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Race models are characterized by the largest or smallest of samples from n
distributions. The asymptotic theory of extremes has demonstrated that for
identically distributed, independent, and lower-bounded random variables,
whose left tail approximates a power function, the distribution of the
minimum tends toward a Weibull distribution as n increases. In this article,
we remove the restriction of identically distributed random variables by
letting the lower bound or the scale of the random variables be random
variables themselves. We prove that the Weibull distribution is still the
asymptotic distribution of the minimum and relate its parameters to the
parameters of the input distributions. We discuss the potential use of such
findings in models of psychological processes. © 2002 Elsevier Science (USA)

INTRODUCTION AND DEFINITIONS

Race models assume a process in which a large number of units are in competi-
tion to determine the response. We will discuss races in which the fastest unit
determines the response, although the results are mirrored in systems in which the
slowest determines the response. Understanding race models therefore entails
understanding the behavior of the minima of the samples.

Since the seminal works of Fisher and Tippett (1928), the distributions of
extremes (minima and maxima) have been studied extensively. It has been estab-
lished that if the minima as the number of competing units, n, goes to infinity have
a distribution at all, the distribution will be of three possible types: Type I, the
double-exponential distribution; Type II, the Fréchet distribution; or Type III,



the Weibull distribution. These attractors are commonly called the asymptotic
distribution of extremes (Cramér, 1946; Feller, 1966; Leadbetter, Lindgren, &
Rootzén, 1983). Type III can only occur when the units’ distributions have a finite
lower bound. Some authors have shown that race models producing Type-III
distributions are related to Luce’s choice model (Bundesen, 1990; Shibuya &
Bundesen, 1988; Marley, 1989; Marley & Colonius, 1992).

In this article, we will focus on Type III for several subsidiary reasons: (i) the
Weibull provides a good fit of response-time data (Logan, 1992; Cousineau, in
preparation); (ii) the Weibull is closely related to the exponential family of distri-
bution and, thus, to Poisson processes (Link, 1992; Wandell & Luce, 1978); (iii) the
properties of the Weibull are rather well known (Weibull, 1951; Gumbel, 1958;
Green & Luce, 1975). By far the most important reason, however, is our desire to
use the present results for the modeling of psychological processes: Distributions of
time for any component of a cognitive process must surely be restricted to positive
values and hence must be lower bounded.

Before going on, we note that the minimum shrinks toward a single point as n
approaches infinity. This is called degeneration. Thus the stable asymptotic results
are concerned mostly with the shape of the asymptotic distribution, rather than
with its scale or variance. As we shall see below, it is customary to normalize the
sample of minima obtained from n units by a number depending on n, a number
chosen so that the scale remains roughly constant as n increases. The issue of nor-
malization has important implications for the modeling of psychological processes,
but discussion of this is deferred to the third section.

In order to demonstrate the results of Sections 1 and 2, it is assumed that each
unit is a random variable and that they are identically and independently distrib-
uted (i.i.d.). The i.i.d. assumptions are very restrictive, however, and are likely to be
violated in many psychological race model theories.

For example, in the memory trace theory of Indow (1993) specific traces are
retrieved through the use of cues. It is assumed that a trace becomes unretrievable
in the experimental setting when any one of its supporting cues is lost. In this
model, the loss of a trace corresponds to a race to determine when the first cue will
fade. Indow assumed for the sake of simplicity that all links were identical and so
the probabilities of losing a cue were all distributed equally. This assumption is
unlikely, though, since some cues may be much stronger than others, an interpreta-
tion congruent with the primacy effect.

The instance-based model of Logan (1988) gives another example. Each encounter
with a stimulus lays down a memory trace; retrieval with that stimulus as a cue
produces a race among all past traces. Logan assumed equality among these traces,
yet variability in storage seems more likely. For example, the first encounter with a
stimulus may lay down a much more salient trace than the 100th encounter.

If the assumption of identical distributions is wrong, then predictions based on it
could be wrong. It is therefore critical to learn in what ways the corresponding race
models differ from those based on i.i.d. Thus this article explores the changes in the
asymptotic distribution of extremes when the units racing are not identical.

In this paper, we will introduce variability across the units by manipulating two
general parameters of the distribution functions, as seen in Fig. 1, namely position
and scale. Although it is common to identify the position of a distribution by some
measure of central tendency, such as the mean, it is more convenient in this article
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to define position as the location of the lower bound (defined as a(F) below). We
shall later define the scale precisely; for now we may conceptualize the scale as
something akin to standard deviation. The general idea will be to replace these
values with random variables having certain properties, see if it is still possible to
infer the asymptotic distribution of the minimum, and if so, verify whether this
asymptotic distribution will be a Weibull.

Definitions and Conditions for I.I.D. to Converge toward a Weibull Distribution

In this section, we define most of the notions needed to understand the theorems
presented next. We adopt some of the notations introduced in Galambos (1978).

Let Xi be a collection of i.i.d. random variables representing the performance for
the n competing units and X1 : n :=min(X1, X2, ..., Xn) be the response of the
fastest competitor on a given trial. In the following equations, F denotes the distri-
bution function of Xi. Also, let the function a defined on a distribution function be

a(F) :=inf{x | F(x) > 0}. (0.1)

If a distribution function F is not lower-bounded, then a(F)=−.. In order for
X1 : n to converge toward a Weibull distribution, two criteria must be satisfied;

C1(F) :=a(F) > −.

C2(F) :=lim
tQ.

F(a(F)+1/tx)
F(a(F)+1/t)

=x−cF,

(0.2)

where cF > 0 and x > 0. It has been shown that C1 and C2 are necessary and suffi-
cient for F to converge toward an asymptotic distribution of minima of Type III
(e.g., Galambos, 1978).1 The first criterion states that each unit’s distribution must

1 Other forms for C2 can be used. For example, Gnedenko (1943) proposed

C2Œ(F) :=lim
h a 0

F(hx−a(F))
F(h−a(F))

=xc.

have a unique and finite lower bound a(F). The second criterion explores the form
of the distribution when we, are in the left end of the distribution, that is, infinitely
close to the lower bound a(F).

In essence, the criterion C2 states that the left end of the distribution function F is
almost a power curve with a positive exponent cF. The constant cF > 0 determines
what will be the shape of the attractor distribution. The ratio form used in C2 serves
to bypass issues of scaling. A stronger criterion sometimes seen stipulates that F is
exactly a power curve in the left tail,

C2a(F) :=lim
x a 0

F(a(F)+x)
xcF

=KF. (0.3)
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FIG. 1. Illustration of position and scale on a hypothetical lower-bounded distribution.

C2a is more restrictive but is included in C2, and all functions F satisfying C2a also
satisfy C2 and thus have minima that are of Type III.2 Many distributions used in

2 An example of a distribution that does not satisfy C2a but does satisfy C2 is given by the function
F(x)=xc log(e/x) defined over the domain ]0, 1[. Clearly, the term xc satisfies a power curve, and the
second term is shown to be a slowly-varying function (Feller, 1966) since

lim
t a 0

log(e/tx)
log(e/t)

=1.

