each 
unit inhibits its neighbors. Thus after some times only one 
unit will remain active. This unit will be the one whose 
weights are closer to the input. As a consequence the 
network’s output is localist (Page, 2000): each unit is 
responsible for the perception of a given input. In our 
simulations, we used the digits from 0 to 9 so that there 
are 10 units. 

 

y x 

 
Figure 5: architecture of the competitive layer 

 
The network’s transmission rule is given by the 

following equation: 
 

=a Wx      (1) 
 

where a represents the activation vector, W the weight 
matrix, and x an input vector. The inhibitive function is 
usually modeled by the Mexican hat function. However, 
we can use the following Winner-Take-All (WTA) 
simplification: the most active unit is set to 1 and all the 
others are shut down to zero, so that: 

 
y = WTA(a)     (2) 

 
where y represents the output of the network. Learning in 
the model is usually carried out by an unsupervised 
algorithm (Kohonen, 1982). However, in our case, 
learning at this layer is not a preoccupation because the 
participant should already be able to identify a letter or a 
color. Consequently, for simplification, the network was 
trained to identify colors (7 possible colors) and identity 
(10 possible identities) before it was submitted to the 
RSVP task using the supervised delta rule (Widrow & 
Hoff, 1960) described by the following expression 

 
T

[ 1] [ ] ( )k k η+ = + −W W z y x    (3) 

 
where η represents the learning parameter, z the desired 
output, T the matrix transposition operator, and k the 
learning trial. 

 

Autoassociative Model of Short-Term Memory 
This network is usually used to model unsupervised 

memorization process (Hopfield, 1982, Anderson, 
Silverstein, Ritz and Jones, 1977). Figure 6 shows the 
network’s architecture. The output vector y computed 
from the identification network is the original input used 
for the autoassociative memory, so that x[0] = y. Because 
the memory is fed by the output of the competitive 
network, the STM also has 10 units. As we can see, the 
model is recurrent and the input is associated with its-self. 

 



 
Figure 6: Architecture of the autoassociative layer 

 
Memorizing an item was carried out by the following 

equation: 
 

T T
[ 1] [ ] [0] [0] [ ] [ ]( ( )( ) )k k t tη+ = + −W W x x Wx Wx  (6) 

 
We used this learning rule instead of a strictly hebbian 
learning rule found in (Silverstein, Ritz and Jones, 1977) 
for the simple reason that the hebbian does not converge 
whereas this one converge in a finite number of learning 
trial (Chartier & Proulx, 2001). Because the inputs to be 
learned are not linearly dependant, this autoassociative 
model can memorize up to 10 items with different 
memory strength for each, depending on the study time. 

Methodology 

Stimulus Composition 
The inputs were simplified digits made from a 5 × 7 

array of pixels. However, to model the presence of color, 
we used one such array for each color channel (red, green, 
blue). Therefore, the full input is composed of 3 arrays of 
5 × 7. This input is separated in two sections. The first 
section consisted of the pixel information. This stimulus is 
thus an array of 5 × 7 given a 35 dimensions input vector. 
The second section consisted of the color information. 
The color information is thus a 3-dimensions input vector, 
corresponding to the RGB channels. An example of a 
RSVP stream is illustrated at the Figure 7. 

 

 
Figure 7: One possible RSVP stream composed of 10 
digits. The two targets are red (top channel) and the 
remaining distractors are green (middle channel). 

Variables 
The independent variable, were the learning strength 

and the comparison time, which is implemented by an 
inhibition time function. The initial learning strength was 
varied from 0.001 to 0.02, whereas the inhibition time 
function varied from 0 to 100 time step. It is noted the 
inhibition function decrease following a linear function 

 

[ 1] [ ] 1t tinhib inhib+ = −     (7) 

 
whereas the learning strength decrease following a simple 
exponential function described by  

 

[ 1] [ ] *t tη η γ+ =      (8) 

 
where t represents the time step and γ a general constant (γ 
was set to 0.997 for all the simulation). The dependant 
variables were the memory strength in STM for each 
stimulus, the average model performance and the 
probabilistic output. Moreover, to generate data that are 
closely related to human performance simple uniformed 
noise were introduced to both learning strength and 
comparison time. The random component was 30% of a 
given parameter initial value. To have a good idea of the 
variability obtained in the model’s response, we 
performed 100 simulations. From those outputs, we 
compute the mean to see if, the network was able to 
reproduce mean performance obtained by the participants. 

