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Abstract 

Many models offer different explanations of learning processes, some of them predicting 

equal learning rates between conditions. The simplest method to assess this equality is to 

evaluate the curvature parameter for each condition followed by a statistical test. 

However, this approach is highly dependant on the fitting procedure, which may come 

with built-in biases difficult to identify. Averaging the data per block of training would 

help reduce the biases, but averaging introduces a severe distortion on the curve that can 

no longer be fitted by the original function. In this text, we first demonstrate what is the 

distortion resulting from block averaging. The “block average” learning function can thus 

be used to extract parameters when the performance is averaged over blocks or sessions. 

The use of averages eliminates an important part of the noise present in the data and 

allows good recovery of the learning curve parameters. Equality of curvatures can be 

tested using a test of linear hypothesis. This method can be performed on trial data or 

block average data but it is more powerful with block average data. 
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Testing Curvatures of learning curves 

on trial and block average data 

Many experiments involve training in a task. This is commonly done to reduce the 

variability that would arise from unskilled participants. In these cases, the experimenter is 

only interested in the final level of performance, often described by one or a few 

summary values (mean response times, standard deviation, percent correct, etc.). 

However, some studies are not simply interested in a snapshot but in the whole dynamic 

of performance over training (e. g., Logan, 1988, Rickard, 1997, Shiffrin and Schneider, 

1977). Because of the large number of data involved, it is often convenient to summarize 

them in a curve: the learning curve (Newell and Rosenbloom, 1981, Heathcote, Brown 

and Mewhort, 2000). 

Learning curves describe the evolution of performance over trials t. They are 

given by the following equation: 

  (1) )( )( tgbatf +=

where a is the asymptote of the curve, and b the amplitude. These two scaling parameters 

act as boundaries since initial performance is given by the value a + b and the final 

performance is given by a.1 The function g(t) describes the type of curvature present in 

the learning curve. As such, g(t) is called the core of the learning curve and is often a 

function of a third parameter, the learning rate parameter c (Paul , 1994). 

The purpose of this text is not to decide which type of learning curves describes 

best the data. This issue is still highly controversial. When performance is measured by 

response times, many authors defended the power curve (Newell and Rosenbloom, 1981, 
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Logan, 1988) . Its core function is given by gPC(t) = t-c. But Heathcote and his colleagues 

raised some concerns over the recent years (Heathcote, Brown and Mewhort, 2000). They 

suggested that the exponential curve, given by its core gEX(t) = e-c t, was as good a 

contender. Other learning curves have also been proposed over the years, such as the 

general power curve (gGP(t) = (t + d)-c (Newell and Rosenbloom, 1981) which has a free 

parameter d to take into account learning prior to the beginning of the task (also see 

Cousineau, Goodman and Shiffrin, 2002). In the context of memory research, the 

retention curve measuring percent recalled as a function of time is also a function that fits 

the framework of Eq. 1 (Wixted, 1990). 

Which core function is the correct one is not a resolved issue. In addition to this 

theoretical question however, there is a more empirical question about the curvature 

present in the performance. Curvature (or learning rate) is a measure of the speed at 

which performance reaches the asymptote. In the following, the curvature is quantified by 

the learning rate parameter c, assuming one type of curve (exponential, power, etc.). 

Some theories predict that the stimuli to be learned will affect the curvature 

(reduction of information theories for example; see Haider and Frensch, 1996), whereas 

others predict that the stimuli will not affect curvatures but only the bounds a and b (such 

as strength theories; see Dumais, 1979). Logan’s Instance-based theory predicts that 

curvatures will be equal for the mean response times and their standard deviations. This 

same prediction also holds for the SSTS*, a subset of the serial self-terminating class of 

models in visual search (Cousineau and Larochelle, submitted). The aim of this paper is 

twofold. First, because mean performances are often used, we present a simple method to 
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recover the parameters {a, b, c} out of averaged performance. Second, we present a 

method to test if the learning rates of two or more curves are equal. This method is 

applicable as soon as one type of core function is assumed. The core function can be any 

function that fits Eq. 1 and so avoids the above controversy. 

