
Learning of an XOR Problem
in the Presence of Noise and Redundancy

Denis Cousineau
Département de psychologie

Université de Montréal
C.P. 6128, Succ. Centre-Ville
Montréal, H3C 3J7 CANADA

E-mail: denis.cousineau@umontreal.ca

Abstract- Recently introduced time-based
networks represent an alternative to the usual
strength-based networks. In this paper, we compare
two instances of each family of networks that are of
comparable complexity, the Perceptron and the race
network when faced with uncertain input.
Uncertainty was manipulated in two different ways,
within channel by adding noise and between channels
by adding redundant inputs. For the Perceptron,
results indicate that if noise is high, redundancy
must be low (or vice versa), otherwise learning does
not occur. For the race network, the opposite is true:
If both noise and redundancy increase, learning
remains both fast and reliable. Asymptotic statistic
theories suggest that these results may be true of all
the networks belonging to these two families. Thus,
redundancy is a non trivial factor.

1 . IN T R O D U C T I O N
Many connectionist networks are built around a

strength-based representation in which 0 means an
absence of input and 1 an input present. Recently, there
was a demonstration that a network could be built
around a time-based representation [1]. In this
framework, stimuli are coded according to the moment
they become accessible. Therefore, 0 means
immediately available whereas ∞ means never
presented. A time-based network tries to respond as fast
as possible whether relevant information is present or
not. The purpose of the learning rule is to discover the
priority level of the inputs by increasing delays of
connections.

We showed in [2] the similarities that exist between
the Perceptron with the delta rule and a simple time-
based network, the race network. As was demonstrated,
the transmission rules and the learning rules are nearly
identical in both versions. In one sense, this is not
surprising because the two networks have exactly the

same architecture (two layers, feed-forward). The
surprise however came from the fact that the time-based
version learned nearly twenty times faster a linearly
separable problem, compared to a Perceptron with no
hidden layer.

One objective of this paper is to see whether the race
network also learns faster a non-linearly separable
problem, compared to its equivalent counterpart, the
Perceptron. However, a more important objective of this
paper is to see if this speed of learning advantage
persists in more realistic situations.

A physical system placed in a real-life situation is
going to be fed with imprecise input. This imprecision
has two different flavors. The first one is related to the
quality of the input. There are few chances that perfect
zeros and ones (or infinities and zeros, respectively, in
the time-based representation) are sampled from the
outside world. Instead, any real value number between
these limits may be accessed. This first form of
imprecision, which occurs within the connections (or
equivalently, within the channels) will be called noise in
the remainder of the paper. A simple way to simulate
noise is to take the quantity that the connection would
have sampled in the absence of noise (either 0 or 1 in a
strength-based network) and blur this quantity by adding
a random value to it.

The second form of imprecision can be referred to as
between-channel uncertainty. In a complex enough
system, the inputs are likely to consist of a large array of
detectors. Numerous inputs are an advantage from an
engineer point of view because it increases the
sensitivity to external signals and reduces the sensitivity
to internal failures. A disadvantage of having a large
array of detectors is that only a subset of them might
register the presence of a stimulus and that subset can be
different from one experience with the stimulus to the
other. As an analogy, think of the eye as a large array of
light detectors. A static square will affect different parts
of the retina, with possible overlap between stimulated

regions [3]. The key aspect behind all this is the notion
of redundancy. Redundant inputs are a set of inputs
whose purpose is to detect a specific attribute and many
or all of them turn on when this attribute is present.
Redundancy can be simulated by first getting the
quantity that one connection would have sampled in the
absence of noise and duplicate it a number of time. The
corresponding network must have one input unit per
duplicated signal. If noise is also present, then in a
second step, each signal is blurred independently.

The main objective of this paper is to see whether
strength-based and time-based networks can learn input-
output associations when the inputs are redundant and
noisy. The impact of redundancy was discussed in [4]
for the strength-based networks; some of the following
simulations will replicate their results. However, they
used non noisy inputs. In what follows, we briefly
review the race network and then perform simulations in
which the amount of noise and the amount of
redundancy are manipulated.

