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Many experiments involve training in a task. This is
commonly done to reduce the variability that would arise
from unskilled subjects. In this case, the experimenter is
interested only in the final level of performance, often
described by one or a few summary values (mean response
time, standard deviation, percent correct, etc.). However,
some researchers are not interested simply in a snapshot,
but in the whole dynamic of performance over training
(e.g., Logan, 1988; Rickard, 1997; Shiffrin & Schneider,
1977). Because of the large number of data involved, it
is often convenient to summarize them in a curve: the
learning curve (Heathcote, Brown, & Mewhort, 2000;
Newell & Rosenbloom, 1981).

Learning curves describe the evolution of performance
over trials t. They are given by the following equation:

(1)

where a is the asymptote of the curve and b is the ampli-
tude. These two scaling parameters act as boundaries,
since initial performance is given by the value a + b and
final performance is given by a.1 The function g(t) de-
scribes the type of curvature present in the learning
curve. As such, g(t) is called the core of the learning curve

and is often a function of a third parameter, the learning
rate parameter c (Paul, 1994).

The purpose of this article is not to decide which type
of learning curve best describes the data. This issue is
still highly controversial. When performance has been
measured by response times, many authors have de-
fended the power curve (Logan, 1988; Newell & Rosen-
bloom, 1981). Its core function is given by gPC(t) = t2c.
But Heathcote and his colleagues have raised some con-
cerns over recent years (Heathcote et al., 2000). They
have suggested that the exponential curve, given by the
core gEX(t) = e2c t, was as good a contender. Other learn-
ing curves have also been proposed over the years, such
as the general power curve [gGP(t) = (t + d )2c; Newell &
Rosenbloom, 1981], which has a free parameter d to take
into account learning prior to the beginning of the task
(see also Cousineau, Goodman, & Shiffrin, 2002). In the
context of memory research, the retention curve measur-
ing percentage recalled as a function of time is also a
function that fits the framework of Equation 1 (Wixted,
1990). Which core function is the correct one is not an
issue that has been resolved. In addition to the theoreti-
cal question of which type of function describes the core,
there is an empirical question about the curvature pres-
ent in the performance, given a hypothesized core func-
tion. Curvature (or learning rate) is a measure of the
speed at which performance reaches the asymptote. In
the following, the curvature is quantified by the learning
rate parameter c, assuming one type of curve (exponen-
tial, power, etc.).

Some theories predict that the stimuli to be learned
will affect the curvature (reduction of information theo-
ries; e.g., see Haider & Frensch, 1996), whereas other
theories predict that the stimuli will not affect curvatures

f t a b g t( ) = + ( ) ,
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Many models offer different explanations of learning processes, some of them predicting equal learn-
ing rates between conditions. The simplest method by which to assess this equality is to evaluate the
curvature parameter for each condition, followed by a statistical test. However, this approach is highly
dependent on the fitting procedure, which may come with built-in biases difficult to identify. Averag-
ing the data per block of training would help reduce the noise present in the trial data, but averaging
introduces a severe distortion on the curve, which can no longer be fitted by the original function. In
this article, we first demonstrate what is the distortion resulting from block averaging. The block av-
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eraged over blocks or sessions. The use of averages eliminates an important part of the noise present
in the data and allows good recovery of the learning curve parameters. Equality of curvatures can be
tested with a test of linear hypothesis. This method can be performed on trial data or block average
data, but it is more powerful with block average data.
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but only the bounds a and b (such as strength theories;
see Dumais, 1979). Logan’s (1988) instance-based the-
ory predicts that curvatures will be equal for the mean
response times and their standard deviations. This same
prediction also holds for the SSTS*, a subset of the ser-
ial self-terminating class of models in visual search
(Cousineau & Larochelle, 2003). The aim of this article
is twofold. First, because mean performances are often
used, we present a simple method for recovering the pa-
rameters {a, b, c} out of averaged performance. Second,
we present a method by which to test whether the learn-
ing rates of two or more curves are equal. This method
is applicable as soon as one type of core function is as-
sumed. The core function can be any function that fits
Equation 1 and so avoids the above controversy.