Any product of a slowly-varying function with a true power function satisfies C2. Another example of
this type will be described in Section 3 (and Footnote 5).

psychology indeed satisfy C2a, for example, the exponential, the Weibull, the
Gamma, and the uniform distributions. Figure 2 shows examples of distributions of
the first three of these families, along with an enlargement of their left-end tails.
The dashed lines in the figure represent the power curve that fits the left-end tail, as
seen in the enlargement on the bottom row. The power curve equation is obtained
using Eq. (0.3) and is equal to KFxcF. It is easy to verify that these tails are power
curves, and log–log plots will yield straight lines. The shape constant cF of the
exponential and the uniform distributions is constant and equal to 1.

If both conditions C1 and C2 are met, then it is possible to formulate in closed
form the attractor distribution. The asymptotic distribution of the minima, L, is
defined by

L(F) :=W(cF, a(F), bF, n),

where W is the Weibull distribution with position parameter a(F), scale parameter
bF, n, and shape parameter cF.3 The cumulative density function (CDF) of the

3 Galambos used the notation L2, c to indicate that it is the second of three possible attractors. In other
references, L2, c is generally called the type-III distribution of extremes (e.g., Luce, 1986).

Weibull is given by

W(cF, a(F), bF, n) (x)=1−e
−(x−a(F)bF, n

)cF. (0.4)
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FIG. 2. Enlargement of the left-end tail of three distribution functions. All three functions have a
lower bound a(F) equal to zero and arbitrary scales. In the top row are shown the CDF of an exponen-
tial distribution with scale parameter bE=40, a Weibull distribution with shape parameter cW=1.6 and
scale parameter bW=40, and a Gamma distribution with shape parameter cG=2.5 and scale parameter
bG=40. In the bottom row are shown enlargements of the left-end tails of the above distributions in the
region [0, 1]. The dashed lines show the power curves that fit exactly the left-end tail of the three func-
tions. The power curves are given by KFxcF, where KE=1/bE, KW=(1/bW)cW, and KG=1/(cG!bG cG).
All Ks were obtained using Eq. (0.3).

As a special case, when cF=1 the distribution becomes exponential, which recapi-
tulates a well-known special case: minima sampled from exponential distributions
are themselves exponential with a different scale.

The position of the asymptotic distribution L(F) tends toward a(F), the lower
bound of the distribution of one unit. Both cF and a(F) reflect properties of the
distribution for one unit and are independent of the number of competing units n.
On the other hand, the parameter bF, n depends directly on the number of competi-
tors because it reflects the scale of the distribution of minima: the larger the
number of competitors, the smaller the scale of the distribution becomes. As n
increases to ., the scale shrinks toward zero (bF, n=0) and the distribution
becomes a step function. A more formal definition of bF, n will be presented in
Section 3.
C1 and C2 are necessary and sufficient criteria for the existence of an asymptotic

distribution (we will also use the term ‘‘attractor’’ distribution) and for the form of
the asymptotic distribution to be Weibull. The asymptotic form occurs as nQ.,
but for psychological applications n=100 is a large enough number of competing
units that the distribution will be extremely close to the asymptotic form (in some
cases much smaller values of n will suffice—this issue will be discussed again in
Section 3).

Evaluating the Shape cF of an Observed Distribution of Minima

The parameter cF can be obtained by solving C2 (or C2a) if the distribution func-
tion F is known or if it can be estimated using a Weibull–linear plot (Weibull,
1951): Let’s divide the data into N categories of equal length, Cj, j=1, ..., N, and
let Fj be the cumulative number of observations in the jth category. The plot of

EXTREMES WITH VARIABILITY IN POSITION OR SCALE 435



FIG. 3. Distributions of 10,000 minima sampled from 100 independent and identically distributed
competitors. The top row presents the relative frequency f obtained, represented as a function of the
category number C. Categories are separated into 40 bins of equal size. The bottom row presents the
Weibull–linear plot, using a transformation of the cumulative frequency F as a function of a transfor-
mation of the category number C. The first column involves exponentially distributed competitors with
rate parameter 1/10. The second column involves uniformly distributed competitors in the range 0 to 10.
The third column involves Weibull-distributed competitors with a shape parameter of 1/2, and a scale
parameter of 10. The fourth column involves normally distributed a competitors with a mean of 10 and
a standard deviation of 1. The first three distributions of competitors have a constant position at zero.

Log 1Log 1 1
1−Fj
22 vs. Log(Cj)

will yield a straight line with slope cF.4

4 Categories (or bins) extend from the smallest to the largest sampled values with intervals of equal
length (not equal area, as with quantiles). Using category numbers in the Weibull linear plot as we did in
the figures is only a matter of convenience, and by doing so the lower bound a(F) and the scale bF, n of
the distribution of minima are lost. The figures all start at category 1 and extend up to the last category,
Category 40, in all the Weibull linear plot. However, the shape (the main concern in this paper) is
preserved.

As an illustration, in Fig. 3, we generated 10,000 minima sampled from n=100
competitors. The figure shows both the probability density plot and the Weibull–
linear plot using exponentially distributed units (cE=1), uniformly distributed units
(cU=1), and Weibull–distributed units with shape cW=1/2. These three distribu-
tions satisfy C1 and C2a (and therefore C2). The c values have been obtained by
solving C2 and are in good agreement with the slopes of the Weibull linear plots.
We also sampled minima from normally distributed units (violating both C1 and
C2.) As seen in the last plot of Fig. 3, the Weibull–linear plot is no longer linear. To
generate samples, we used Mathematica (Wolfram, 1996) and the program found in
Listing 1.

1. VARIABILITY IN POSITION

We introduce variability in position by replacing the position parameter a(F)
with a random position Y. Equivalently, we add to each sample from the unit dis-
tribution X a sample from a distribution Y. For each value sampled from Y, we
may think of the unit distribution X as being shifted along the horizontal axis by
that amount, thus achieving position variability.
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LISTING 1

Generating Minima from a Uniform Distribution (with Range 0...10) using
Mathematica. The Number of Competitors is 100, the Sample Size is 10,000, and
the Data Are Plotted Using 40 Categories.

° Statistics ‘ContinuousDistributions’
° Statistics ‘DataManipulation’

OneTrial:=Min[Table[Random[UniformDistribution[0,10]], {100}]];
OneSession=Table[OneTrial,{10000}];

freq=BinCounts[
OneSession,{Min[OneSession],
Max[OneSession],(Max[OneSession]-Min[OneSession])/40}];

ListPlot[freq, PlotJoinedQ True];

cumfreq=CumulativeSums[freq];
ListPlot[cumfreq, PlotJoinedQ True];

Let X and Y be independent random variables. We want to describe the behavior
of (X+Y)1 : n :=min(X1+Y1, X2+Y2, ..., Xn+Yn). Hence, the problem of finding
the asymptotic distribution of the minimum of a random variable having a random
position parameter is to find the asymptotic distribution of the minimum of a
convolution. The convolution is denoted hereafter by the operator *: F f G is the
convolution of F and G.