1.1. Percep t ron and race ne twork
As said, the transmission and the learning rule of the

Perceptron and the race network are very similar. The
transmission rules are given by Wao .= and Wao .~=
respectively, which means:

 ∑ ×=)(ijij wao vs.)(ijij wao += ∨ (1)
where o is the output vector of the network, a is the

input vector, and W is the connection matrix of the
network. In the case of the Perceptron, W contains the
weights of the connections. The operation . (dot)
represents an inner product, that is, an operation where
pairs of values are joined using × and where columns are
aggregated using Σ. For the race network, connections
represents "waits", a wait wij of 0 meaning that the ith
input is highly important for the jth output and has high
priority whereas ∞ has the opposite meaning. The
operation .~ is a modified inner product that joins pairs
of values using + and aggregates columns using ∨, the
kj

th smallest element. A component of the race network
that is not visible in the above notation is the threshold
vector k of the same size as the output vector.
Thresholds are discussed next.

In general (and in the simulations that follows), a
sigmoid function is applied to the output of a Perceptron
so that the outputs are bounded between 0 and 1 and still
derivable [5].

Learning in the race network occurs by penalizing the
connections that contributed most heavily to the error, as
indicated by a "teacher". Thus, it implements an
algorithm similar to the ∆ rule. The rule stipulates that

)(() eoaW −= +α∆ where α is a learning rate parameter
and e is the expected output vector. The operation ()+ is
a modified outer product where pairs of values are

joined using +. The update of the connection waits are
then performed with)(WWWW ∆+⎯⎯⎯ ⎯← ∨update .

So far, the two networks have very similar
mechanisms, resulting in very similar equations. In the
following, we discuss the dissimilarities.

First, the race network uses a hard threshold in its
decision rule, a quantity kj for each output unit. Its role
is to indicate how many channels must send information
before the output unit is triggered. This quantity is set to
one at the beginning of training and is adjusted only
when an output missed, i. e. when it was not triggered
but should have according to e:)(# kSignk −= aω∆ ,
where Sign(x) returns +1, -1 or 0 depending on whether
x > 0, x < 0, or x = 0 respectively, #a returns the number
of inputs that were active at the time the error was
detected and ω is a learning rate parameter for the
thresholds (0 < ω < 1).

The second difference is related to how the
architecture must be modified so that these networks can
learn non-linearly separable problems. For the
Perceptron, the solution is well-known and consists in
adding a layer of hidden units. The error given by the
teacher is back propagated in the network so that the
residual error is used on preceding layers.

For the race network, the solution consists in adding
"clock" units at the input layer. These units are in no
way influenced by the stimuli. However, at some time,
they will turn on. The moment when this happens is
arbitrary and we used 0 in all the simulations. In
essence, these units simply indicate that time is passing
and a decision can be based on this fact. As an
illustration, we indicate in Figure 1 how the race
network could solve an XOR problem [6].

The Perceptron has nice properties. It reduces the
energy using gradient descent techniques. It is also an
optimal classifier in the sum of square sense. By
contrast, the properties of the race network are not
known. It might perform some form of Lagrangian
descent learning, but a demonstration is still to come.

2 . SI M U L A T I O N S
We first describe the training problem and then the

networks and how they were made comparable.
Afterwards, we describe how noise and redundancy were
manipulated.

2.1. The t ra in ing prob lem and i t s
r epresen ta t ion

The networks were all tested on the same problem, the
XOR problem. It was chosen because it is well known
and non-linearly separable. For a strength-based
network, True is represented by 1 whereas False is
represented by 0. For a time-based network, True is

represented by 0 and False by ∞. This ∞ is meant to
represents "never" but because it reduces the
comparability of the two networks, we chose to use 1
instead of ∞. This means that an input unit that does not
receive stimulation will nevertheless turn on after 1
arbitrary unit of time. This can be seen as a "spurious
activation" or a false alarm.

To signal the two possible responses, two output units
were used so that when one had to turn on, the other had
to remain off, and vice-versa.