Fitting Averages
Most theories of learning assume that learning occurs

on a trial-by-trial basis. Yet raw data (called trial data
hereafter) are usually very erratic, making the learning
curve hard to see. To reduce the noise present in the data,
researchers usually aggregate their data over blocks of
trials, using averages. However, Rickard (1997) has
pointed out that the curve of the block averages generally
does not have the same core as the curve of the trial data
(as will be shown below). Yet this fact should not dis-
courage the use of averaged data; we will show in this
section how to obtain the learning function of a curve av-
eraged over blocks of successive trials. As will be shown,
fitting a curve of averaged data is as easy as fitting trial
data but allows the recovery of the right parameters more
efficiently.

Averaging curves. In what follows, we define f (t) as
the trial learning curve function, which is a function of
the trial number t, going from 1 to T. We want to know
what is the learning curve equation when the data are av-
eraged over blocks of training. Let us define f

—
(n) as the

block average function over block number n when trial
data are averaged in blocks of N trials each (N > 0 is a
constant). Thus, n goes from 1 to T/N (T is assumed to be
a multiple of N ). In order to simplify the problem, we
f irst examine the core function of the block average
curve. Let g(n) be the block average core function. By
definition of the arithmetic mean, we have

where g(i) is the core function in Equation 1 and i indexes
all the N trials in the nth block. This equation generally
cannot be simplified in the discrete case, but if N is large,
we can solve it by using a continuous approximation:

(2)

Equation 2 can be solved for many learning curves,
yielding the equation of the block average core function.

Because a simple linear transformation relates the trial
function and the core trial function, and because averages
are not altered by such transformations, we can simply
add the scaling parameters around the block average core
function to obtain the full block average function:

Scale invariant curves. A first question to ask is,
which functions remain of the same type after averag-
ing? In other words, which functions are scale invariant?
This will answer Rickard’s (1997) point, noted at the be-
ginning of this section. Two scale invariant functions are
easily identif ied, the first one being trivial: the line
[ f (t) = a + b t] and the exponential curve [ f (t) = a +
b e2ct].

The line is a degenerate curve, since it has no curva-
ture parameter. Its core function is simply gLN(t) = t. The
scaling parameter b represents the slope, whereas a rep-
resents the intercept. By solving Equation 2 on gLN,
using blocks of size N, we obtain gLN(n) = Nn2N/2.
Thus, f

—
(n) = a + b(Nn2N/2) = (a2bN/2) + (bN )n. By

substituting a2bN/2® a¢ and bN ® b¢, we obtain f
—

(n) =
a¢+b¢n and see that the block average core function is of
the same type as the trial core function. One difference
is that the slope is now steeper because it is expressed in
different units (blocks vs. trials).

Similarly, we show that the exponential curve is also
scale invariant. Solving Equation 2 on gEX, we find that
its block average core function is given by

Factorizing the exponential to isolate the dependent vari-
able n, we obtain

(3)

By substituting 

and c N ® c¢, we have gEX(n) = b¢e2c¢n. Thus, we see that
the block average function of an exponential curve is
also an exponential curve. With the scaling parameters a
and b, this is a three-parameter curve {a, b, c} for a given
block size N.

Scale-dependent curves. The famous power curve is
scale dependent since, as will be shown below, the core
function is not functionally the same as the block aver-
age function. The core of the power function is given by
gPC(t) = t2c. Averaging the function over blocks of size
N, using Equation 2, we obtain
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Note that N(n21) is the first trial of the nth block and Nn
is the last trial of that block.2 We therefore substitute 
N (n21) ® nF and Nn ® nL to obtain

(4)

Adding scaling parameters a and b, as in Equation 1, we
see that f

—
PC(n) is a three-parameter curve defined by {a,

b, c}, given a certain block size N. Therefore, it can be
fitted to averaged data, using nF and nL, instead of the
block number n, with no more difficulty than fitting a
power curve.

Equation 4 is a difference between two power curves
(or more precisely, the same power curve at two differ-

ent moments). Yet the core is functionally different from
a power curve’s core function [g(x) g(x)]. Thus, fitting
block average data with the trial function should result in
(1) poor fit and (2) noninterpretable learning rate pa-
rameters.

