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Abstract 

Reaction time data afford different types of analyses.  One type of analysis, called curve 

analysis, can be used to characterize the evolution of performance at different moments over  

the course of learning.  By contrast, distribution analysis aims at characterizing the spread of 

reaction times at a specific moment.  Techniques to deduce free parameters are described for 

both types of analyses, given an a priori choice of the curve or distribution one wants to fit, 

along with statistical tests of significance for distribution analysis.  These techniques are the log 

likelihood technique, if the probability density function is given; otherwise, a root-mean-

square-deviation minimization technique is used.  A program called PASTIS is presented which 

searches for the optimal parameters of the following curves: power-law, exponential and e-

based exponential, and the following distributions: the Weibull and the Ex-Gaussian.  Some 

tests of the software are presented. 
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PASTIS: A PROGRAM FOR CURVE AND DISTRIBUTION ANALYSES 

Curve analysis can be used to characterize reaction times (RT) collected over different 

sessions.  The chief concern of this type of  analysis is the improvement of RT, more 

specifically the rate of the improvement, and the performance that would be expected after an 

infinite amount of practice (Newell and Rosenbloom, 1981).  By contrast, distribution analysis 

is usually concerned with RTs obtained during one session.  Distribution analysis can be used 

to locate outlier RTs and to test models of RT data (Ratcliff, 1978). 

These two types of analyses are not mutually exclusive, but rather complementary.  

Curve analyses can describe mean RTs at different moments in time, while distribution 

analyses give a closer look at a specific moment.  In fact, the results of curve and distribution 

analyses performed on a given set of data should converge in order to provide a coherent 

interpretation. 

In order to perform curve and distribution analyses, one must first select likely 

functions to fit the data.  Some candidate distributions for RTs are the Log-Normal and the 

Gamma, also known as the Erlagian (Ulrich and Miller, 1994).  Other distributions have also 

been considered (see Luce, 1986).  In this paper, we focus on the Ex-Gaussian and the Weibull 

distributions.  With respect to curve analysis, we will be concerned mostly with the famous 

power-law and a possible alternative, the exponential curve. 

Techniques used to compute the values of the free parameters of these various 

functions will be discussed first.  Then, a program called PASTIS is presented that can perform 

the analyses discussed.  Finally, the results of tests made to evaluate the capabilities of the 

program will be presented. 
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Curve Analysis 

Curve analysis of RT data is often done in studies concerned with automatization of 

performance (Logan, 1988, Lasaline and Logan, 1992, Kramer, Strayer, and Buckley, 1990).  

Figure 1 illustrates the evolution of performance that typically occurs over practice, by showing 

the results of a fictional nine-session experiment.  Mean RTs per session are presented along 

with a curve that fits them. 

------------------------------- 

insert Figure 1 about here 

------------------------------- 

This plot has three parameters of interest: the value of performance prior to any 

learning (parameter b), the value of performance after infinite learning (parameter a), and the 

rate c at which performance drops toward the asymptote, usually called the learning rate.   

Current theories of automatization try to account for changes in mean RTs with 

practice.  However, this is not the sole measure of performance that could be used; one could 

be interested in the behavior of median RT, for example.  Instead of summary measures, one 

could also attempt to fit raw data.  It is important to note that these fits may yield very different 

results, since the functions considered are non linear.  It is therefore important that researchers 

choose the right measure of performance in view of the theory tested.  In this section, we will 

talk about mean RTs.  However, PASTIS can handle raw data as well as summary measures. 

The Power-Curve 

In a very influential paper, Newell and Rosenbloom (1981) argued that the equation 

which best characterizes the relation between mean RT (M) and sessions of practice N is: 

M = a + b ( N + e)-c 
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where a, b, and c represent the theoretical asymptote, the starting value, and the learning  rate, 

and where e quantifies the amount of pre-experimental practice.  Since most researchers assume 

that subjects are totally naive toward the task, they set e to zero (see however Heathcote and 

Mewhort, 1995).  The most common form of the power-law is thus stated as: 

M = a + b N-c  (1) 

The free parameters are constrained to be greater or equal to zero, and, in the 

Exponential curve presented later (equation 5), the c parameter must be smaller or equal to 1 

since it is a rate of learning, expressed in percentage. 