Fitting averages 

Most theories of learning assume that learning occurs on a trial-by-trial basis. Yet, 

raw data (called trial data hereafter) are usually very erratic, making the learning curve 

hard to see. To reduce the noise present in the data, researchers usually aggregate their 

data over blocks of trials using averages. However, Rickard (1997) pointed out that the 

curve of the block averages generally does not have the same core as the curve of the trial 

data (as shown below). Yet, this fact should not discourage the use of averaged data:we 

show in this section how to obtain the learning function of a curve averaged over blocks 

of successive trials. As will be shown, fitting a curve of averaged data is as easy as fitting 

trial data but allows the recovery of the right parameters more efficiently. 

Averaging curves 

In what follows, we define  as the trial learning curve function.  is a 

function of the trial number t, going from 1 to T. We want to know what is the learning 

curve equation when the data are averaged over blocks of training. Let us define 

)(tf )(tf

)(nf  as 

the block average function over block number n when trial data are averaged in blocks of 

N trials each (N > 0 is a constant). Thus, n goes from 1 to T / N (T is assumed to be a 

multiple of N). In order to simplify the problem, we first examine the core function of the 

block average curve. Let )(ng  be the block average core function. By definition of the 
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arithmetic mean, we have: 

 ∑
+−=

=
nN

Nni

ig
N

ng
1)1(

)(    1)( . 

Where i indexes all the N trials in the nth block. This equation generally cannot be 

simplified in the discrete case, but if N is large, we can solve it using a continuous 

approximation: 

 ∫
−

≈
nN

Nn

dxxg
N

ng
)1(

)(1)( . (2) 

Equation (2) can be solved for many learning curves, yielding the equation of the block 

average core function. 

Because a simple linear transformation relates the trial function and the core trial 

function, and because averages are not altered by such transformations, we can simply 

add the scaling parameters around the block average core function to obtain the full block 

average function: 

 )( )( ngbanf +=  

Scale invariant curves 

A first question to ask is: Which functions remain of the same type after 

averaging? In other words, we want to know which functions are scale-invariant. This 

will answer Rickard's point noted at the beginning of this section. Two scale invariant 

functions are easily identified, the first one being trivial: the line ( ) and the 

exponential curve ( ). 

tbatf  )( +=

-c tebatf  )( +=

The line is a degenerate curve since it has no curvature parameter. Its core 
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function is simply gLN(t) = t. The scaling parameter b represents the slope whereas a 

represents the intercept. By solving Eq. (2) on gLN, using blocks of size N, we obtain 

2)( NNnng LN −= . Thus, nbNbNaNNnbanf )()2/()2()( +−=−+= . By 

substituting a  → a’ and bN  → b’, we obtain 2/bN− nbanf '')( +=  and see that the 

block average core function is of the same type as the trial core function. One difference 

is that the slope is now steeper, because it is expressed using different units (blocks vs. 

trials). 

Similarly, we show that the exponential curve is also scale invariant. Solving Eq. 

(2) on gEX, we find that its block average core function is given by: 

 
Nc

eeng
cNnncN

EX  
)(

)1( −−− −
= . 

Factorizing the exponential to isolate the dependant variable n, we obtain: 

 cNn
cN

EX e
cN

eng −−
=

)1()(  (3) 

By substituting 
cN

ecN )1( −  → b’ and c N → c’, we have nc
EX ebng '')( −=  

Thus, we see that the block average function of an exponential curve is also an 

exponential curve. With the scaling parameters a and b, this is a three-parameter curve 

{a, b, c} for a given block size N. 

Scale dependant curves 

The famous power curve is scale dependent since, as we show below, the core 

function is not functionally the same as the block average function. The core of the power 
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function is given by gPC(t) = t-c. Averaging the function over blocks of size N using Eq. 

(2), we obtain: 

 
Nc

NnnNng
cc

PC )1(
)())1(()(

)1()1(

−
−−

=
−−−−

. 

Note that N (n-1) is the first trial of the nth block and N n is the last trial of that block.2 

We therefore substitute N (n-1) → nF and N n → nL to obtain: 

 
Nc

nn
ng

c
L

c
F

PC )1(
)(

)1()1(

−
−

=
−−−−

. (4) 

Adding scaling parameters a and b as in Eq. (1), we see that )(nf PC  is a three-parameter 

curve defined by {a, b, c} given a  certain block size N. Therefore, it can be fitted to 

averaged data using nF and nL instead of the block number n with no more difficulty than 

fitting a power curve. 