Theorem 1. Let F(x) and G(x) be distribution functions with finite lower bounds
a(F) and a(G), respectively. Suppose further that F and G satisfy C2 (Eq. 0.2) with
parameters cF and cG. Then F f G(x) has a lower bound a(F f G)=a(F)+a(G) and
satisfies C2 with cF*G=cF+cG.

It is clear that the lower bound of the convolution must be the sum of the two
lower bounds since the convolution represents a sum. Proving the theorem there-
fore requires proving the assertion concerning C2. Fortunately, Theorem 1 has
already been proven. In fact, it is well known that the product of two regularly
varying functions is regularly varying as well (see de Haan, 1990; Bingham, Goldie,
& Teugels, 1987; Geluk, 1994, 1996).

Perhaps, contrary to intuition, the shape parameter of the convolution does not
depend on the relative magnitude (or scale) of both components F and G, but only
on their respective shape parameters cF and cG.

We used a simulation to illustrate the characteristics of the minimum for con-
volutions of several types of distributions. Using a program like the one found in
Listing 2, we generated minima from sums of random samples. Figure 4 presents
the probability density plot and the Weibull linear plot from samples obtained with
various combinations of distributions. As can be seen, when both distributions
satisfy C1 and C2, the resulting distribution of the minimum conforms well to a
Weibull distribution, and the slope of the Weibull–linear plot is well predicted by
the sum of each distribution’s c, as Theorem 1 states. We also plot in Fig. 4 the
minima from a convolution of a normal and a uniform distribution. As seen, the
resulting Weibull–linear plot is not linear, showing that the attractor, if one exists,
is not of Type III.
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FIG. 4. Distributions of 10,000 minima sampled from 100 independent competitors with variable
position parameter. The top row presents the relative frequency f obtained, represented as a function of
the category number C. Categories are separated into 40 bins of equal size. The bottom row presents the
Weibull–linear plot, using a transformation of the cumulative frequency F as a function of a transfor-
mation of the category number C. The first column involves exponentially distributed competitors with a
rate parameter of 1/10 and a position parameter uniformly distributed in the range from 0 to 10. The
second column involves uniformly distributed competitors in the range from 0 to 10 with the position
parameter Weibull distributed with a shape parameter of 1/2 and a scale parameter of 10. The third
column involves Weibull-distributed competitors with a shape parameter of 1/2 and a scale parameter of
10, and the position parameter also Weibull distributed with a shape parameter of 1/2 and a scale
parameter of 10. The fourth column involves normally distributed competitors with a mean of 10 and a
standard deviation of 1 added to a uniformly distributed position in the range from 0 to 10.

Note that convolution is a symmetrical operation; it makes no difference whether
F is thought of as the unit distribution and G the variability in position, or vice
versa. Note also that the theorem applies to the convolution of two random
variables, but through induction can be extended to the convolution of an
arbitrarily large number of random variables.

2. VARIABILITY IN SCALE

Another way to add variability is to make the scale of the units that are racing
variable. In such a case, some competitors would be obtained from narrow distri-
butions while others would be sampled from wider distributions. One convenient
way to achieve this goal is to generate pairs of samples (Xi, Yi) from independent
distributions, say F and G, and to multiply the values of each pair. The minimum
of n such samples, (X · Y)1 : n, is then given by min(X1 ·Y1, X2 ·Y2, ..., Xn ·Yn).

Products of samples are not commonly studied, and we are not aware of a
standard terminology for this operation. In what follows, we will use the term
‘‘production’’ for distributions resulting from the product of two random variables,
denoted by the sign N (caret). For example, FNG(x) is called the production of F
and G and denotes the distribution of the sample products Xi ·Yi.

In this section, we will assume that the distributions cannot attain negative values
(i.e., a(F) \ 0 and a(G) \ 0). This is necessary because: (i) scale is an unsigned
value and (ii) multiplying a distribution by −1 creates a mirror image distribution,
which may no longer be lower bounded.

The following theorems on productions fall into three classes, depending on
whether zero is included in the domain of the distribution functions. The proofs can
be found in the Appendix.
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LISTING 2

Generating Minima from a Convolution of a Uniform Distribution (with Range
0 ...10) and an Exponential Distribution (with Rate 1/10) Using Mathematica.
The Number of Competitors Is 100, the Sample Size Is 10,000, and the Data Are
Plotted Using 40 Categories.

° Statistics ‘ContinuousDistributions’
° Statistics ‘DataManipulation’

OneTrial:=
Min[Table[
Random[UniformDistribution[0,10]]+
Random[ExponentialDistribution[1/10]],
{100}]];

OneSession=Table[OneTrial,{10000}];

freq=BinCounts [
OneSession, {Min[OneSession] ,
Max[OneSession],(Max[OneSession]-Min[OneSession])/40}];

ListPlot[freq, PlotJoined Q True];

cumfreq=CumulativeSums[freq];
ListPlot[cumfreq, PlotJoined Q True];

Theorem 2a. Let F(x) and G(x) be distribution functions whose lower bounds a(F)
and a(G) are equal to 1. Suppose further that F and G satisfy C2 (Eq. 0.2) with param-
eters cF and cG. If X and Y denote independent random variables whose distributions are F
and G, respectively, then the distribution of the random variable X ·Y, given by FNG(x),
satisfies C2 (Eq. 0.2) with cFNG=cF+cG and a(FNG)=a(F)·a(G)=1.

Although the theorem is formulated strictly in terms of a(F)=a(G)=1, it can
be generalized to any positive lower bounds by noting that

min(Xi ·Yi)=a(F) ·a(G) ·min (Xi/a(F) ·Yi/a(G)),

in which Xi/a(F) and Yi/a(G) are lower bounded at 1. It is worth mentioning that
multiplying distribution functions with constants has no effect on the asymptotic shape.

The next theorem applies if one of the random variables includes zero.

Theorem 2b. Let F(x) and G(x) be distribution functions with lower bounds
a(F)=0 and a(G)=1. Suppose further that F satisfies C2 (Eq. 0.2) with parameter
cF. If X and Y denote independent random variables whose distributions are equal to F
and G, respectively, then the distribution of the random variable X ·Y, denoted by
FNG(x), satisfies C2 (Eq. 0.2) with a(FNG)=0 and cFNG=cF.