The search for the best possible values of the free parameters is done using a 

minimization algorithm.  The algorithm used in PASTIS is STEPIT (Chandler, 1965).1  

Another search algorithm called PRAXIS was developed by Brent in 1973, and implemented in 

C by Gegenfurtner (1992).  Although we did not proceed to a systematic exploration of the 

capacities of both algorithms, our experience with curve analysis showed  that PRAXIS 

converged faster on a set of estimates than STEPIT.  However, parameters obtained using 

STEPIT often provided a better fit of the data.  For distribution analysis, the two algorithms 

performed equally well.  We therefore decided to incorporate STEPIT into PASTIS. 

The value that PASTIS attempts to minimize is the root-mean-square-deviation 

(RMSD) statistic given in equation (2), which reduces discrepancies between expected and 

observed means.  Note however that there is no guarantee that the minimization algorithm will 

yield the smallest RMSD value.  Indeed, the multidimensional space defined by the possible 

parameter values along with the corresponding RMSD may contain numerous local minima in 

which the algorithm can get trapped. 

RMSD n E Oi i
i

n

= −∑1 2( )   (2) 
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In equation 2, i indexes the n sessions, Oi is the observed mean RT at session i, and Ei 

is the expected mean RT at session i, given a set of parameters a, b, c. 

One approah for testing the significiance of the fit would be to linearize the relation 

between RTs and time of evaluation N, and use tests based on least-square methods.  

Subtracting a from both sides of equation 1 yields M - a = b N -c.  Computing logarithm gives 

log( M - a ) = log(b) - c log(N), a linear function with a slope of -c, and an intercept of log(b).  

However, least-squares methods usually require that experimental error be independent, 

additive, and normally distributed.  But, as Sternberg (1969) pointed out, these assumptions, if 

valid before the transformation, are certainly destroyed after the logarithmic transformation.  

The Kolmogorov-Smirnov test (also called the Kolmogorov one-sample test; see Conover, 

1980) could be used to test the normality of the residuals.  However, Heathcote, Popiel and 

Mewhort (1991) preferred to use the non-parametric Wilcoxon sign test (see Bates and Watts, 

1988 for further reading in this issue). 

A Special Case Of The Power-Law Curve Analysis: Logan's Theory 

Logan’s exemplar theory of automatization predicts that both the mean and the 

standard deviation (SD) of RTs should decrease with practice following a power-law function, 

and that the learning rate should be the same for  both measures (Logan 1988).  Equations 

relating mean RT (M) and standard deviation (SD) are thus: 

M = a' + b' N-c   

SD = a" + b" N-c  (3) 

 

PASTIS can be used to simultaneously fit M and SD with a common c parameter. 
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The Exponential Curve 

Heathcote and Mewhort (1995) recently contested the power-law of practice 

suggesting that the exponential curve could provide a better characterization of the evolution of 

RTs.  One reason for rejecting the power-law is that the parameters obtained often have 

implausible values. Heathcote and Mewhort’s survey of the literature on power-law shows that 

the asymptote a, for instance, is often evaluated to be equal to zero.  Exponential fits do not 

show the same pathology. 

The exponential function relating mean RT (M) to practice session N is: 

M = a + b(1-c)N  (5) 

where a, b, c have the same interpretations as in the power function.  However, learning rates c 

are on a different scale.2 

Equation 5 can be linearized using a log transformation of the M - a value.  However, 

this function will be linear with respect to N, instead of log ( N ) for the power curve. 

The exponential equation 5 has been used by Rescorla and Wagner (1973) as a model 

for  associative strength in Pavlovian conditioning. 

Distribution Analysis 

Distribution analyses have been done in tasks such as visual search (Ratcliff, 1978, 

Hockley, 1984), recognition (Ratcliff and Murdock, 1976), letter arithmetic (Logan, 1992), and 

signal detection (Hohle, 1963).  It has also been used to generate simulated data and to test 

assumptions about truncation or use of medians (Ulrich and Miller, 1994, Ratcliff, 1995). 