Equation (4) is a difference between two power curves (or more precisely, the 

same power curve at two different moments). Yet, the core is functionally different from 

a power curve’s core function ( g (x) ≠ g (x) ). Thus, fitting block average data with the 

trial function should results in (i) poor fit, and (ii) non interpretable learning rate 

parameters. 

As an example, in top part of Figure 1, we generated simulated response times 

(SRT) using a power curve over 400 trials using the parameters {a = 0, b = 350, 

c = 0.455}. As expected, a power curve fits perfectly the raw data, and a minimization 

algorithm (such as PASTIS, Cousineau and Larochelle, 1997) can recover the parameters 

almost perfectly (with a precision of ± 0.1%). In the bottom part of Figure 1, the SRT 
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were averaged into 10 blocks of N = 40 trials. The dotted line shows the best-fitting 

power curve. As seen, the power curve shows systematic deviations (poor fit considering 

that there is no noise, r = 0.973) and the estimated parameters {  = 0.00, b  = 94.2, 

 = 0.633} bear no resemblance with the true parameters. The dashed line shows the 

best-fitting block average power curve (Eq. 4). The fit is almost perfect, even though we 

introduced a continuous approximation. Further, the minimization algorithm recovered 

the parameters with a precision of ± 0.1%. This shows that in the absence of noise, fitting 

the block average curve on averaged data is not more difficult than fitting the simpler 

trial data curve on raw data.  

â ˆ

ĉ

Insert Figure 1 about here 

The first part of the Appendix explores the efficiency of the block average 

function to recover the parameters when noise is present. It shows that in general (trial 

data or block average data), the major factor that makes parameters difficult to recover is 

noise. The impact of noise can be reduced significantly by increasing the number of 

trials. The second part of the Appendix shows that it is preferable to use block averages 

when fitting parameters if the curvature is steep (c bigger than 0.4). 

Illustrating the core function 

One convenient way to look at curvature is to have a graph of the core function. 

Remember that all core functions starts at one and have an asymptote of zero. Thus, if the 

curves have an equal learning rate, their core functions should superimpose. Further, if 

block average data are plotted, standard error intervals (SE) around the core functions can 

be computed.  
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In order to plot the core function, one must first choose which curve is assumed to 

underlie the data. For example, it can be the power functions in the case of trial data, or 

Equations (4) if block average data are used. Isolating the core of a learning curve 

requires that each point at time x (trial or block number) be transformed using: 

 
b

axfxg ˆ
ˆ)(ˆ

)(ˆ −
=  (5) 

where  and  are estimates of the two scaling parameters {a, b} and  is the observed 

performance at time x. If both  and  are valid estimators, Eq. (5) returns a valid 

approximation of the core function . 

â b̂ f̂

â b̂

ĝ

If summary values are plotted (such as mean or standard deviation), the standard 

error intervals (SE) can be computed (this approach cannot be used with trial data). SE 

can be used as a general indicator whether two curves superimpose or not. 

SE of the block average data at block n is given by 
N
nfnSE

f

)()( =  where N is the 

number of observations per block and )(nf  is the estimated standard deviation at block n 

(Cramér, 1946). Equation (5) requires SE for transformed scores but manipulating SE is 

well established (Tremblay and Chassé, 1970). For example, adding a constant to a score 

does not alter its standard error interval while multiplying it by a constant multiplies its 

standard error interval. The final block average core function is thus given by: 

 
Nb
nf

b
anfng ˆ

)(
ˆ

ˆ)()(ˆ ±
−

=  

where f (n) and )(nf  are the average and the standard deviation of the empirical 
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measures at block n. Equivalent manipulations can be performed for any summary value 

normalized according to Eq. (5), as long as its standard error is known (Kendall and 

Stuart, 1983). 

Illustrating the core function might provide an interesting solution to the related 

question: did performance reached the asymptote? Formally, the performance will never 

reach asymptote since for most learning curves it requires an infinite amount of practice. 

Nevertheless, subjects may reach a level where performance does not significantly differ 

from asymptotic performance. A very stringent criterion could be to declare a priori that 

asymptotic performances are reached if the core function is within 2 SE of zero on the 

last 4 blocks. 