Note. There is no assumption concerning Y other than Y \ a(G)=1.
Theorem 2b is a generalization of an earlier finding by E. Dzhafarov (reported in

Logan, 1992). In his proof, F was restricted to be a Weibull distribution. By con-
trast, the above theorem generalizes to any F satisfying the criterion C1 and C2.
Again, since min(Xi ·Yi)=a(G) ·min (Xi ·Yi/a(G)), we can generalize to any
positive lower bound a(G).
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The last demonstration is concerned with cases where both distributions includes
zero (a(F)=a(G)=0). At this time, we haven’t been able to come up with a solu-
tion based on the necessary and sufficient criterion C2. The following proof assumes
the weaker criteria C2a and thus is labeled a proposition. We suspect that a solution
based on the necessary and sufficient criterion C2 is possible, but further work is
required. Proposition 2c is reported because many distributions used in psychology
satisfy C2a (e.g., the uniform distribution, the Gamma distribution, the exponential
distribution, and the Weibull distribution).

Proposition 2c. Let F(x) and G(x) be distribution functions with zero lower
bounds. Suppose further that F and G satisfy criterion C2a (Eq. 0.3) with parameters
cF and cG, respectively. If X and Y denote independent random variables whose
distributions are equal to F and G, respectively, then

lim
t a 0

Pr{X·Y [ t}
tmin(cF, cG)

=K in the case cF ] cG,

lim
t a 0

Pr{X·Y [ t}
tcF log(1/t)

=K in the case cF=cG,

Therefore, the distribution of X ·Y, denoted FNG(x), is regularly varying at 0 and, by
the definition of regular variations (Feller, 1966), satisfies C2 (Eq. 0.2) with cFNG=
min(cF, cG).

The propositions and theorems of Sections 1 and 2 cover many forms of param-
eter variability and show that the attractor is still a Weibull. Further, it show that
the shape c of the resulting distribution of minima can be predicted with the use of
simple arithmetic. However, these asymptotic theories apply when the number of
competitors goes to .. In the next section, we address more empirical issues.

3. RATE OF CONVERGENCE, DEGENERATION AS n INCREASES,
AND APPLICATIONS TO PROCESSING MODELS

We have shown that the distribution of the race winner approaches a Weibull
shape as the number of racers increases, under general conditions. Observed
response-time distributions sometimes approximate a Weibull, raising the possi-
bility that a race produces such a result. In any event, race models have sometimes
been employed in processing models, and it is natural to ask whether the present
results will be helpful in the analysis and generation of models.

There are several issues that must be addressed before one can connect
the present theoretical results to observed data. We discuss two of them in the
following.

3.1. Rate of Convergence

For some theories (e.g., instance theories), the number of units n increases with
training. In these cases, performance early in training is determined by a small
number of units. The results presented above are concerned with large n, but make
no explicit statement on how large n must be for these results to hold.
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It is generally assumed as a rule of thumb that n must be larger than 400 for any
minimum sampled from distributions satisfying C2 to be Weibull distributed. In the
following, we will show examples where n does not have to be that large before the
Weibull distribution is observed.

In Figs. 3 and 4, we showed actual distributions of minima for some unit distri-
butions satisfying C2a (Eq. 0.3) and also some of their convolutions (similar graphs
were obtained with production). For all these samples, we used a number of com-
peting units n=100. As seen from the Weibull linear plot, the shape obtained (as
measured by the slope) conforms pretty well (although no statistical test is used
here) to the expected shape of the attractor. Therefore, as far as the criterion C2a is
concerned, n=100 seems to be a large enough number of competitors.

To have a closer look at the evolution of the attractor as n increases, we focus on
two specific functions. First, the convolution F1 f F2, where F1 is exponential with
mean 100 and F2 is uniform with limits 0 to 200. We generated random samples of
10,000 minima using n units, where n varied between 1 and 128. The left column of
Fig. 5 shows the results. The top panel illustrates the probability density function
(PDF) for various n. When n=1 (there is no race since there is only one unit), the
shape looks like an exponential with an unexpected left-end tail, due to the uniform
component of the convolution. This shape is not Weibull, as seen from the bottom
panel, where the corresponding line is not linear. With n=2, the shape is close to
Weibull, but still the right tail is too low and the deviation from linearity is impor-
tant, as seen in the bottom plot. However, with 4 units in competition, the attractor
does not differ from the expected Weibull with a shape of 2. In this precise situa-
tion, therefore, n can be very small and still allow observation of the asymptotic
distribution of the minima.

Second, we studied the production F1 NF2, where F1 and F2 are defined as in the
previous example. In order to have a shape equal to 2, we added a constant to both
samples so that the lower bounds are not zero (Theorem 2a). The right top panel of
Fig. 5 shows the PDF for various n. For small n, the same basic pattern of results
as above holds. Further, one can see that the rate of convergence is slower: at n=4
and n=8, the distribution of minima still has not achieved its asymptotic form
(slope smaller than 2 and a small deviation from linearity respectively). However,
for n=16, the attractor shape is reached. Basically, production has a slower rate of
convergence because multiplication can create much larger deviations in the unit
distributions than can addition. Yet, the slow down in convergence is only in the
order of 1 magnitude.

Finally, as an extreme, n=1 can suffice when minima are sampled from a
Weibull distribution (including the exponential as a special case). This is so because
this distribution is itself its own attractor.

3.2. Degeneration as n Increases

In the previous theorems, the scale factor bF, n is used to keep the scale of the dis-
tribution of the race winner approximately constant as n increases. Without this
normalizing factor, the larger the number of competing units, the smaller is the
scale of the distribution of the minimum. In the limit, the scale drops to zero. This
degeneration of L(F) is unavoidable no matter what type of distribution F is
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assumed and is only a question of having an n large enough (Colonius, 1995).5 As

5 Another question that relates to both Sections 3.1 and 3.2 is whether the asymptotic shape is
achieved before degeneration. The following argument, kindly provided by E. Dzhafarov, shows that the
asymptotic shape is obtained infinitely faster than degeneration is. Let F(x) be a continuous distribution
function on x > 0 satisfying C1 and C2. We can find coefficients an, bn such that F(an+bnx)nQW(x) as
nQ., where W(x) is the Weibull distribution. This convergence is uniform; i.e., supx{F(an+bnx)n

−W(x)}Q 0 as nQ.. As we know also, F(x)nQH(x), where H(x) is the standard Heaviside function
(jumping at x=0 from zero to one). This convergence is pointwise, but not uniform: supx{F(x)n

−H(x)}=1 for any n. As a result,

sup
x
{F(an+bnx)n−W(x)}

sup
x
{F(x)n−H(x)}

Q 0 as nQ..

This argument applies to the convergence of minima using 1−[1−F(x)]n and is also valid for type-I
and type-II distributions of extremes.

the asymptotic distribution approaches a step function, it contributes none of the
variance of the observed response-time distribution and becomes useless as an
explanatory tool whatever its shape. From a purely mathematical viewpoint one
could argue that these scaling issues are irrelevant: No matter how much shrinkage
has occurred at a given n one could assume a sufficiently large scale for the unit
distributions that the resultant scale for the minimum at n matches the observed
variance. For example, if one assumes that 107 memory traces race when a memory
probe occurs and that the response time distribution observed is roughly a Weibull
with a standard deviation of 300 ms, this may be consistent with a unit distribution
having a standard deviation of 10 h. From a psychological viewpoint, however,
such a large scale for a unit distribution could well be implausible and unjustifiable.
Thus for situations in which a large number of units are racing, we must ask in
what cases a plausible scale of the unit distribution could give rise to a scale of the
minimum distribution that is large enough to capture a significant portion of the
variance.