Because of the symmetry of the XOR problem, the
exact same input-output sets can be used to train both
networks. For example, the input {1,1} is seen as {True,
True} for the Perceptron but as {False, False } for the
race model. The only difference is that the responses are
inverted: the Perceptron had to learn to activate the
second output for the above input whereas the race
network has to activate the first input.

2.2. The ne tworks

In all the simulations, the race network used had two
clock units but no hidden layer and two units on the
output layer. The learning rate parameters were α = 0.5
and ω = 0.1. We tried various αs with no qualitative
changes in the results. The Perceptron used had one
hidden layer composed of 6 units. The learning rate
parameter α was 0.5. We also tested a Perceptron with
two hidden units so that the total number of units in the
two networks was identical. However, such a Perceptron
could not learn the XOR problem on nearly 25% of the
simulations.

In the simulations, the order of presentation of the
instances was random. Training was arbitrarily divided
in epoch of ten trials. In all cases, it was interrupted
after 5000 trials. To test that learning was successful, we
used the following criterion: learning occurred if the
sum of square error (SSE) between the network's output
and the desired solution was reduced below 0.1 [7].
Because the race network tends to produce a very erratic

learning curve (as seen in the following figures), the
SSE obtained in a simulation were smoothed using a
moving windows of 50 trials: The smoothed
performance at trial i is the average of that trial, the 24
trials that follows and the 25 that precedes it. All the
simulations were replicated a hundred times.

2.3. Redundancy and no i se

Two levels of redundancy, noted with the letter ρ,
were tested: either no redundancy (ρ = 1) or high
redundancy (ρ = 10). In the no redundancy condition,
the two input dimensions were not duplicated and so the
networks tested had only two input units. In the high
redundancy condition, the two inputs were duplicated
ten times. Thus, there were 20 input units. For the race
network, there were always two additional input units,
the clock units, which were set to 0 on all trial,
irrespective of the input presented. We also ran
simulations where the clock units were also duplicated ρ
times, but this did not change the results presented in the
next section.

Noise was added independently to each input using an
exponential distribution. When the input was 0, an
exponentially distributed random value was added. It
was subtracted when the input value was 1 so that the
resulting input value tented to be between 0 and 1.
Values that exceeded 1 were truncated to 1 and values
below 0 were truncated to 0. The exponential
distribution is specified by a single parameter η, which
is both the mean and the standard deviation of the
population. It is lower bounded at zero but extend to ∞
(hence, the truncation procedure described above).

We tested two noise conditions (η = 0.05 and η =
0.10). The η = 0.10 condition will be called the high
noise condition, even though the average value is close
to zero (being 0.1) and the perturbation is between 0 and
0.2 on 86% of the trials.

1

2
K

A

B

W =

K = 2 1

0 5
5

10

10
0

∞

∞

W

Fig. 1. How a race network can solve the XOR problem. The clocks are on at the onset of a trial. If present, the network

immediately detects the presence of both input since the connections imposes no extra delays (w11 = w21 = 0 and threshold
k1 = 2). If only one input is on, the output B will be triggered by it after a delay of 5 (arbitrary units of time) imposed by the
connection (w12 = 5 or w22 = 5). Finally, if no inputs are present, the clock units will activate a response after a delay of 10.

3 . RE S U L T S O F T H E S IMU L A T I O N S
We present the results in the no redundancy conditions

(ρ = 1) followed by the high redundancy conditions (ρ =
10).

3.1. Learn ing wi th no i se bu t no redundancy
Figure 2 presents the networks’ performances for a

typical simulation. The vertical axis represents the mean
SSE for a given epoch. Table 1 shows the average
performance across a hundred replications.

We first look at the low noise conditions (top row):
For the Perceptron, the average number of iterations to
reach the criterion is near 2300 and the percent of
successful learning is 98%. As of the race network, it
does a few scattered errors, as seen in Figure 2. As
training extend further, these errors became rarer.
Learning is very rapid (270 trials) and very reliable
(100% of successful learning). Because the race network
is a winner-take-all network, the pikes are often the
results of a single erroneous response.