Testing curvatures 

We describe in this section a method to test whether two or more curvatures are 

equal, irrespective of the scaling parameters (amplitude and asymptote). Consider the 

following curves, f1, f2, …, fs  with unknown parameters {ai, bi, ci} for the ith curve. The 

most intuitive method to test that the curvatures are equal would consist in estimating the 

curvatures c  (using a minimization procedure) and comparing them using a statistical 

test. However, this method has a very low power because it looses a lot of information (a 

large data set is compressed into a single estimate ). Considering that in general 

experiments involving learning have only a few subjects, this compression is too drastic. 

iˆ

iĉ

The test of linear hypothesis (Rao, 1959) avoids this problem because it constrains 

the fit on more than singleton ci. Suppose that s data sets are available, forming s learning 

curves labeled f1 to fs. If the core functions gi are all identical, then we can write: 
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)()(
...

)()(
)()(

222

111

tgbatf

tgbatf
tgbatf

sss +=

+=
+=

As a consequence, we can show that the average curve 
s

f  is given by the average 

parameters and the core function:: 

 )()()()( tgbEaEtf iis
+=  

where E(ai) is the average of the ai and E(bi), the average of the bi, i = 1 .. s. If the 

average curve 
s

f  does not capture the data, it means that the core function is not unique 

to the s data sets. This is called a linear hypothesis. 

One method to test that the curve with averaged parameters captures the average 

data set is the linear hypothesis test created by Rao in 1959. It has been mentioned in Paul 

(1994) but with minimal details. One objective of this section is to detail the structure of 

the test and to provide a short Mathematica listing that performs it. However, the real 

contribution of this section is to use the block average learning curve in conjunction with 

Rao’s test and to show that doing so drastically increases the power of the test. 

Applying the test of linear hypothesis to trial data 

Following Rao (1959), the first step is to describe the model underlying the data 

set. In terms of vectors, let the model M = {1, g(t) } and the parameters θ = {α, β } so 

that θ TM = α + β g(t). It must be understood that g(t) is also a function of c, the learning 

rate parameter. Suppose we have collected for each of the s data sets a number T of trial 

observations. The model M varies according to the trial number. The matrix A 
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summarizes the evolution of the model for each trial and each parameter. We can write: 

  



















=

)(1
...   

)2(1
)1(1

Tg

g
g

A

where the first column indicates the contribution of α to the performance of the average 

curve and the second column, the contribution of β. 

In the implementation of the model, c is not considered a parameter. Therefore, it 

must receive a value at this point. However, under the null hypothesis, every set has the 

same curvature, and the average curve is also representative of the curvature. Thus, a 

numerical value for c should be obtained using a least square minimization routine (such 

as PASTIS, Cousineau and Larochelle, 1997) on the between-set average data. 

The next step is to obtain the set of estimates  that offers the best fit. Rao (1959) 

proposed one method.

θ̂

3 It is our experience that a better approach (less biased) is to take 

advantage of the null hypothesis that says that the group best-fitting parameters { , } 

ought to be the average of the individual subject best-fitting parameters. So let θ  = 

{  = E(

α̂ β̂

ˆ

α̂ â i),  = E(bβ̂

ˆ

ˆ i)}. In summary, (i) fit the average curve to obtain the curvature c, 

(ii) fit the individual and average the individual asymptotes and amplitudes to obtain the 

parameter set θ . The estimate θ  is only valid if the null hypothesis is not rejected.  ˆ

In order to perform a statistical test, summary values are needed. The first 

summary value is a vector y  containing the between subject 

average performance for the various trials from 1 to T. The second summary value is a 

))}(()),...,1(({ TfEfE ii=
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variance-covariance matrix (of size T × T) called hereafter S such that: 

  



















=

))((                                        ))1(),((
                                                 

))2(())1(),2((
))(),1((                  ))2(),1((      ))1((

TfVarfTfCov

fVarffCov
TffCovffCovfVar

iii

iii

iiiii

OM

K

S

where Var( ) is the unbiased variance of the performances at time j and 

Cov( , ) is the unbiased covariance of the observations between trials at time j 

and trials at time k. This matrix is symmetrical. 

)( jf i

)(kfi)( jf i

The following equation is used to test the significance of the linear hypothesis. 

Let r be the number of data point in each of the curve T minus the number of parameters 

(generally three) and n the number of data set s. The test is of the form: 

Reject H0 if: 

 ),,()ˆ()ˆ( 1 rnrF
r

rn
−>−−×

−
= − αθAySθAyF  

where , the critical value for the decision at level α, say 5%, is read on a 

Fisher F table with r, n - r degrees of freedom for the numerator and the denominator 

respectively. In case where the inverse cannot be found (S is singular), a pseudo inverse 

can be used (Rao, 1959). 