RT distributions can be represented in a variety of ways (Luce, 1986). The two best 

known are the probability density function (PDF), which gives the probability to observe a 

certain RT, and the cumulative function (see Figure 2). 
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-------------------------------- 

insert figure 2 about here 

--------------------------------- 

Information about the central tendency and the standard deviation, as well as the 

skewness (seen as an asymmetry in the distribution) are best visualized using the PDF. 

The Ex-Gaussian Distribution 

Originally used by McGill in 1963, the Ex-Gaussian distribution is a combination 

(convolution) of a Gaussian (normal) distribution and of an exponential distribution.  This 

distribution is known to provide a good fit for RT data in different tasks.  The PDF is 

formulated as: (Heathcote, in press, Dawson, 1988) 

f RT e RT
RT

( ) (=
− −+ −1

2

2 2
2

τ
µ
σ

µ
τ

σ

τ τ
σ

τΦ )   (6) 

where τ stands for the average of the exponential component, µ and σ are the mean and the 

standard deviation of the normal component, and Φ expresses the standard Gaussian integral 

(see Kennedy and Gentle, 1980, for a numerical approximation).  The mean of such a 

distribution is µ+τ, while the standard deviation is (σ2+τ2)½. 

The Weibull Distribution 

The Weibull is known to describe the distribution of minima from independent 

samples of identically distributed random variables.  It has been used by Logan (1992) to 

further support his exemplarist theory of automaticity. 

The cumulative function of a Weibull is given by the formula: 

F RT e
RT a

b
c

( )
( )

= −
−

−

1  
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where a and b are additive and multiplicative scaling factors, and c is an exponential factor, 

sometimes called the shape factor.  The mean and the standard deviation of a Weibull are 

expressed by: 

M(RT) = b Γ(1 + 1/c) +a 

SD(RT) = b [Γ(1+2/c) - Γ(1+1/c)] 

where Γ is the gamma function (if x is integer, Γ ( x + 1 ) return x!). 

The PDF of a Weibull is given by: 

f RT c

b
RT a e

c
c

RT a
b

c

( ) ( )
( )

= − − −
−

1   (7) 

Techniques Used To Search Parameter Space 

The search for the best possible values of the free parameters of the distribution is 

done using the same minimization algorithm as in curve analysis.  In all the cases, the space is 

three-dimensional and all parameters are constrained to be positive or null.  In the case of the 

Weibull, the additive parameter cannot be greater than the minimum RT. 

The value that is minimized depends on the nature of the equation that needs to be 

fitted.  For the vast majority of PDF, the best technique to use is the maximum likelihood 

function.  This function is known to find the best estimators when they exists and are unique.  

Thus, an algorithm minimizing -L should tend toward a correct estimate of the free parameters, 

if a sufficiently high number of observation is made.  The likelihood function is given by: 

L(θ) = Π f(RTi) 

where θ represents a given set of parameters (for example: {µ, σ, τ}), and Π is the product for 

all the observed RTs.  To avoid overflow, we chose to compute a related value that has the 

same properties: 



Curve and distribution analyses 

10 

ln L(θ) = Σ ln ( f ( RTi )  )  (8) 

This statistic will be minimum for the set θ that best fits the empirical data. 

If the number of observations per subject is small, it is possible to pool individual RT 

distributions to obtain a group distribution that preserves the shape of the component 

distributions.  Ratcliff (1979) has shown that stable estimates of the distribution’s parameters 

can be obtained using Vincent averaging. See also Dawson (1988), and Heathcote, Popiel and 

Mewhort (1991). 

To discover which distribution gives the best fit, a goodness-of-fit statistic called 

Akaike's information criterion (AIC) can be computed for each fit (reported in Maddox and 

Ashby, 1993).  The AIC is defined as: 

AIC D L Ni i( ) ln= − +2 2 i  

where Ni is the number of free parameters in a specific distribution analysis (indexed by i), and 

ln Li is the log likelihood of the fitted data.  By including a term that penalizes a model for extra 

free parameters, it is possible to compare across models having a different number of 

parameters.  The model that provides the most accurate account of the data is the one with the 

smallest AIC. 