As an example, in the top part of Figure 1, we gener-
ated simulated response times (SRT) with a power curve
over 400 trials, using the parameters {a = 0, b = 350, c =
0.455}. As was expected, a power curve fits the trial data
perfectly, and a minimization algorithm (such as PASTIS;
Cousineau & Larochelle, 1997) can recover the param-
eters almost perfectly (with a precision of ±0.1%). In the
bottom part of Figure 1, the SRT were averaged into 10
blocks of N = 40 trials. The dotted line shows the best-
fitting power curve. As can be seen, the power curve
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Figure 1. Averaging power curve per block. The top part shows a power curve
generated using the parameter {a = 0, b = 350, c = 0.455} over 400 trials (only
a few simulated response times are shown with open boxes). The bottom part
shows the same curve when averaged by blocks of N = 40 trials.
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shows systematic deviations (poor fit, considering that
there is no noise; r = .973), and the estimated parameters
{â = 0.00, b̂ = 94.2, ĉ = 0.633} bear no resemblance to the
true parameters. The dashed line shows the best-fitting
block average power curve (Equation 4). The fit is al-
most perfect, even though we introduced a continuous
approximation. Furthermore, the minimization algo-
rithm recovered the parameters with a precision of
±0.1%. This shows that in the absence of noise, fitting
the block average curve on averaged data is not more dif-
ficult than f itting the simpler trial data curve on trial
data.

The first part of Appendix A explores the efficiency
with which the block average function recovers the pa-
rameters when noise is present. It shows that, in general
(trial data or block average data), the major factor that
makes parameters difficult to recover is noise. The impact
of noise can be reduced significantly by increasing the
number of trials. The second part of Appendix A shows
that it is preferable to use block averages when fitting
parameters if the curvature is steep (c is bigger than 0.4).

Illustrating the core function. One convenient way
to look at curvature is to have a graph of the core func-
tion. Remember that all core functions start at one and
have an asymptote of zero. Thus, if the curves have an
equal learning rate, their core functions should superim-
pose. Furthermore, if block average data are plotted,
standard error (SE) intervals around the core functions
can be computed.

In order to plot the core function, one must first
choose which curve is assumed to underlie the data. For
example, it can be the power function, in the case of trial
data, or Equation 4 if block average data are used. Isolat-
ing the core of a learning curve requires that each point
at time x (trial or block number) be transformed using

(5)

where â and b̂ are estimates of the two scaling param-
eters {a, b} and f is the observed performance at time x.
If both â and b̂ are valid estimators, Equation 5 returns a
valid approximation of the core function ĝ.

If summary values are plotted (such as mean or stan-
dard deviation), the SE intervals can be computed (this
approach cannot be used with trial data). SE can be used
as a general indicator of whether two curves superim-
pose or not:

SE of the block average data at block n is given by

where N is the number of observations per block and
f
«

(n) is the estimated standard deviation at block n
(Cramér, 1946). Equation 5 requires SE for transformed
scores, but manipulating SE is well established (Trem-
blay & Chassé, 1970). For example, adding a constant to
a score does not alter its SE interval, whereas multiply-

ing it by a constant multiplies its SE interval. The esti-
mated block average core function is thus given by

where f
—

(n) and f
«

(n) are the average and the standard de-
viation of the empirical measures at block n. Equivalent
manipulations can be performed for any summary value
normalized according to Equation 5, as long as its SE is
known (Kendall & Stuart, 1983).

Illustrating the core function might provide an inter-
esting solution to the related question, Did performance
reach the asymptote? Formally, the performance will
never reach asymptote since, for most learning curves, it
requires an infinite amount of practice. Nevertheless,
subjects may reach a level at which performance does
not significantly differ from asymptotic performance. A
very stringent criterion could be to declare a priori that
asymptotic performances are reached if the core func-
tion is within 2 SEs of zero on the last four blocks.