The major result of this section is in the bottom row:
with high level of noise, the race network suddenly stops
learning. Various learning parameters were tested with
no change. The percent of successful learning dropped
to 10%. By contrast, the performance of the Perceptron
was unaffected by this amount of noise. As will be seen

next, a totally different picture emerges when
redundancy is introduced.

The fact that the race network does not learn an XOR
problem with high noise, whatever the parameters,
suggests that it is a limit of the whole framework rather
than an accidental limit of our simulations. In the
general discussion, we suggest an approach to
understand this limit.

3.2. Learn ing wi th no i se and redundancy
Figure 3 presents the results of a typical simulation

when redundancy is high (ρ = 10). As seen, the results
are very different from those of Figure 2.

First, the race network learned in all noise conditions.
Going from low noise (η = 0.05) to high noise (η =
0.10) did slow down learning: the number of iterations
roughly doubled as noise was doubled. However,
learning was very robust: the criterion was reached in
over 99% of the simulations. By contrast, the Perceptron
behave in a totally different manner. For low noise,
learning is faster (average of 1400 trials) and moderately
reliable (76% of the simulations found a solution).
Faster learning in the no noise condition was predicted
by [4] who studied the role of redundancy in the
presence of non noisy input. In the high noise condition,
only 51% of the simulations found a solution in less than
5000 trials (in which case learning was moderately fast
with an average near 1700 trials).

Fig. 2. Comparison of the Perceptron (left column) and the race network (right column) on the XOR problem
when there is no redundancy (ρ = 1). Noise is either small (η = 0.05, top row) or high (η = 0.10, bottom row).

One epoch represents 10 trials.

These simulations raise the role of uncertainty in
understanding neural networks' behavior. It does have a
quantitative impact on speed of learning: the Perceptron
learned almost two times faster in the high redundancy
condition whereas the race network was three times
slower. More importantly however is the finding that
learning was unreliable in certain cases involving both
noise and redundancy. Given a high level of noise, the
race network was unreliable when redundancy was low
whereas the Perceptron was unreliable when redundancy
was high. This interaction is maybe the key difference
between the two types of networks. We next look at
theorems related to asymptotic distributions of noise
than might suggest an explanation.

4 . GE N E RA L DI S C U S S I O N
The role of many neural networks is to find a

separation between the stimuli. Non-linearly separable
problems are difficult because there is no single
separation in the original input space. This is why
hidden layers and non linear functions are required. The
race network, owing to its clock units, can implement
more than one separation, so it does not need a hidden
layer to learn the XOR problem.

When the input is noisy, its representation in the input
space is changed from a point to a cloud whose density
is higher near the center but which may extend far in all
directions. The separations are no longer absolutely
reliable but if the extend of the cloud is not too large,

Fig. 3. Comparison of the Perceptron (left column) and the race network (right column) on the XOR problem when redundancy
is high (ρ = 10). Noise is either small (η = 0.05, top row) or high (η = 0.10, bottom row). One epoch represents 10 trials.

Table 1. Mean number of iteration required (max. 5000) to reach an amount of errors
 (SSE) below 0.01 plus or minus the standard error of the mean and percentage of

successful learning between parenthesis.

ρ = 1 ρ = 10
Perceptron Race Network Perceptron Race Network

η = 0.05 2346 ± 75 268 ± 56 1724 ± 79 717 ± 49
(98%) (100%) (76%) (99%)

η = 0.10 2715 ± 51 4461 ± 65 1665 ± 130 1205 ± 55
(100%) (10%) (51%) (100%)

the separations may be reliable most of the time.
We can implement the clouds with a distribution

function and measure its extent using the standard
deviation. In the above simulations, we specified the
standard deviation of the noise at the input (η). We thus
want to know the variance at the output and check
whether the limited domain of the representation
adopted [0..1] is large enough to contain one (or two for
the race network) useful separation.