),,( rnrF −α

Overall, Rao’s test of linear hypothesis requires (a) the type of learning function 

to fit, (b) a minimization procedure to find the group curvature and the individual 

asymptotes and amplitudes, (c) summary values (a vector of mean performance at trial t ≤ 

T and a T × T variance-covariance matrix), and (d) extensive matrix manipulation 
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capabilities. This last point used to be the most difficult to obtain. Rao (1959) described a 

complex method to make optimal use of the desk calculator available at that time (to the 

point that the article is difficult to decipher). Schneiderman and Kowalski (1985) 

described an implementation of the test using SAS. Yet, this program is still difficult to 

follow. I present in Listing 1 a short Mathematica program to compute the summary 

values (y and S), the best fitting parameter , and the statistic F. θ̂

Insert Listing 1 about here 

This approach is more powerful than the intuitive ones described at the beginning 

of the section because it does not reduce the data to a single value (c or r2). In fact, when 

testing the hypothesis, all the points along the curves are used as constraints to see if the 

instantiated model A is capturing the individual observations. 

As seen from the degrees of liberty, the test of linear hypothesis requires that the 

number of data set (generally, the number of subjects) be at least equal to the number of 

trials. Because a typical experiment often involves hundreds of trials, the number of 

subjects rapidly becomes prohibitive. As shown next, by collapsing the trial data into a 

fewer number of blocks, it allows measuring a smaller number of subjects and still have a 

powerful test. 

Applying the test of linear hypothesis to block average data 

First, we note that after performing block averaging, the s data sets now form s 

curves if . These block average curves are not of the same type as the trial curves (unless 

they are scale invariant functions). However, their core functions )(ng i  are known (for 
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examples, it is Eq. 4 in the case of a power curve). As such, under the null hypothesis that 

the curvatures are the same, we can write: 

 

)()(

...
)()(

)()(

222

111

ngbanf

ngbanf

ngbanf

sss +=

+=

+=

 

Here, ai and bi are exactly the same as with the trial data. Thus, if all the curves have the 

same curvature (same core), we can also write: 

 )()()()( ngbEaEnf iis
+=  

where 
s

f  is the average across data sets of the block averages. Here, we have two 

distinct averaging: First, within data set to obtain the block average curves; next, between 

the block average curves to obtain a single 
s

f  curve. Also note that the relation between 

the block average curves (
s

f  vs. the various if ) is the same as the relation between the 

trial data curves (
s

f  vs. the various ), one of a linear relationship. Hence, the test of 

linear hypothesis is relevant here for the same reasons it was for the trial data. 

if

The model is M  = {1, )(ng  } with parameters θ  = {α, β } from which we can 

create the matrix A  instanciating the model.  

As an example, if we assume that the trial data follow a power curve, the 

instantiation for block average data, following Eq. (4), is composed of lines for each 

block n of the sort 








−
− −−−−

Nc
nn c

L
c

F

)1(
,1

)1()1(

 where c must be determined using least square 
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methods, N is the number of trials per blocks, and nF is the first trial of block n (given by  

N × (n-1) ) and nL is the last trial of block n (given by  N × n ). If there are T observations 

in the trial data sets, there are T / N blocks in the block average data sets. Thus, the final 

matrix A  could be: 

 





























−
−−

−
−

−
−

=

−−−−

−−−−

−−−−

Nc
NTNT

Nc
NN

Nc
NN
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cc

cc

cc

)1(
)/()1(1

)1(
)2()1(1

)1(
)1()0(1

)1()1(

)1()1(

)1()1(

         

...                         

       

       

 

The matrix A  may look quite cumbersome. Yet, given c and N, it is easy to compute. In 

addition, it is now N times shorter, speeding up the remaining computations by a factor N. 

Whether we fit the trial data using the trial function or the block average data 

using the block average function, the best fitting parameters θ  should be identical. 

However, reducing the number of points tested using blocks makes it possible to measure 

a reasonable number of subjects. This would suggest that having very few blocks 

containing a lot of trials each is desirable (so that few subjects are required). This is not 

true: There is a trade-off between blocks of increasing size and power. At some point, the 

blocks are so large that there is only a few blocks left. A reasonable compromise is to 

choose a block size N less or equal to the square root of the total number of trials. The 

third section of the Appendix tests this claim with Monte Carlo simulations. 