It turns out that even for large n there are cases in which the scale of the minima
can be in the same general ballpark as the scale of the unit distributions. To illus-
trate this point, we first define bF, n more formally, then we present some numerical
estimations of bF, n for productions and convolutions.

Definition of bF, n. The asymptotic distribution is usually presented with the
normalizing constants a(F) and bF, n as a function of

X1 : n−a(F)
bF, n

,

where a(F) is defined in Eq. (0.1). Galambos (1978) defines the sequence {bF, n} as

bF, n :=sup{x | F(x) [ 1/n}−a(F). (3.1)

In other words, bF, n is the point that cuts off the first n-tile of the distribution of the
minimum of n units. We note that
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FIG. 5. Illustration of minima sampled from F1 f F2 where F1 is exponential with mean 100 and F2
is uniform in the limits 0 to 200 as a function of the number of competing units n. Sample size is 10,000.
Top panel shows observed probability density functions as a function of category number C; bottom
panel shows Weibull linear plot of the above.

Pr 3X1 : n−a(F)
bF, n

[ x4=Pr{X1 : n [ a(F)+bF, nx}

and, by substitution into Eq. (0.4);

L(F) (a(F)+bF, nx)=W(cF, 0, 1)

is a normalized Weibull with position zero and scale 1. Therefore bF, n is a reason-
able normalization factor that keeps the scale approximately constant as n
increases.

In the general case where F satisfies the criteria C1 and C2, it is difficult to obtain
a general expression for bF, n. However, a general formula exists for distribution
functions satisfying C1 and C2a, that is, for functions that are exactly the power
curve in the left-end tail. From the continuous assumption, we can equate F(bF, n)
to 1/n (Eq. 3.1) and solve for bF, n using C2a. The result is given by

bF, n=(KFn)−1/cF, (3.2)

where KF > 0 is the constant defined in Eq. (0.3) for the original distribution F.
What Eq. (3.2) says is that bF, n is a negatively accelerated power curve since the
exponent is negative. As such, bF, n is a slowly reducing curve with zero asymptote:
if bF, n decreases by a factor D when the first n units are added to the race, it will
take n2 units for bF, n to reduce by a factor D again (Newell and Rosenbloom, 1981).

Numerical Estimation of bF, n. In this section, we study the behavior of bF, n as n
increases. The parameter values used are arbitrary, but scales can be thought of as
being expressed in milliseconds.
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FIG. 6. Evolution of bF, n as the number of competing units n is increased from 1 up to 100. Two
distributions, S1 and S2, and the convolution and the production of these two are shown. S1 has a scale
bS1, 1 of 100 while S2 has a scale bS2, 1 of 200. All the points have been estimated using Eq. (3.2) and
numerical integration techniques when the distribution function was not available in closed form (S1 NS2
and S1 f S2). The solid lines represent exact analytical solutions (in the case of S1 and S2 only); the
dashed lines are power curves estimated through best-fitting procedures (in the case of S1 NS2 and S1 f S2
only).

In the first run, units have a distribution function S1 being a Weibull distribution
(with scale parameter bS1, 1=200, shape cS1=2, and lower bound a(S1)=0). With
100 units in competition, the scale of the distribution of minima bS1, 100 drops to less
than 20, a 90% reduction. Such a drop is difficult to reconcile with psychological
plausibility. In a second simulation, we used a function S2 similar to S1 but with the
scale parameter bS2, n doubled to 400. Results did not change much since the scale of
the distribution of minima bS2, 100 is now around 40, exactly the same 90% drop,
since the two curves have the same shape.

In both simulations, bS1, n and bS2, n were estimated by computing Eq. (3.1) using
minimization techniques. Fig. 6 illustrates the relative behavior of bS1, n for n
ranging from 1 to 100 when the starting position of the curve bF, 1 is discounted. In
other words, the figure shows the proportion of reduction in scale when n increases.
bS2, n is not shown since it is identical to bS1, n. The full line shows the exact solution
obtained by computing Eq. (3.2). An exact solution is possible since KS1 and
KS2 are given after solving Eq. (0.3). In the case of Weibull distributions,
KW=(1/bW, 1)cw, that is, the reciprocal of the scale, raised to the shape parameter
of the distribution. With 100 units, only 10% of the original scale is left. With 1000,
3% remains. If bS1, 1 is the standard deviation when one unit is present, the same
system with 1000 units would have a standard deviation of 6 ms.

Let us consider next what happens if we retain S2 but add variability in scale or
position using S1. We therefore consider S1 NS2 and S1 f S2.6 Fig. 6 also illustrates

6 A preliminary proposition not published showed that if both S1 and S2 satisfy C2a, then the convolu-
tion S1 f S2 will also. Conversely, from Proposition 2c, in the case where cF=cG, we see that even if S1
and S2 satisfy C2a the shape of the left-end tail of S1 NS2 is not a power curve, but the product of a
slowly-varying function and a power curve. Therefore, S1 f S2 satisfies C2a but not S1 NS2.

bS2 f S2, n, and bS2 NS2, n, for n ranging from 1 to 100. The upper curve of Fig. 6 shows
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the scale for the distribution of minima for S1 f S2 while the lower one shows
S1 NS2. Dots on these curves could not be solved analytically since these operations
do not yield closed-formed solutions and therefore have been estimated using
numerical integration techniques.

The convolution decreases much more slowly toward zero. For 100 units, the
scale is ca. 25% of the scale of the original distribution. After 1000 units with
variability in position are added, the scale bS2 f S2, 1000 is still 14% of the starting scale,
around 60 ms for a starting scale of 400 ms, five times larger than when no varia-
bility is present.

The production S1 N S2 decreases faster than S1 or S2 taken individually.
The dotted lines represent estimated power curves. These curves show, as an

approximation, that first, a power curve describes well the behavior of bS2 f S2, n, but
less effectively S1 NS2 which does not satisfy the weaker criterion C2a used in the
first place to derive the relation found in Eq. (3.2). Close inspection of Proposi-
tion 2c suggests that

bF, n=(KFn ln n)−1/cF

is a better description of the reduction in the scale.
Second, convenient constants to parametrize the curves are given by

KS1 f S2 %KS1+KS2 ,

KS1 NS2 %KS1 ·KS2 .

Therefore, in the case of convolutions, the initial scale is the sum of the individual
scales and the rate is −1/(cF+cG), that is, a higher starting point and a smaller
rate of decrease.

The point of Fig. 7 to remember is that even though scales reduce and will ulti-
mately reach zero in all cases, they can do so slowly for L(F f G). In fact, with
100,000 units, the scale is still more than 4% the size of the original scale, a figure
achieved with only 100 units when no variability is introduced!