Testing Curvatures
In this section, we will describe a method for testing

whether two or more curvatures are equal, irrespective of
the scaling parameters (amplitude and asymptote). Con-
sider the following curves: f1, f2, . . . , fs with unknown
parameters {ai, bi, ci} for the ith curve. The most intu-
itive method for testing whether the curvatures are equal
would consist in estimating the curvatures ĉi (using a
minimization procedure) and comparing them with a sta-
tistical test. However, this method has a very low power,
because a lot of information is lost (a large data set is
compressed into a single estimate ĉi). Considering that,
in general, experiments involving learning have only a
few subjects, this compression is too important.

The test of linear hypothesis (Rao, 1959) avoids this
problem because it constrains the fit on more than sin-
gleton ci. Suppose that s data sets are available, forming
s learning curves labeled f1 to fs. If the core functions gi
are all identical, we can write

f1(t) = a1 + b1g(t)

f2(t) = a2 + b2g(t)
. . .

.fs(t) = as + bsg(t).

As a consequence, we can show that the average curve fs–

is given by the average parameters and the core function:

fs–(t) = E(ai) + E(bi)g(t),

where E(ai) is the average of the ai and E(bi) is the aver-
age of the bi, i = 1 . . . s. If the average curve fs– does not
capture the data, it means that the core function is not
unique to the s data sets. This is called a linear hypothesis.

One method by which to test whether the curve with
averaged parameters captures the average data set is the
linear hypothesis test created by Rao in 1959. It has been
mentioned in Paul (1994), but with minimal details. One
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objective of this section is to detail the structure of the
test and to provide a short Mathematica listing that per-
forms it (Wolfram, 1996). However, the real contribution
of this section is to use the block average learning curve
in conjunction with Rao’s test and to show that doing so
drastically increases the power of the test.

Applying the test of the linear hypothesis to trial
data. Following Rao (1959), the first step is to describe
the model underlying the data set. In terms of vectors,
let the model be M = {1, g(t)} and the parameters q = {a,
b}, so that q TM = a + b g(t). It must be understood that
g(t) is also a function of c, the learning rate parameter.
Suppose that we have collected, for each of the s data
sets, a number T of trial observations. The model M
varies according to the trial number. The matrix A sum-
marizes the evolution of the model for each trial and
each parameter. We can write

where the first column indicates the contribution of a to
the performance of the average curve and the second col-
umn indicates the contribution of b.

In the implementation of the model, c is not consid-
ered a parameter. Therefore, it must receive a value at
this point. However, under the null hypothesis, every set
has the same curvature, and the average curve is also rep-
resentative of the curvature. Thus, a numerical value for
c should be obtained, using a least-square minimization
routine (such as PASTIS; Cousineau & Larochelle,
1997) on the between-sets average data.

The next step is to obtain the set of estimatesq̂ that of-
fers the best fit. Rao (1959) proposed one method,3 but
it is our experience that a better approach (less biased) is
to take advantage of the null hypothesis that says that the
group best-fitting parameters {â, b̂} ought to be the av-
erage of the individual subject best-fitting parameters.
So let q̂ = {â = E(âi), b̂ = E(b̂i)}. In summary, (1) fit the
average curve to obtain the curvature c, and (2) fit the
individual curve and average the individual asymptotes
and amplitudes to obtain the parameter set q̂. The esti-
mate q̂ is valid only if the null hypothesis is not rejected.

In order to perform a statistical test, summary values
are needed. The f irst summary value is a vector, y =
{E[ fi(1)], . . . , E[ fi(T )]}, containing the between-subjects
average performance for the various trials from 1 to T. The
second summary value is a variance–covariance matrix
(of size T 3 T ), called hereafter S, such that [see equation

at bottom of page] where Var[ fi( j)] is the unbiased vari-
ance of the performances at time j and Cov[ fi( j), fi(k)] is
the unbiased covariance of the observations between trials
at time j and trials at time k. This matrix is symmetrical.

The following equation is used to test the significance
of the linear hypothesis. Let r be the number of data
points in each of the curve T minus the number of pa-
rameters (generally three) and n the number of data set s.
The test is of the form

Reject H0 if:

where F(a, r, n2r), the critical value for the decision at
level a—say, 5%—is read on a Fisher F table with r, n2r
degrees of freedom for the numerator and the denominator,
respectively. In cases in which the inverse cannot be found
(S is singular), a pseudo-inverse can be used (Rao, 1959).