ˆ

Discussion 

The advantages of fitting average curves are numerous: the average data are less 
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noisy than the trial data. It is therefore possible that the parameters { , , } estimated 

from the averaged data will be more accurate (as shown in the Appendix). Further, the 

block average function 

â b̂ ĉ

)(nf  is not more complex or more difficult to fit using a 

minimization algorithm (and Eq. 3 or 4). In particular, it has exactly the same number of 

free parameters. We updated the learning curve estimation program PASTIS to fit the 

block average functions (source code available at 

http://mapageweb.umontreal.ca/cousined/papers/02-pastis). However, it still requires that 

the modeler make an assumption about which type of curves (power, exponential, or 

other) underlies the data. Finally, when using block average data, standard errors can be 

computed around the core function.  

The form of averaging presented here is a within-subject average. As shown by 

Estes (1956), between-subject averaging is risky if the individual subjects have different 

learning rates c. Indeed, the average of f1, f2, …, fs cannot be solved unless the individual 

cs are known or are all equal. We presented in the second section a test of curvature 

based on Rao’s test of linear hypothesis which can be use in order to solve this problem.. 

http://mapageweb.umontreal.ca/cousined/papers/02-pastis
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Footnotes

                                                 

ˆ ySAASA 111 )(ˆ −−−= TT

1 The point where the initial performance is measured depends on the type of curve. For 

the exponential curve, it is measured at time t = 0 and for the power curve, at time t = 1. 
2 Actually, N (n - 1) returns zero as the first trial. For the power curve, it is inappropriate 

since, according to this type of curve, the performance is infinite at time t = 0. To solve 

this issue, we used N (n - 1) +½ and N n + ½ when doing actual fitting. Thus, blocks are 

ranging from ½ to N + ½ , N + ½ to 2N + ½, etc. 
3 With the model implementation A and the summary values y and S (see next), we can 

obtain the optimal parameter θ  for the group by solving θ  which 

yields the least mean square solution to the problem (Bates and Watts, 1988). This 

method is based on the postulate that the difference between the subjects remains the 

same with practice. It is not the case since between-subject variability diminishes with 

training (Cousineau and Larochelle, submitted). 
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Appendix: Fitting and testing curves using trial and block average data 

The general objectives of this paper are to describe a method to estimate 

curvatures and test them. These objectives are crucially dependent on a minimization 

algorithm that reduces the sum of square error (SSE) between the data and the ideal curve 

passing through the points. The parameters  = { a , b , c } that minimizes the sum of 

square error are termed the best-fitting parameters.  

θ̂ ˆ ˆ ˆ

Simulation 1: Testing biases using trial data 

To explore the capabilities of a minimization algorithm to estimate the true 

parameters θ, we ran Monte Carlo simulations. We used the minimization software 

PASTIS (Cousineau and Larochelle, 1997) but we also tested the minimization procedure 

FindMinimum implemented in Mathematica and found no differences in the pattern of 

results. We present the results using the following measures of bias: the average distance 

between the ith estimates  and the true parameters θ, obtained over a large number of 

replications. Bias can also be seen as the distance between the center of gravity of all the 

ι and the true θ (i = 1 .. R, the number of replications): 

θ̂

θ̂

 Bias := ( ) θθθθ −=− )ˆ(ˆ
ii EE  

where || x – y || denotes the Euclidian distance between x and y in a 3D space. To express 

the bias as a percentage, we divided this value by || θ ||. In addition, we computed the 

efficiency, a measure of dispersion around the true parameters θ: 

 Efficiency := ( ) 2

1

ˆ
1

1ˆ ∑
=

−
−

=−
R

i
ii R

SD θθθθ  
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We generated power curve trial data. We kept constant the true asymptote at a = 

300 and the true amplitude at b = 1000. Because they are linear parameters, they would 

bring little information if they were varied. However, we varied the learning rate because 

curves with almost non-existent curvatures might be more difficult to fit than curves with 

pronounced descent. We use c = {0.2, 0.4, 0.6, 0.8}. We also added a small amount of 

noise to the generated curves. We used normal additive noise with zero mean and 

standard deviation η times the height of the curve minus the asymptote. The values η 

used were 0.5, 1.0 and 2.0. A value of 2.0 represents a large variability that is similar to 

typical human RT data. At ∞, the curve would reach the asymptote (height of zero) and 

so noise would be zero, but of course, we never generated that many points. The number 

of points generated (sample size) was varied {50, 100, 200, 400, 800, 1600}. Each point 

represents one trial, starting at trial 1. Table A.1, column 2 recapitulates the factors. 