Description of PASTIS 

PASTIS (from French: Programme d’Analyse Statistique de Tendance et de 

dIStribution) is a UNIX-based program written in C.  It can read any text file, as long as data 

are separated by at least one space, or by tab characters.  Columns can be in arbitrary order, and 

there may be extra columns containing information not used for the analysis. Two operating 

modes are available: i) In interactive mode, PASTIS displays a prompt and waits for the user to 

enter options, one at a time.  Errors in specifying the options are more easily detected in this 



Curve and distribution analyses 

11 

mode.  ii) In command mode, the options are specified on the same line as the call to PASTIS, 

and separated by at least one space.  This method is faster, and allows the use of pastis in shell 

files.  All the following examples are issued as a command line. 

Table 1 gives an overview of the type of analysis that can be performed using 

PASTIS.  It also mentions the type of data that should be provided to it. 

-------------------------------- 

insert Table 1 about here 

------------------------------- 

A summary of the necessary options to make the program run are listed below: 

-r file : indicates which input file contains the data; 

-c x : x indicates the total number of columns in the input file; 

-d x : x indicates which column contains the dependent variable; 

-a name-of-analysis : name-of-analysis indicates the type of curve or distribution 

analysis (see Table 1 for the possible names; upper case is 

mandatory) 

Many analyses need other options.  For example, pastis -r data.dat -c 10 -d 3 -a 

PLAWCURVE c2 will analyze the power-law curve exhibited by the data contained in the file 

data.dat.  This file has a total of 10 columns, and mean RTs are in column 3 (start counting at 

1).  c2 indicates that the session of evaluation is specified in column 2. 

Specification of the session number is mandatory for curve analysis.  This 

specification allows the data lines in the input file to be in any order.  Missing data is also 

allowed.  If the data gathered during one session were lost due to computer failure, for instance, 

then PASTIS would compute estimates for the remaining sessions.  Finally, the specification of 
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the session number allows input of more than one measure per session.  As mentioned earlier, 

PASTIS can operate on raw data. 

Further commands are also available (the [ ] denotes an optional part): 

-b cx [cx' ...] : break the input file according to values in column x.  Many 

columns may be used, repeating cx', cx"...). 

-f cx=y [cx'=y' ...] : filter file for lines where column x have the value y.  There 

may be more than one filtering criterion. 

Suppose column 1 contains subject number, then pastis -r data.dat -c 10 -d 3 -b c1 -a 

PLAWCURVE c2 will make a separate analysis for  each subject, while pastis -r data.dat -c 

10 -d 3 -f c1=1 -a PLAWCURVE c2 will only examine data for subject one. 

-s px=y [px'=y' ...] : give starting value of y to parameter x at the beginning of 

the search. 

-h px=y [px'=y' ...] : hold the value of parameter number x to be equal to, 

or  px<y or px>y greater than, or lesser than value y.  The parameters’ 

number are given at the beginning of an analysis. 

The px<y and px>y of the -h option can be combined to produce an interval in which 

parameter x is free to vary.  In this case, the user must insure that the lower bound is smaller 

than the upper bound. 

Parameters that are not set by the -s or -h options receive default values based on 

heuristic choices.  For the Ex-Gaussian distribution, the default values are those suggested by 

Heathcote (in press), namely: τ = 0.8 sample standard deviation, µ = sample mean - τ, and σ = 

0.6 τ.  For the Weibull distribution, a = sample minimum - 3%, b = sample mean - a, and c = 

1.4.  Considering that the sample minimum may be due to an anticipatory response, the starting 

value for a will often be smaller than the estimated value.  This is why the sample minimum is 
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reduced only by a small amount.  The starting value for b is related to the sample mean, 

following the equation defining the mean of a Weibull distribution.  Finally, choice of the 

starting value for c was simply based on our experience. 

For curve analysis, the asymptote a = sample minimum - 3%, the amplitude 

b = 2 ( sample mean - sample minimum ), and c = 0.8, except for the curve of equation 5, in 

which case c takes the value 0.2.  Note that when the data consist of means, the sample 

minimum will not reflect only anticipatory responses.  The starting value chosen for a assumes 

that the last mean RT is close to asymptote.  The starting value for b could have been related to 

the sample maximum.  However, with raw data, the sample maximum may be due to a deadline 

imposed by the experiment.  So we decided to use the sample mean in setting the starting value 

of b.  Finally, the starting values of c are based on our experience, and they are within the range 

usually found in the litterature. 