Overall, Rao’s (1959) test of linear hypothesis requires
(1) the type of learning function to fit, (2) a minimiza-
tion procedure for finding the group curvature and the
individual asymptotes and amplitudes, (3) summary val-
ues (a vector of mean performance at trial t T and a
T 3 T variance–covariance matrix), and (4) extensive
matrix manipulation capabilities. This last point used to
be the most difficult to obtain. Rao has described a com-
plex method for making optimal use of the desk calcula-
tor available at that time (to the point that the article is
difficult to decipher). Schneiderman and Kowalski (1985)
have described an implementation of the test, using SAS.
Yet this program is still difficult to follow. In Appendix B,
we present a short Mathematica program for computing
the summary values (y and S), the best-fitting parameter
q̂, and the statistic F .

This approach is more powerful than the intuitive ones
described at the beginning of the section, because it does
not reduce the data to a single value (c or r2). In fact,
when the hypothesis is tested, all the points along the
curves are used as constraints to see whether the instan-
tiated model A is capturing the individual observations.

As can be seen from the degrees of freedom, the test
of the linear hypothesis requires that the number of data
sets (generally, the number of subjects) be at least equal
to the number of trials. Because a typical experiment
often involves hundreds of trials, the number of subjects
rapidly becomes prohibitive. As will be shown next, col-
lapsing the trial data into a fewer number of blocks al-
lows one to measure a smaller number of subjects and
still have a powerful test.

Applying the test of linear hypothesis to block av-
erage data. First, we note that after block averaging has
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been performed, the s data sets now form s curves f
—

i.
These block average curves are not of the same type as
the trial curves (unless they are scale-invariant func-
tions). However, their core functions g i(n) are known
(e.g., it is Equation 4 in the case of a power curve). As
such, under the null hypothesis that the curvatures are
the same, we can write

f
—

1(n) = a1 + b1 g(n)

f
—

2(n) = a2 + b2 g(n)
. . .

f
—

s(n) = as + bs g(n).

Here, ai and bi are exactly the same as with the trial data.
Thus, if all the curves have the same curvature (same
core), we can also write

f
—

s(n) = E(ai) + E(bi)g(n),

where f
—

s is the average across data sets of the block av-
erages. Here, we have two distinct averagings: f irst,
within data set, to obtain the block average curves, and
next, between the block average curves, to obtain a sin-
gle f

—
s curve. Also note that the relation between the

block average curves ( f
—

s vs. the various f
—

i) is the same
as the relation between the trial data curves ( fs vs. the
various fi), one of a linear relationship. Hence, the test of
the linear hypothesis is relevant here for the same rea-
sons as those for the trial data.

The model is M = {1, g(n)} with parameters q = {a, b}
from which we can create the matrix A instantiating the
model.

As an example, if we assume that the trial data follow
a power curve, the instantiation for block average data,
following Equation 4, is composed of lines for each
block n of the sort

where c must be determined using least-square methods,
N is the number of trials per blocks, nF is the first trial of
block n (given by N 3 (n21)), and nL is the last trial of
block n (given by N 3 n). If there are T observations in
the trial data sets, there are T/N blocks in the block aver-
age data sets. Thus, the final matrix A could be

The matrix A may look quite cumbersome. Yet, given c
and N, it is easy to compute. In addition, it is now N

times shorter, speeding up the remaining computations
by a factor of N.

Whether we fit the trial data with the trial function or
the block average data, using the block average function,
the best-fitting parametersq̂ should be identical. However,
reducing the number of points tested using blocks makes
it possible to measure a reasonable number of subjects.
This would suggest that having very few blocks containing
a lot of trials each is desirable (so that few subjects are 
required). This is not true; there is a tradeoff between
blocks of increasing size and power. At some point, the
blocks are so large that there are only a few blocks left.
A reasonable compromise is to choose a block size N near
the square root of the total number of trials. In the third
section of Appendix A, we test this claim with Monte
Carlo simulations.