Insert Table A.1 about here 

For a given combination of curvature × sample size × noise, we generated a noisy 

curve and ran a minimization algorithm (PASTIS) to obtain the best-fitting parameters. 

We replicated this a thousand times, after which bias and efficiency were computed. 

The results are shown in Figure A.1. As seen, noise had an important impact on 

bias and efficiency. The more noise, the less accurate are the best-fitting parameters. It is 

still a reasonably small bias on average since a typical set of estimated parameter is rarely 

more than 2% inaccurate. Sample size also had an important impact. Larger sample sizes 

tend to be less biased. Finally, the learning rates (small vs. steep) had no influence on the 

best-fitting parameters. 
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Insert Figure A.1 about here 

Simulation 2: Testing biases using block average data 

The above simulations were performed using trial data. Next, we want to see if 

there is an improvement in the best-fitting parameters when we use block average data 

instead of trial data. We ran a second series of simulations where we used both trial data 

and block average data. The size of a block N was 5, 10, 20, 40, or 80 trials per block. To 

keep the number of results manageable, we fixed the sample size at 400 trials. This 

implies a kind of trade-off since, as a consequence, the larger the block size N, the less 

points remain for fitting. Everything else is as in the previous simulations. The third 

column of Table A.1 recapitulates the fixed and varied factors.  

The results are shown in Figure A.2. As can be seen, for c = 0.8 (bottom row), 

using blocks of increasing size reduces the bias and the efficiency. In the best case, bias is 

reduced twofold and efficiency by almost 50% (block size N of 80). Thus, even though 

there is only 5 points (400 trial data averaged by blocks of 80 trials), the parameters are 

recovered very accurately. However, this trend reversed for curvatures smaller than 0.5 

where averaged data returns more biased and less efficient estimates. Thus, for small 

curvatures, the small amount of blocks (5, 10 and 20 – blocks of 80, 40 and 20 trials 

respectively) is very detrimental. In this case, the modeler should avoid estimating 

parameters on block average data. 

Insert Figure A.2 about here 

Simulation 3: curvature testing 

We explored the reliability of the test of linear hypothesis. In order to perform a 



Testing Curvatures 

25 

statistical test, we first generated 100 trial data sets following a power curve. As before, 

parameters a was fixed at 300 and b at 1000. Parameter c varied for each half of the sets 

with possible values of {0.2, 0.4, 0.6, 0.8}. When the two c where equal, the test should 

not reject Ho or else it makes a type-I error. When the two c are unequal, the test should 

reject Ho or else it makes a type-II error. The difference between the two c is the effect 

size; the larger the effect size, the smaller the number of type-II error should be. We used 

normal additive noise at a level η of 2.0. Tests were performed with a decision level of 

5%. The number of trials T was fixed at 400. Each test was replicated a thousand times 

Figure A.3 shows the results. When there is 80 blocks (N = 5), there are very few 

type-I errors but the power is very low: The test almost never rejected H0. In the opposite 

case (5 blocks with N = 80 observations per blocks), the opposite is seen: H0 is often 

rejected, resulting in a good power but a type-I error rate near 30%. Choosing the perfect 

compromise between block size and number of blocks (20 blocks of 20 trials) yielded the 

best results, with a type-I error rate near 8% and a power near 90% when a large effect 

size is present. Although the tests were performed with a decision level of 5%, the 

effective amount of type-I error is slightly larger due to a large amount of covariation 

within subject (Hoel, 1964). 

Insert Figure A.3 about here 

In another series of simulations, we tested the efficiency of the test with 1600 

trials and, weighting equally type-I errors and power, the test was optimal (equally 

weighting type-I error and power) at 40 trials per block, suggesting the general rule that 

the optimal block size for Rao's test is the square root of the number of trials. 
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Figure Captions 

Figure 1. Averaging power curve per block. Top part shows a power curve generated 

using the parameter {a = 0, b = 350, c = 0.455} over 400 trials. Bottom part shows the 

same curve when averaged by blocks of N = 40 trials. 

Figure A.1. Bias and efficiency in percentage as a function of the number of trials T for 

curvature parameter c increasing from top to bottom and noise level η increasing from 

left to right. 