For example, pastis -r data.dat -c 10 -d 3 -h p3=0.9 -a PLAWCURVE c2  

will analyze the curve with the learning rate kept constant at value 0.9. 

Finally, some other commands are: 

-o : help page; 

-v : verbose output (recommended); 

-g : display data information (used for debugging); 

A Test of PASTIS 

We tested the abilities of PASTIS to produce the correct value of free parameters in 

various sets of simulations.  The first set was concerned with curve analysis.  Data were 

generated using a power equation in the first two cases presented in Table 2, and an exponential 

equation in the last two cases.  In half of the simulations, 10% of uniformly distributed random 
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noise was added to the simulated data to see if PASTIS would converge toward the correct 

solution.  In the other simulations, no noise was added, so the fit should be near perfect with the 

correct analysis. 

The content of the file PL1.dat was: 1 700.00; 2 572.30; 3 524.57; 4 498.96; 5 482.78; 

6 471.55; 7 463.25; 8 456.84; 9 451.73; 10 447.55.  The semi-colon denotes the new-line 

character.  The first column is the session number, and the second is the mean RT obtained.  

The command line to perform the first analysis reported in Table 2 reads:  pastis -r PL1.dat -c 

2 -d 2 -a PLAWC c1 

-------------------------------- 

insert Table 2 about here 

-------------------------------- 

Table 2 gives the RMSD and the parameters of the curves fitted.  When the file 

contains no noise, the fit is close to perfect, with a slight advantage for the EXPO1.dat file.  

Free parameters obtained reflect original parameters with less than 0.1% deviation.  Result are 

still good when noise is added to the data.  Since an average of plus or minus 5% of noise was 

added to RTs varying from 400 to 700 msec (with a mean near 500 msec), we can expect an 

average deviation of 25 msec.  The RMSD obtained with PASTIS are 14.22 ms and 20.32 ms 

for the two files with noise (PL2.dat and EXPO2.dat).  Clearly, data generated using a specific 

equation were fitted very well when using the same type of equation in analysis.  However, the 

EXPO2.dat simulation was also well fitted by a power-curve.  This result calls for two 

important comments:  First, the exponential and the power curves can be highly similar, given 

an appropriate set of parameters.  Therefore, it is possible to obtain fits that are almost equally 

good for two different theoretical curves.  Second, PASTIS does not provide a statistical test to 



Curve and distribution analyses 

15 

discriminate among curves.  This would require knowing the underlying nature of measurement 

noise, as discussed before. 

Similar analysis were made concerning distributions.  We used two files for the 

Weibull distribution.  Both files had 34 data point, the second having 10% of uniformly 

distributed random noise added to the data.  For the Ex-Gaussian, we used the same data set 

reported in Heathcote (in press), which contained only 10 data points. The parameters used for 

data generation and the results of analysis can be seen in Table 3. 

--------------------------------- 

insert Table 3 about here 

------------------------------- 

The Weibull data were better fitted when analyzed with the Weibull equation than 

with the Ex-Gaussian equation.  The same was also true when noise was added to the 

simulation.  Using the AIC statistic described previously, we find that there is a difference of 

35.02 in favor of the Weibull interpretation in the simulation using W1.dat (AICweibull = 466.96 

and AICex-gaussian = 502.00). 

Ex-Gaussian data reveal a surprise: they fit better using a Weibull equation than using 

the equation used to generate the data in the first place.  This result may be due to the small 

number of observations in this file (n = 10).  Since the likelihood statistic is asymptotic, it 

works better with a large number of observation.  When analyzed using an Ex-Gaussian 

distribution, results are exactly the same as those reported by Heathcote (in press). 