4. SUMMARY AND DISCUSSION

In this text, we have shown that the identically distributed assumption is not
necessary in order to draw conclusions about the asymptotic distribution of the
minima. We described two ways to have nonidentical distributions: one is to affect
the lower bound of the competing unit’s distributions, the other is to affect the
scale, or the range, of the competing distributions. As an analogy with a race, we
could say in the first case that the runners don’t start at the same moment, while the
second case corresponds to runners racing on different road surfaces.

We summarize in Table 1 the various theorems that predict the asymptotic
distribution of minima when the conditions are satisfied.

As can be deduced from Table 1, we see that convolution is a closed operator
with respect to the minima of Type III: whatever the distributions F and G, if each
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TABLE 1

Asymptotic Distribution of Minima when Convolution or Production Are Applied
to Two Distribution Functions F and G

Condition
Operation to be satisfied Asymptotic distribution of minima Solved in

F C1, C2 L(F)=W(cF, a(F), bF, n)
F f G C1, C2 L(F f G)=W(cF+cG, a(F)+a(G), bFNG, n) Theorem 1
FNG
a(F) > 0, a(G) > 0 C1, C2 L(FNG)=W(cF+cG, a(F) ·a(G), bFNG, n) Theorem 2a
a(F)=0, a(G) > 0 C1, C2 on F only L(FNG)=W(cF, 0, bF, n)a Theorem 2b
a(F)=a(G)=0 C1, C2a L(FNG)=W(Min(cF, cG), 0, bFNG, n) Proposition 2c

Note. The criteria C2a is included in C2; L denotes the asymptotic distribution of minima and W the
Weibull distribution.
a Generalization of a special case studied by E. Dzhafarov (reported in Logan, 1992).

individually has minima of Weibull type, then their convolutions do as well (for
more on the closure properties of regularly varying functions, see Embrechts &
Goldie, 1980; Bingham et al., 1987; Geluk, 1994, 1996). Further, this operation has
commutativity (L(F f G)=L(G f F)) and associativity (L((F f G) fH)=L(F f
(G fH))) properties. In this respect, any number of convolved distributions will
remain in the domain of attraction of their elements. The only drawback concerns
empirical issues: The shape of convolved distributions can only increase. For
example, convolving three exponential distributions yields an asymptotic distribu-
tion of Type III with shape c=3. However, empirical measures of the shape of
reaction times find typical values around 2 (for example, see Logan, 1992, and
Cousineau, in preparation). If position variability is the only source of perturbation
in the race, then either there is a very limited number of convolved components or
each contributes a very small value to the overall shape. Fortunately, the other
operation studied, production, introduces some nonlinearity into the shape.

Production describes the distribution obtained from the product of two samples.
For example, production could be used to describe races where the response’s
threshold is a random variable. Because we haven’t found a general solution to the
last case (Proposition 2c, see Table 1), we can only conjecture that production is
closed with respect to the minima of Type III. However, since distribution functions
satisfying the criteria C2a also fulfill the more general criteria C2, we know produc-
tion to be closed with respect to the minima of Type III for some of the most often
used distribution functions in psychology (e.g., the exponential distribution and its
related distributions). Since production has also commutativity and associativity
properties, results can be generalized to any number of distributions.

Further, productions can be mixed with convolutions in various ways without
affecting the results. However, distributivity is not a property of these operators,
hence L(F f (GNH)) ] L(F f GNF fH).

Finally, we addressed the question of degenerability. For theories where n
increases with practice, the scale bF, n of the observed distribution of minima
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decreases and, past some large n, might look like a step function. Although we
cannot eliminate degeneration, we showed that with convolution and production n
might have to be so large that it is implausible to assume that number of units, even
if these units without parameter variability can degenerate rapidly. This makes it
possible that this phenomenon will never be observed.

The above results strike a decisive blow to the identically distributed assumption.
A very general form of variability in position or scale can be introduced without
affecting the existence of an asymptotic distribution of minima. Therefore, the
random number generator most frequently found on computers (which mimics the
uniform distribution) can be put in the place of the position parameter or scale
parameter for convenient, easy-to-do simulations.

Galambos (1978) followed the same line of thought and challenged the indepen-
dent assumption. Instead, he assumed that the units are located inside of some
space so that the distance between them can be computed. He showed that, as long
as the dependencies between units weaken with distance, the asymptotic distribu-
tion of extreme remains unchanged (as long as C1 and C2 are true, of course).
This assumption is plausible if we assume that dependency (e.g., inhibition) is a
signal requiring some time to travel from one unit to the other: if a large distance
separates two units, the signal may well not arrive in time. Consistent with race
models, time is a crucial factor.

From the above, it is clear that c is not simply a free parameter but reflects some
fundamental aspect of the units. Compatible with this claim, we showed elsewhere
(Cousineau and Larochelle, in preparation) that the empirical shape parameter
seems to be a constant over practice in a visual and memory search task. Further,
empirical results provide strong constraints since the shape parameter is seldom
found to be larger than 2 (Logan, 1992).

With the various points made here, there remains no in-principle reason to reject
race models. They can accommodate empirical distributions of reaction times
(nondegenerate functions with shape typically around 2). Also, they can do so with
plausible competitors, i.e., competitors that are not identically distributed. For
example, noise can be introduced in the starting position without affecting the pre-
dictions on the nature of the observed reaction times. However, the theorems
impose limits on the nature of the distributions used. For example, we saw that the
convolution of a uniform distribution and a normal (Gaussian) distribution is not a
member of the Type-III attractor (see Fig. 4). Only distributions with a power curve
left-end tail (criterion C2, Eq. 0.2) can be manipulated. Therefore, in the context of
race models (and maybe for psychological models in general), normally distributed
noise is far from the simplest choice available to modelers.

Race models provide a nice and intuitive account of performance. Further, some
models implement learning by assuming that each experience with a stimulus results
in one more trace being added to the race. As we have shown in Section 3.2, the net
result is a decrease in the scale of the distribution of minima. One question remains,
though: On a given trial, which traces are included in the race? Does the system
restrict itself to traces identical to the stimulus, or is there a gradation in the traces
recruited? This selection problem has been answered in various ways in the past:
Logan (1988) assumed a strict selection, stating that only traces identical to the

EXTREMES WITH VARIABILITY IN POSITION OR SCALE 447



probe were to participate in the race. On the other hand, Bundesen (1990) assumed
no selection at all, but more closely similar traces had a greater chance of winning
the race by having a smaller scale. If selection is part of a model (as a preprocessor,
for example), it is important to characterize its behavior, since its distribution will
convolve with the distribution of the winner. A unified model not only must
describe what information flows from the input to the output, it must also consider
when such outputs are made. This signifies a totally different approach to network
modeling.