Results 
Figure 8 shows the different AB curve obtained from 

the variation of the learning strength and the inhibition 
time. We can see that the learning strength is responsible 
for the vertical movement of the curve, higher the 
learning strength is, higher the overall performance. The 
inhibition time is responsible for the depth of the blink 
effect. Higher is the amount of inhibition, lower will be 
the recall performance, creating a bigger blink. 

From these results, we selected a learning strength of 
0.017 and inhibition value of 85 to be used for the 
probabilistic network. Figure 9 shows the results obtained 
from the simulations and the one obtained from human 
participants. We can see that the simulations yield similar 
results as the one obtained by human. Moreover if we 
look at Figure 10 we can see that the mean performance 
gives the same as the one obtained by human participants 
(Figure 1). 
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Figure 9: Examples of individual data from 4 participants (top row) and from the simulations (bottom row). 
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Figure 8: Various performances obtained by varying the parameters. 
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Figure 10: Mean results over 100 simulations 

Conclusion 
Experiments conducted with human participants 

showed the presence of an attentional blink if stimuli are 
presented within a rapid serial visual task. Many authors 
have proposed different mechanism that could account for 
the data but none have tested their affirmations using 
simulations. We proposed a two stage model composed of 
an identification stage and a memorization stage where 
the mains characteristic are an inhibition gate and neural 
fatigue. The important point is that the two-stage model 
alone or the inhibition model alone cannot account for the 
standard results. 

We performed several simulations that shown that the 
model can reproduce the average performance of the 
human subjects. Moreover, under its probabilistic version 
the model generates data that are as variables as the one 
obtained from human participants. If we average those 
data we have shown that mean performance is the same as 
the one obtained by human participant. It is thus 
concluded that model can describe accurately the AB 
effect during a RSVP task. 

References 
Anderson, J. A., Silverstein, J. W., Ritz, S. A. & Jones, R. 

S. (1977). Distinctive features, categorical perception, 
and probability learning: Applications of a neural 
model. Psychological Review, 84, 413-451. 

Bowman, H., Wyble, B. and Barnard, P.J. (2004). 
Towards a Neural Network Model of the Attentional 
Blink. In H. Bowman and C. Labiouse, editors, 
Proceedings of the Eighth Neural Computation and 
Psychology Workshop, Connectionist Models of 

Cognition and Perception II, volume 15 of Progress in 
Neural Processing, 178 - 187, Singapore.  

Chartier, S. & Proulx, R. (2001). A new online 
unsupervised learning rule for the BSB model, 
Proceeding of the International Joint Conference on 
Neural Networks (IJCNN'01), 448 - 453, Washington 
D.C. 

Chun, M. M. & Potter, M. C. (1995). A two-stage model 
for multiple target detection in rapid serial visual 
presentation. Journal of Experimental Psychology: 
Human Perception and Performance, 21, 109-127. 

Hopfield, J. J., (1982). Neural networks and physical 
systems with emergent collective computational 
abilities. Proceedings of the National Academy of 
Sciences, 79, 2554-2558. 

Jolicoeur, P. (1998). Modulation of the attentional blink 
by on-line response selection : Evidence from speeded 
and unspeeded Task1 decisions. Memory & Cognition, 
26, 1014-1032. 

Kohonen, T. (1982). Self-organized formation of 
topologically correct feature maps. Biological 
Cybernetics, 43, 59-69. 

Kohonen, T. (1984). Self-organization and associative 
memory. Springer Verlag. 

Page, M. (2000). Connectionist modelling in psychology: 
A localist manifesto. Behavioral and Brain Sciences, 
23, 443-512. 

Pashler, H. (1987). Detecting conjunctions of color and 
form: Reassessing the serial search hypothesis. 
Perception and Psychophysics, 41, 191-201. 

Raymond, J. E., Shapiro, K. L. & Arnell, K. M. (1992). 
Temporary suppression of visual processing in an 
RSVP task: An attentional blink?. Journal of 
Experimental Psychology: Human Perception and 
Performance, 18, 849-860. 

Shapiro, K., Driver, J., Ward, R. & Sorensen, R. E. 
(1997). Priming from the attentional blink: A failure to 
extract visual tokens but not visual types. Psychological 
Science, 8, 95-100. 

Tsodyks, M. V., & Markam, H. (1997). The neural code 
between neocortical pyramidal neurons depends on 
neurotransmitter release probability. Proceedings of the 
National Academy of Science, 94, 719-723.  

Widrow, B. & Marcian E. H. (1960) Adaptive switching 
circuits, IRE WESCON Convention Record, New York: 
IRE, pp. 96-104. 

 
 