Discussion
The advantages of fitting average curves are numer-

ous. The average data are less noisy than the trial data. It
is therefore possible that the parameters {â, b̂, ĉ}, esti-
mated from the average data, will be more accurate (as
is shown in Appendix A). Furthermore, for many popu-
lar core functions, the block average function f

—
(n) is not

more complex or more difficult to fit using a minimiza-
tion algorithm (and Equation 3 or 4). In particular, it has
exactly the same number of free parameters. We updated
the learning curve estimation program PASTIS to fit the
block average functions (source code available at http://
mapageweb.umontreal.ca /cousined/papers/02-pastis).
However, it still requires that the modeler make an as-
sumption about which type of curves (power, exponen-
tial, or other) underlies the data. Finally, when block av-
erage data are used, standard errors can be computed
around the core function.

The form of averaging presented here is a within-
subjects average. As has been shown by Estes (1956),
between-subjects averaging is risky if the individual sub-
jects have different learning rates c. Indeed, the average
of f1, f2, . . . , fs cannot be solved unless the individual cs
are known or are all equal. In the second section, we pre-
sented a test of curvature based on Rao’s (1959) test of
the linear hypothesis, which can be used to decide whether
the curvatures are equal or not.
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NOTES

1. The point at which the initial performance is measured depends on
the type of curve. For the exponential curve, it is measured at time t =
0, and for the power curve, at time t = 1.

2. Actually, N(n21) returns zero as the first trial of the first block. For
the power curve, it is inappropriate since, according to this type of
curve, the performance is infinite at time t = 0. To solve this issue, we
used N(n21) + 1�2 and N n + 1�2 when doing actual f itting. Thus, blocks
range from 1�2 to N + 1�2 , N + 1�2 to 2N + 1�2, and so forth.

3. With the model implementation A and the summary values y and S
(see below), we can obtain the optimal parameter q̂ for the group by
solving q̂ = (ATS21A)21 AT S21y, which yields the least mean square
solution to the problem (Bates & Watts, 1988). This method is based on
the postulate that the differences between subjects remains the same
with practice. It is not the case, since between-subjects variability di-
minishes with training (Cousineau & Larochelle, 2003).

APPENDIX A
Fitting and Testing Curves Using Trial and Block Average Data

The general objectives of this article are to describe a method
by which to estimate curvatures and test them. These objectives
are crucially dependent on a minimization algorithm that re-
duces the sum of square error (SSE) between the data and the
ideal curve passing through the points. The parameters q̂ = {â,
b̂, ĉ} that minimize the SSE are termed the best-fitting param-
eters.

Simulation 1: Testing Biases Using Trial Data
To explore the capabilities of a minimization algorithm to es-

timate the true parameters q, we ran Monte Carlo simulations.
We used the minimization software PASTIS (Cousineau &
Larochelle, 1997), but we also tested the minimization proce-
dure FindMinimum, implemented in Mathematica, and found
no differences in the patterns of results. We present the results
by using the following measures of bias: the average Euclidian
distance between the ith estimates q̂ and the true parameters q,
obtained over a large number of replications. Bias can also be
seen as the distance between the center of gravity of all the q̂i
and the true q (i = 1 . . . R, the number of replications):

Bias := ||E(qi
ˆ 2q) || = ||E(qi

ˆ )2q ||,

where || x2y || denotes the Euclidian distance between x
and y in a three-dimensional space. To express the bias
as a percentage, we divided this value by || q ||. In addi-
tion, we computed the efficiency, a measure of disper-
sion around the true parameters q:

We generated power curve trial data. We kept the true as-
ymptote constant at a = 300 and the true amplitude at b = 1,000.
Because these are linear parameters, they would provide little
information if they were varied. However, we varied the learn-
ing rate, because curves with almost nonexistent curvatures
might be more difficult to fit than curves with pronounced de-
scent. We used c = {0.2, 0.4, 0.6, 0.8}. We also added a small
amount of noise to the generated curves. We used normal ad-
ditive noise with zero mean and standard deviation h times the
height of the curve minus the asymptote. The values h used
were {0.5, 1.0, 2.0}. A value of 2.0 represents a large variabil-
ity that is similar to typical human response time data. At ¥, the
curve would reach the asymptote (height of zero), and so noise
would be zero, but of course, we never generated that many
points. The number of points generated, T (sample size), was
varied {50, 100, 200, 400, 800, 1,600}. Each point represents
one trial, starting at Trial 1. Table A1, column 2 recapitulates
the factors.