Availability 

PASTIS works on any workstation equipped with the cc compiler.  The FORTRAN 

extensions must be present since STEPIT exists only in FORTRAN language.  PASTIS has no 
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limitation on the length of the input file: if the file contains less than 500 numbers, the data are 

transferred to RAM, otherwise, numbers are read directly from disk, which slows down the 

speed of the program (a typical analysis takes less than a minute to complete)  Input files are 

limited to 40 columns.  The order of options does not matter, except that they must preceed the-

a option which specifies and triggers the analysis. 

The source files, along with a compiled version for Silicon Graphics computers, comes 

in a .tar.Z file (119K).  Sample files are also available in another .tar.Z file (4K).  These files 

can be obtained using a world-wide-web browser at 

http:\\prelude.psy.umontreal.ca\~cousined\pastis.  Instructions to compile source code are 

also given. 
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Footnotes 

 

1 We wish to thank Gordon Logan for sending us a copy of STEPIT. 

2 With a base change, equation (5) can be rewritten as: 

M = a + b e-c’N  (5a) 

a and b are the same in both equations.  The c parameters are related by the formula: 

c’ = - ln ( 1 - c ).  See Kail and Bisanz (1988) for an example of use of this formulation. 



Curve and distribution analyses 

23 

Table 1 

Possible analyses in PASTIS, with the type of data needed, and their reserved name 

         

    type of  reserved  additional 

analysis  type  data needed  name  options 

curve  exponential curve (eq. 5)  any  EXPONEN  cx* 

  expo. (base e) (eq. 5a)  any  GEXPONEN  cx* 

  power-law curve (eq. 1)  any  PLAWCURVE  cx* 

  Logan's theory (eq. 3)  means and SD  GPLAWCURVE  cx cy** 

distribution  Ex-Gaussian (eq. 6)  raw or vincentized data  EX-GAUSS   

  Weibull (eq. 7)  raw or vincentized data  WEIBULL   

summary data†    any  STATISTIC   

* x is the number of the column containing session of evaluation 

** x is the number of the column containing session of evaluation and y is the number of the 

column containing standard deviation data 

†: summary data computed are mean, standard deviation, skewness, kurtosis, and minimum. 
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Table 2 

Results of curve analyses performed on simulated data 

  computed  parameter values  %  best fit obtained  parameters* 

file  with  1  2  3      noise analysis   RMSD  1  2  3 

PL1.dat  Power-law       400  300  0.8  0% PLAWC   0.044  400.28  299.69 0.8015 

  

      

  

      

  

      

  

           EXPOC   6.340  455.06  447.16  0.4624 

PL2.dat  Power-law 400  300  0.8  10% PLAWC   14.22  459.19  292.83 2.0653 

           EXPOC   16.14  466.35  1202.4  0.7643 

EXPO1.dat  Exponential 400  300  0.4  0% PLAWC   4.64  328.33  254.52 0.5771 

           EXPOC   0.0022  400.00  300.00  .0400 

EXPO2.dat  Exponential 400  300  0.4  10% PLAWC   19.81  396.35  171.56 0.9443 

           EXPOC   20.32  418.91  274.67  0.4744 

*: In curve analysis, parameters 1, 2 and 3 produced by PASTIS correspond to a, b and c respectively. 
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Table 3 

Results of distribution analyses on simulated data 

   generated  parameter values %  best fit obtained  parameters* 

file  with  1  2  3    noise  analysis   -log likelihood  1  2  3 

W1.dat  Weibull   300  400  1.3  0%  WEIBULL  230.48  350.4  236.6 1.36 

  

  

  

     

  

           EX-GAUSS  248.00  518.5  59.9 154.3 

W2.dat  Weibull  300  400  1.3  10%  WEIBULL  231.15  350.2  226.8 1.26 

           EX-GAUSS  250.48  492.4  58.3 178.1 

EX-GAU.dat Ex-gaussian 500  50  100  0% WEIBULL  55.57  474.2  96.4 1.0 

           EX-GAUSS  64.93  495.8  24.0 73.7 

*: For the Ex-Gaussian distribution, parameters 1, 2 and 3 correspond to µ, σ and τ respectively, and for the Weibull 

distribution, they correspond to a, b and c. 
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Figure Caption 

Figure 1. Simulated data and the curve that best describes the speed-up in RT 

 

Figure 2. Two representations of a distribution 
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