Following [8], let L(o) be the distribution function of
the outputs. From Eq. 1, we have for the Perceptron that
L(o) = L(a . W). Thus, we are looking for the
distribution of a weighted sum, so that the distribution
function L is with respect to summation, that we note
LΣ(a × W). Assuming that the number of connections is
large (this was not quite true in the simulations so the
following has only a heuristic value), the question is
thus to find the asymptotic distribution with respect to
summation. The solution has been known for decades
and is given by the Central Limit Theorem [9]. More
importantly, it states that the total variance will be the
sum of the input variances. If all the inputs have the
same standard deviation η and their number is given by
ρ, then the final standard deviation is

 η Σ = η × ρ (2)
Hence, the size of the cloud increases with the number

of redundant input. Because the range of values is
limited to be between 0 and 1, there is a point where no
separation is possible.

This informal reasoning explains why the Perceptron
could not learn the XOR when redundancy was high: the
output standard deviation was ρ times larger than in
the no redundancy condition, probably spanning the
whole range.

For the race network, things are different. L(o) is
given by L(a .~ W) which is the distribution with
respect to minima L∨(a + W). Assuming that the
number of connections is large, the solution to this
problem is given by the Extreme Limit Theorem [10]. It
states that the final standard deviation has the following
relation to the standard deviation of each input (assumed
to be all equal) and the redundancy:

 η∨ =
γ ρ

η (3)

where γ depends on the specific nature of the noise
distribution (its "signature", [10]; in the simulations with
exponential noise, γ is 1). The important point is that ρ
cancels the effect of noise. Noise can be increased, as
long as redundancy is also increased, the net effect is
equivalent to a low noise, low redundancy condition. In
this framework, redundancy acts like a filter.

The race network could not learn in the η = 0.10, ρ =
1 condition because it had to maintain two separations,

one more than the Perceptron. However, in the ρ = 10
conditions, noise was reduced ten times.

This paper suggested how noisy input could be
modeled in a large scale network using between-channel
and within-channel uncertainty. Faced with redundancy
and noise, the race network and the Perceptron behaved
in drastically different ways. This was demonstrated
with simulations, and Equations 2 and 3 taken from
asymptotic statistics seem to indicate the generality of
this finding. If this network is to be used as a model of
the human cognition, then it shows that a central
question that ought to be examined is whether there are
redundancy in the brain or not.

AC K N O W L E D G M E N T S
This research was supported by the Fonds de

Recherche sur la Nature et les Technologie du Québec
and the Conseil de la Recherche en Sciences Naturelles
et en Génie du Canada.

RE F E RE N C E S
[1] D. Cousineau, “Merging race models and adaptive
networks: A parallel race network”, Psychonomic Bulletin &
Review, vol. 11, pp. 807-825, Nov. 2004.
[2] D. Cousineau, G. L. Lacroix, and S. Hélie, “Redefining
the rules: Providing race models with a connectionist learning
rule”, Connection Science, vol. 15, pp. 27-43, Mar. 2004.
[3] F. Rosenblatt, “Principles of neurodynamics: Perceptrons
and the theory of the brain mechanisms”, Washington, DC:
Spartan, 1963.
[4] Y. Izui, and A. Pentland, “Analysis of neural networks
with redundancy”, Neural Computation, vol. 2, pp. 226-238,
Jan. 1990.
[5] G. E. Hinton, “How neural networks learn from
experience”, Scientific American, pp. 145-151, Sep. 1992.
[6] R. Minsky and S. Papert, Perceptrons: an introduction to
computational geometry, Cambridge, Mass: MIT Press, Jun.
1969.
[7] R. C. O'Reilly, “Biologically plausible error-driven
learning using local activation differences: The generalized
recirculation algorithm”, Neural Computation, vol. 8, 895-
938, Nov. 1996.
[8] J. Galambos, The Asymptotic Theory of Extreme Order
Statistics, New York: John Wiley and Sons, 1978.
[9] W. Feller, An introduction to probability theory and its
application, 2nd ed, Vol. 1, New York: John Wiley and son,
1957.
[10] D. Cousineau, V. Goodman and R. M. Shiffrin,
“Extending statistics of extremes to distributions varying on
position & scale”, Journal of Mathematical Psychology, vol.
46: 431-454, Jun. 2002.