Finally, Colonius (1995) asked the question ‘‘Why the Weibull?’’ in the context of
the instance-based theory of automatization (Logan, 1992, 1995). The answer is
that it does not have to be a Weibull. Uniform and Gamma distributions are as
good contenders since position or scale variability, even of small magnitude, can
alter profoundly the shape of the distribution. Some simulations showed that simple
convolutions converge very rapidly toward a Weibull distribution. With as few as
n=8 competitors, it is difficult to distinguish the distribution of minima from a
Weibull distribution.

Parameter variability can have important impact on a model’s prediction (and so
they were studied by, e.g., Colonius, 1990; Ulrich & Giray, 1986; and Van Zandt &
Ratcliff, 1995). We have shown in this text that this is also true for race models, but
that these effects can be understood in terms of simple arithmetic.

APPENDIX

Proof of Theorem 2a. Again, the assertion concerning a(FNG) is obvious. We
will reduce the product question to one involving the addition of two independent
random variables. Let X and Y be independent random variables with the
corresponding distributions F and G.

Define the (independent) random variables

U=X−1 and V=Y−1.

Note that the lower bounds of both U and V are 0. Also,

X ·Y=(U+1) (V+1)

=1+U+V+UV.

In order to prove the theorem, we must show that the distribution function, H(x),
of the random variable

U+V+UV

satisfies C2 (Eq. 0.2) with the correct c value. To do this, we will show that H(x) is
asymptotically equal to

FU f FV.

That is, as xQ 0, H(x) behaves as though it were a convolution of the U and V
distributions.
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Step 1. H(x) < FU f FV(x).

This is clear since, by definition,

H(x)=Pr{U+V+UV [ x)

< Pr{U+V [ x}

=FU f FV(x).

Step 2. H(x) \ FU f FV( x1+x).

Suppose that U+V+UV [ x. Since both U and V are nonnegative, this implies
that U [ x and V [ x. It follows that

U+V+UV [ U+V+xV

< U+V+xV+xU

=(1+x) U+(1+x) V

=(1+x) (U+V).

We state this relation in terms of the distribution functions

H(x)=Pr{U+V+UV [ x}

\ Pr{(1+x) (U+V) [ x}

=Pr 3U+V [
x
1+x
4

=FU f FV 1
x
1+x
2 .

Step 3. Show that

lim
x a 0

H(x)
FU f FV(x)

=1.

One inequality is clear from Step 1: H/FU f FV [ 1. This holds in the limit as
well. Step 2 provides the other inequality, dividing each side by FU f FV,

H(x)
FU f FV(x)

\

FU f FV 1
x
1+x
2

FU f FV(x)
.

For any fixed t > 1, we have x
1+x > x/t if x is sufficiently small. Then, for the

purpose of finding a limit, we may state that

H(x)
FU f FV(x)

\
FU f FV(x/t)
FU f FV(x)

.
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Now, take the limit of the right-hand expression. The Theorem 1 for convolutions
states that the limit of the right-hand expression is t−c. This gives

lim
x a 0

inf
H(x)

FU f FV(x)
\ t−c.

But t > 1 is arbitrary so the limit infimum has to be 1. This shows that the limit
exists and equals one.

Step 4. Show that

lim
x a 0

H(x/t)
H(x)

=t−cU − cV.

The Theorem 1 on convolutions states that this identity holds for the distribution
function FU f FV. Now, we simply repeat the proof of Theorem 1, that is,

H(x/t)
H(x)

=
H(x/t)

FU f FV(x/t)
·
FU f FV(x/t)
FU f FV(x)

·
FU f FV(x)
H(x)

,

and we take each limit individually to obtain 1 · t−cU − cV · 1 for the limit of the
left-hand expression. This proves Theorem 2a. L

Proof of Theorem 2b.

Pr{X·Y [ t}=F
.

1
F(t/y) dG(y).

We will show that

lim
t a 0

Pr{X·Y [ t}
F(t)

=K.

Since F satisfies C2, the usual argument shows that the distribution function
satisfies C2. Choose any positive sequence tn such that tn Q 0. Consider the ratio

Pr{X·Y [ tn}
F(tn)

=F
.

1

F(tn/y)
F(tn)

dG(y).

Since y \ 1 in this integral and F is increasing, for any y and tn,

F(tn/y)
F(tn)

[ 1.

That is, each integrand is dominated by the constant 1. Also, for each fixed y,

lim
nQ.

F(tn/y)
F(tn)

=y−cF.

This follows from C2. We may apply the dominated convergence theorem (Galambos,
1978, p. 317),
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lim
nQ.

F
.

1

F(tn/y)
F(tn)

dG(y)=F
.

1
lim
nQ.

F(tn/y)
F(tn)

dG(y)

=F
.

1
y−cF dG(y).

The above integral is a constant K, and we have shown that limt a 0
Pr{X·Y [ t}
F(t) =K.

This proves Theorem 2b. L

Proof of Proposition 2c.

Pr{X·Y [ t}

=Pr{Y >`t, X·Y [ t}+Pr{X >`t, X·Y [ t}+Pr{X [`t, Y [`t}

This holds since the condition x ·y [ t consists of the three disjoint events described
in the equation above.

First, we show that Pr{Y >`t, X·Y [ t} is asymptotically equal to F(t)
>.
`t
y−cF dG(y);

Pr{Y >`t, X·Y [ t}=F
.

`t

F(t/y) dG(y).

Now, if `t < y <., then 0 < t/y <`t .
We denote t/y by x. Note that for any y in the integral above we have
0 < x <`t . That is, any choice for x is near zero if t is chosen to be near 0. We now
use the hypothesis C2a. It states that

F(x) %KFxcF,

and this approximation holds uniformly throughout the range x <`t . We may
replace the integrand F(x) with the expression KF(t/y)cF to obtain

Pr{Y >`t, X·Y [ t} % F
.

`t

KF(t/y)cF dG(y)

=KFtcF F
.

`t

y−cF dG(y)

% F(t) F
.

`t

y−cF dG(y).

This completes the first step.
Next, we show that >.

`t
y−cF dG(y) has three different limits as t a 0, depending on

the relation of cF and cG.

Case 1. cF < cG. We integrate by parts,

F
.

`t

y−cF dG(y)=y−cFG(y) :
y=.

y=`t

+cF F
.

`t

G(y) y−cF −1 dy

=−tcF/2G(`t )+cF F
.

`t

G(y) y−cF −1 dy.
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Now, since G(`t ) %KGtcG/2, the first term tends toward zero if tQ 0. Also, for
y near 0, G(y) y−cF −1 %KG ycG −cF −1. Since the exponent is larger than −1, this
function has a finite integral over [0, 1]. We obtain

lim
t a 0

F
.

`t

y−cF dG(y)=cF F
.

0
G(y) y−cF −1 dy=K4 <..

Consequently, we see that

Pr{Y >`t, X·Y [ t} %K4F(t).

Case 2. cF > cG. We still have

F
.

`t

y−cF dG(y)=−t−cF/2G(`t )+cF F
.