For a given combination of curvature3 sample size 3 noise,
we generated a noisy curve and ran a minimization algorithm
(PASTIS) to obtain the best-fitting parameters. We replicated
this a thousand times, after which bias and efficiency were
computed.

The results are shown in Figure A1. As can be seen, noise
had an important impact on bias and efficiency. The more
noise, the less accurate were the best-fitting parameters. It was
still a reasonably small bias on average, since a typical set of es-
timated parameters was rarely more than 2% inaccurate. Sam-
ple size also had an important impact. Larger sample sizes
tended to be less biased. Finally, the learning rates (small vs.
steep) had no influence on the best-fitting parameters.

Efficiency : || ˆ || || ˆ || .= -( ) =
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Simulation 2: Testing Biases Using Block Average Data
The above simulations were performed using trial data. Next,

we wanted to see whether there would be an improvement in
the best-fitting parameters when we used block average data in-

stead of trial data. We ran a second series of simulations, for
which we used both trial data and block average data. The size
of a block, N, was 5, 10, 20, 40, or 80 trials per block. To keep
the number of results manageable, we fixed the sample size at

Figure A1. Bias and efficiency in percentages as a function of the number of trials T for curvature parameter c, in-
creasing from top to bottom, and noise level h, increasing from left to right.

APPENDIX A (Continued)

Table A1
Overview of the Monte Carlo Simulations Performed in Appendix A

Description Simulation 1 Simulation 2 Simulation 3

Purpose Is bias and eff iciency Is bias and efficiency Is test of linear hypothesis
dependent on noise, improved by block more powerful with averaged data?
curvature? averages?

Dependent measures bias bias Type I and Type II errors
Factors varied curvature block sizes curvature of Curve 1

sample size curvature curvature of Curve 2
noise noise block sizes

Factors held constant sample size (400) sample size (400)
noise (2.0)

Note—Curvature levels are 0.2, 0.4, 0.6, and 0.8. Sample sizes T are 50, 100, 200, 400, 800, and 1,600. Noise
levels h are 0.5, 1.0, and 2.0. Block sizes N are 1 (no block average), 5, 10, 20, 40, and 80.
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400 trials. This implies a kind of tradeoff, since, as a conse-
quence, the larger the block size N, the fewer points remain for
fitting. Everything else is as in the previous simulations. The
third column of Table A1 recapitulates the fixed and varied fac-
tors.

The results are shown in Figure A2. As can be seen, for c =
0.8 (bottom row), using blocks of increasing size reduces the
bias and improves the efficiency. In the best case, bias is re-
duced twofold, and efficiency by almost 50% (block size N of
80). Thus, even though there are only 5 points (400 trial data av-
eraged by blocks of 80 trials), the parameters are recovered very
accurately. However, this trend reversed for curvatures smaller
than 0.5, for which averaged data return more biased and less
efficient estimates. Thus, for small curvatures, the small
amount of blocks (5, 10, and 20 blocks of 80, 40, and 20 trials,
respectively) is very detrimental. In this case, the modeler
should avoid estimating parameters on block average data.

Simulation 3: Curvature Testing
We explored the reliability of the test of linear hypothesis. In

order to perform a statistical test, we first generated 100 trial
data sets following a power curve. They can be seen as differ-
ent subjects. As before, parameter a was fixed at 300 and b at
1,000. Parameter c varied for each half of the sets, with possi-
ble values of {0.2, 0.4, 0.6, 0.8}. When the two cs are equal, the
test should not reject H0, or else it makes a Type I error. When
the two cs are unequal, the test should reject H0, or else it makes
a Type II error. The difference between the two cs is the effect
size: the larger the effect size, the smaller the number of Type II
errors should be. We used noise at a level h of 2.0, and the num-
ber of trials T was fixed at 400. Tests were performed with a de-
cision level of 5%. Each test was replicated a thousand times

Figure A3 shows the results. When there were 80 blocks (N =
5), there were very few Type I errors, but the power was very
low: The test almost never rejected H0. In the opposite case (5

Figure A2. Bias and efficiency in percentage as a function of block size N for curvature c, increasing from top to bot-
tom, and noise level h, increasing from left to right. A block size N of 1 means that no block average was used.