Figure A.2. Bias and efficiency in percentage as a function of block size N for curvature c 

increasing from top to bottom and noise level η increasing from left to right.  

Figure A.3. Percent of times H0 is rejected using Rao's test with 5% level of confidence 

as a function of block size N for curvatures of the first simulated data set increasing from 

top to bottom and curvature of the second data set increasing from left to right. Number 

of trials T is 400 and noise η is 2.0. The main diagonal contains cases where both 

curvatures are equal and illustrates the percent of type-I errors. The off-diagonal plots 

contain cases where curvatures are unequal and thus illustrate the power of the test (one 

minus the percent of type-II errors). Left part of the first box shows the main diagonal 

across all c levels. Right part of the first box shows the power across all effect sizes (i.e. 

for all effect sizes). The second box shows the difference between the power and the 

type-I errors shown in the first box. Since this scenario weights equally type-I errors and 

power, the test is optimal at N = 40 or N = 80. However, if type-I errors are a concern 

(and weighted more heavily), the test would be optimal at N = 20, the square root of the 

total number of trials. 



Table A.1
Overview of the Monte Carlo simulations performed in the Appendix.

Description Simulation 1 Simulation 2 Simulation 3
Purpose Is bias dependant Is bias improved Is test of linear hypothesis

on noise, curvature? by block averages? more powerful with averaged data?

Dependant Bias Bias Type-I and Type-II errors
measures

Factors Curvature Averaging by blocks Curvature of curve 1
varied Sample size Curvature Curvature of curve 2

Noise Noise Averaging by blocks

Factors held Sample size (400) Sample size (400)
constant Noise (2.0)

Notes:
Curvature levels are: 0.2, 0.4, 0.6, 0.8.
Sample sizes T  are: 50, 100, 200, 400, 800, 1600.
Noise levels h  are: 0.5, 1.0, 2.0.
Block sizes N  are: 1 (no block average), 5, 10, 20, 40, 80

Table A.1
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Listing 1. A Mathematica program that performs a test of linear hypothesis (Rao, 
1959). It reads the input file "data.dat" which is composed of s columns with T 
observations in each. Comments are enclosed between (* and *).

H∗∗∗∗∗∗∗ load a useful package and set working directory ∗∗∗∗∗∗∗L
Needs@"Statistics`MultiDescriptiveStatistics "̀D
SetDirectory@"C:\\WINDOWS\\Bureau\\"D;

H∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ model information ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗L
Model@t_, c_D := 81, t−c< H∗trial data power curve∗L
θ@a_, b_D := 8a, b<
s := 4 H∗ number of columns∗L

H∗ definition of the Sum of Square Error used for minimization ∗L

SSE@set_, a_, b_, c_D := ‚
t=1

T

HsetPtT − θ@a, bD.Model@t, cDL2

H∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ read the data file ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗L
FileFormat = Table@Real, 8s<D;
data = ReadList@"data.dat", FileFormatD;
T = Length@dataD

H∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ compute the summary values ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗L
y = Mean@Transpose@dataDD;
S = CovarianceMatrix@Transpose@dataDD;

H∗∗∗∗∗∗∗ performs a fit over the average data and keep c ∗∗∗∗∗∗∗L
GroupFit = FindMinimum@SSE@y, a, b, cD,

8a, 100, 300<, 8b, 400, 2000<, 8c, 1.2, 2.0<
DP2T

c = c ê. GroupFit

H∗∗∗∗∗ performs a fit for each column and average a and b ∗∗∗∗∗∗L
IndividualFit = Table@FindMinimum@SSE@Transpose@dataDPiT, a, b, cD,

8a, 100, 300<, 8b, 400, 2000<, 8c, 0.2, 1.0<
DP2T,
8i, 1, s<
D;

θ
ˆ

= Mean@θ@a, bD ê. IndividualFitD

H∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ instantiate the model ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗L
A = Table@Model@t, cD, 8t, 1, T<D;

H∗∗∗∗∗∗∗∗∗∗ Perform Rao' s test of linear hypothesis ∗∗∗∗∗∗∗∗∗∗∗L
r = Length@θ@a, bDD + 1;
n = s ;

F =
n − r
cccccccccccc
r

 Iy − A.θ
ˆM.PseudoInverse@SD.Iy − A.θ

ˆM
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