`t

G(y) y−cF −1 dy.

However, t−cF/2G(`t ) % t(cF −cG)/2Q+. as t a 0.
The integral has the same behavior. If e > 0,

F
e

`t

y−cF −1G(y) dy %KG F
e

`t

ycG −cF −1 dy %K3t(cF −cG)/2.

Consequently, in this case,

Pr{Y >`t, X·Y [ t} % F(t) t(cF+cG)/2K4 %K4t(cF+cG)/2.

Since cF > cG, we see that t(cF+cG)/2 is much smaller than G(t). That is,

lim
t a 0

Pr{Y >`t, X·Y [ t}

G(t)
=0.

The notation A° B means that limt a 0
A
B=0 as tQ 0. The result above may be

restated as Pr{Y >`t, X ·Y [ t}° G(t).

Case 3. cF=cG.

F
.

`t

y−cF dG(y) % −t−cF/2 ·KG · tcF/2+cF F
e

`t

KG ycF −cG −1 dy

% −KG+cFK2(−1/2 log(t))

Finally, the third term is given by Pr{X [`t, Y [`t}=F(`t ) G(`t ). To
complete the proof, we return to the original decomposition of Pr{X ·Y [ t}.

Now, in Case 1, cF < cG, the three terms are

Pr{Y >`t, X·Y [ t} % K4F(t),

Pr{X >`t, X·Y [ t}° F(t) (see Case 2),

Pr{X [`t, Y [`t}=F(`t ) G(`t )° F(t).

This gives the result Pr{X ·Y [ t} %K4F(t).
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Case 2 is exactly the same. Pr{X ·Y [ t} %K4G(t).
In Case 3, cF=cG, we have

Pr{X >`t, X·Y [ t} %K4F(t) log(1/t),

Pr{Y >`t, X·Y [ t} %K5G(t) log(1/t),

and Pr{X [`t, Y [`t} %K6F(t).

This gives the result

Pr{X·Y [ t} %K3tcF log(1/t),

which completes the proof of Proposition 2c. L

REFERENCES

Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation. Cambridge, UK: Cambridge
Univ. Press.

Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547.

Colonius, H. (1990). Possibly dependent probability summation of reaction time. Journal of Mathematical
Psychology, 34, 253–275.

Colonius, H. (1995). The instance theory of automaticity: Why the Weibull? Psychological Review, 102,
744–750.

Cramér, H. (1946).Mathematical methods of statistics. Princeton, NJ: Princeton Univ. Press.

de Haan, L. (1990). Fighting the arch-enemy with mathematics. Statistica Neerlandica, 44, 45–68.

Embrechts, P., & Goldie, C. M. (1980). On closure and factorization properties of subexponential and
related distributions. Journal of the Australian Mathematical Society (Serie A), 29, 243–256.

Feller, W. (1966). An introduction to probability theory and its applications (Vol. II). New York: Wiley.

Fisher, R. A, & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or
smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180–190.

Galambos, J. (1978). The asymptotic theory of extreme order statistics. New York: Wiley.

Geluk, J. L. (1994). Asymptotic behaviour of the convolution tail of distributions each having a first or
second order regularly varying tail. Analysis, 14, 163–183.

Geluk, J. L. (1996). Tails of subordinated laws: The regularly varying case. Stochastic Processes and Their
Applications, 61, 147–161.

Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Annals of
Mathematics, 44, 423–453.

Green, D. M., & Luce, R. D. (1975). Parallel psychometric functions from a set of independent
detectors. Psychological Review, 82, 483–486.

Gumbel, E. J. (1958). The statistics of extremes. New York: Columbia Univ. Press.

Indow, T. (1993). Retention curves of artificial and natural memory: tight and soft models (Tech.
Rep. 93–11). Institute for Mathematical Behavioral Sciences, University of California, Irvine.

Leadbetter, M. R., Lindgren, G., & Rootzén, H. (1983). Extremes and related properties of random
sequences and processes. New York: Springer-Verlag.

Link, S. W. (1992). Imitatio Estes: Stimulus sampling origin of Weber’s law. In Healy, A. L., Kosslyn,
S. M., & Shiffrin, R. M. (Eds.), From learning theory to connectionist theory: Essays in honor of
William K. Estes (pp. 97–113). Hillsdale, NJ: Erlbaum.

Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527.

EXTREMES WITH VARIABILITY IN POSITION OR SCALE 453



Logan, G. D. (1992). Shapes of reaction-time distributions and shapes of learning curves: A test of
the instance theory of automaticity. Journal of Experimental Psychology: Learning, Memory and
Cognition, 18, 883–914.

Logan, G. D. (1995). The Weibull distribution, the power law, and the instance theory of automatization.
Psychological Review, 102, 751–756.

Luce, R. D. (1986). Response times, their role in inferring elementary mental organization. New York:
Oxford Univ. Press.

Marley, A. A. J. (1989). A random utility family that includes many of the ‘‘classical’’ models and has
closed form choice probabilities and choice reaction times. British Journal of Mathematical and
Statistical Psychology, 42, 13–36.

Marley, A. A. J., & Colonius, H. (1992). The ‘‘horse race’’ random utility model for choice probabilities
and reaction times, and its competing risks interpretations. Journal of Mathematical Psychology, 36,
1–20.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In
Anderson, J. R. (Eds.), Cognitive skills and their acquisition (pp. 1–55). Hillsdale, NJ: Erlbaum.

Shibuya, H., & Bundesen, C. (1988). Visual selection from multielements displays: Measuring and model-
ing effects of exposure duration. Journal of Experimental Psychology: Human Perception and Perfor-
mance, 14, 591–600.

Ulrich, R., & Giray, M. (1986). Separate-activation models with variable base times: Testability and
checking of cross-channel dependency. Perception and Psychophysics, 39, 248–254.

Van Zandt, T., & Ratcliff, R. (1995). Statistical mimicking of reaction time data: Single-process models,
parameter variability, and mixtures. Psychonomic Bulletin & Review, 2, 20–54.

Wandell, B., & Luce, R. D. (1978). Pooling peripheral information: Averages versus extreme values.
Journal of Mathematical Psychology, 17, 220–235.

Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied
Mechanics, 18, 292–297.

Wolfram, S. (1996). The Mathematica book (3 ed.). New York: Cambridge Univ. Press.

Received: January 31, 2000; published online: January 10, 2002

454 COUSINEAU, GOODMAN, AND SHIFFRIN


	INTRODUCTION AND DEFINITIONS
	FIG. 1
	FIG. 2
	FIG. 3

	1. VARIABILITY IN POSITION
	FIG. 4

	2. VARIABILITY IN SCALE
	3. RATE OF CONVERGENCE, DEGENERATION AS N INCREASES, AND APPLICATIONS TO PROCESSING MODELS
	FIG. 5
	FIG. 6

	4. SUMMARY AND DISCUSSION
	TABLE 1

	APPENDIX
	REFERENCES