APPENDIX A (Continued)
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APPENDIX A (Continued)

blocks with N = 80 observations per blocks), the opposite was
seen: H0 was often rejected, resulting in a good power but a
Type I error rate near 30%. Choosing the perfect compromise
between block size and number of blocks (20 blocks of 20 tri-
als) yielded the best results, with a Type I error rate near 7%
and a power near 90% when a large effect size was present. Al-
though the tests were performed with a decision level of 5%,

the effective amount of Type I error was slightly larger, due to
a large amount of covariation within subjects (Hoel, 1964).

In another series of simulations, we tested the efficiency of
the test with 1,600 trials, and weighting Type I errors and power
equally, the test was optimal at 40 trials per block, suggesting
the general rule that the optimal block size for Rao’s (1959) test
is the square root of the number of trials.

Figure A3. Proportion of times H0 is rejected using Rao’s (1959) test with 95% level of confidence as a function of block size N for
curvatures of the first simulated data set, increasing from top to bottom, and curvature of the second data set, increasing from left to
right. Number of trials, T, is 400, and noise, h, is 2.0. The main diagonal contains cases in which both curvatures are equal and illus-
trates the proportion of Type I errors. The off-diagonal plots contain cases in which curvatures are unequal and, thus, illustrate the
power of the test (one minus the proportion of Type II errors). The left part of the first box shows the main diagonal across all c lev-
els. The right part of the first box shows the power across all effect sizes. The second box shows the difference between the power and
the Type I errors shown in the first box. Since this scenario weights Type I errors and power equally, the test is optimal at N = 40 or
N = 80. However, if Type I errors are a concern (and are weighted more heavily), the test will be optimal at N = 20, the square root of
the total number of trials.
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APPENDIX B
A Mathematica Program That Performs a Test of Linear Hypothesis (Rao, 1959)

The program reads the input file “data.dat” which is composed of s columns with T observations in each.
Comments are enclosed between (* and *).

(******* load a useful package and set working directory *******)

Needs["StatisticsÁ MultiDescriptiveStatisticsÁ "]

SetDirectory["C:\\WINDOWS\\Bureau\\"];

(****************** model information *****************)

Model[t_,c_] := {1,t-c} (* trial data power curve*)

q [a_, b_] := {a, b}

s := 100 (* number of columns *)

(* definition of the Sum of Square Error used for minimization *)

SSE[set_, a_, b_, c_] := 

(********************* read the data file **********************)

FileFormat = Table[Real, {s}];

data = ReadList["data.dat", FileFormat];

T = Length[data]

(****************** compute the summary values *****************)

y = Mean[Transpose[data]];

S = CovarianceMatrix[Transpose[data]];

(******* performs a fit over the average data and keep c *******)

GroupFit = FindMinimum[SSE[y, a, b, c],

{a, 100, 300}, {b, 400, 2000}, {c, 0.2, 1.0}

] [[2]]

c = c/.GroupFit

(****** performs a fit for each column and average a and b ******)

IndividualFit = Table[FindMinimum[SSE[Transpose[data][[i]], a, b, c],

{a, 100, 300}, {b, 400, 2000}, {c, 0.2, 1.0}

] [[2]],

{i, 1, s}

];

Ãq = Mean[q[a, b] /. IndividualFit]

(******************** instantiate the model ********************)

A = Table[Model[t, c], {t, 1, T}];

(********** Perform Rao© s test of linear hypothesis ***********)

r = T - Length[q[a, b]] - 1;
n = s ;

F = 
n - r

(y - A.Ãq) . PseudoInverse[S] . (y - A.Ãq)
r

(Manuscript received July 6, 2001;
revision accepted for publication November 10, 2002.)
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