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Abstract- Recently introduced time-based 
networks represent an alternative to the usual 
strength-based networks. In this paper, we compare 
two instances of each family of networks that are of 
comparable complexity, the Perceptron and the race 
network when faced with uncertain input. 
Uncertainty was manipulated in two different ways, 
within channel by adding noise and between channels 
by adding redundant inputs. For the Perceptron, 
results indicate that if noise is high, redundancy 
must be low (or vice versa), otherwise learning does 
not occur. For the race network, the opposite is true: 
If both noise and redundancy increase, learning 
remains both fast and reliable. Asymptotic statistic 
theories suggest that these results may be true of all 
the networks belonging to these two families. Thus, 
redundancy is a non trivial factor. 

1 .  IN T R O D U C T I O N 
Many connectionist networks are built around a 

strength-based representation in which 0 means an 
absence of input and 1 an input present. Recently, there 
was a demonstration that a network could be built 
around a time-based representation [1]. In this 
framework, stimuli are coded according to the moment 
they become accessible. Therefore, 0 means 
immediately available whereas ∞ means never 
presented. A time-based network tries to respond as fast 
as possible whether relevant information is present or 
not. The purpose of the learning rule is to discover the 
priority level of the inputs by increasing delays of 
connections. 

We showed in [2] the similarities that exist between 
the Perceptron with the delta rule and a simple time-
based network, the race network. As was demonstrated, 
the transmission rules and the learning rules are nearly 
identical in both versions. In one sense, this is not 
surprising because the two networks have exactly the 

same architecture (two layers, feed-forward). The 
surprise however came from the fact that the time-based 
version learned nearly twenty times faster a linearly 
separable problem, compared to a Perceptron with no 
hidden layer. 

One objective of this paper is to see whether the race 
network also learns faster a non-linearly separable 
problem, compared to its equivalent counterpart, the 
Perceptron. However, a more important objective of this 
paper is to see if this speed of learning advantage 
persists in more realistic situations. 

A physical system placed in a real-life situation is 
going to be fed with imprecise input. This imprecision 
has two different flavors. The first one is related to the 
quality of the input. There are few chances that perfect 
zeros and ones (or infinities and zeros, respectively, in 
the time-based representation) are sampled from the 
outside world. Instead, any real value number between 
these limits may be accessed. This first form of 
imprecision, which occurs within the connections (or 
equivalently, within the channels) will be called noise in 
the remainder of the paper. A simple way to simulate 
noise is to take the quantity that the connection would 
have sampled in the absence of noise (either 0 or 1 in a 
strength-based network) and blur this quantity by adding 
a random value to it. 

The second form of imprecision can be referred to as 
between-channel uncertainty. In a complex enough 
system, the inputs are likely to consist of a large array of 
detectors. Numerous inputs are an advantage from an 
engineer point of view because it increases the 
sensitivity to external signals and reduces the sensitivity 
to internal failures. A disadvantage of having a large 
array of detectors is that only a subset of them might 
register the presence of a stimulus and that subset can be 
different from one experience with the stimulus to the 
other. As an analogy, think of the eye as a large array of 
light detectors. A static square will affect different parts 
of the retina, with possible overlap between stimulated 



 

regions [3]. The key aspect behind all this is the notion 
of redundancy. Redundant inputs are a set of inputs 
whose purpose is to detect a specific attribute and many 
or all of them turn on when this attribute is present. 
Redundancy can be simulated by first getting the 
quantity that one connection would have sampled in the 
absence of noise and duplicate it a number of time. The 
corresponding network must have one input unit per 
duplicated signal. If noise is also present, then in a 
second step, each signal is blurred independently. 

The main objective of this paper is to see whether 
strength-based and time-based networks can learn input-
output associations when the inputs are redundant and 
noisy. The impact of redundancy was discussed in [4] 
for the strength-based networks; some of the following 
simulations will replicate their results. However, they 
used non noisy inputs. In what follows, we briefly 
review the race network and then perform simulations in 
which the amount of noise and the amount of 
redundancy are manipulated. 

1.1. Percep t ron  and  race  ne twork  
As said, the transmission and the learning rule of the 

Perceptron and the race network are very similar. The 
transmission rules are given by Wao .= and Wao .~=  
respectively, which means: 

 ∑ ×= )( ijij wao  vs. )( ijij wao += ∨  (1) 
where o is the output vector of the network, a is the 

input vector, and W is the connection matrix of the 
network. In the case of the Perceptron, W contains the 
weights of the connections. The operation . (dot) 
represents an inner product, that is, an operation where 
pairs of values are joined using × and where columns are 
aggregated using Σ. For the race network, connections 
represents "waits", a wait wij of 0 meaning that the ith 
input is highly important for the jth output and has high 
priority whereas ∞ has the opposite meaning. The 
operation .~  is a modified inner product that joins pairs 
of values using + and aggregates columns using ∨, the 
kj

th smallest element. A component of the race network 
that is not visible in the above notation is the threshold 
vector k of the same size as the output vector. 
Thresholds are discussed next.  

In general (and in the simulations that follows), a 
sigmoid function is applied to the output of a Perceptron 
so that the outputs are bounded between 0 and 1 and still 
derivable [5]. 

Learning in the race network occurs by penalizing the 
connections that contributed most heavily to the error, as 
indicated by a "teacher". Thus, it implements an 
algorithm similar to the ∆ rule. The rule stipulates that 

)( () eoaW −= +α∆  where α is a learning rate parameter 
and e is the expected output vector. The operation ()+  is 
a modified outer product where pairs of values are 

joined using +. The update of the connection waits are 
then performed with )( WWWW ∆+⎯⎯⎯ ⎯← ∨update . 

So far, the two networks have very similar 
mechanisms, resulting in very similar equations. In the 
following, we discuss the dissimilarities. 

First, the race network uses a hard threshold in its 
decision rule, a quantity kj for each output unit. Its role 
is to indicate how many channels must send information 
before the output unit is triggered. This quantity is set to 
one at the beginning of training and is adjusted only 
when an output missed, i. e. when it was not triggered 
but should have according to e: )(# kSignk −= aω∆ , 
where Sign(x) returns +1, -1 or 0 depending on whether 
x > 0, x < 0, or x = 0 respectively, #a returns the number 
of inputs that were active at the time the error was 
detected and ω is a learning rate parameter for the 
thresholds (0 < ω < 1). 

The second difference is related to how the 
architecture must be modified so that these networks can 
learn non-linearly separable problems. For the 
Perceptron, the solution is well-known and consists in 
adding a layer of hidden units. The error given by the 
teacher is back propagated in the network so that the 
residual error is used on preceding layers. 

For the race network, the solution consists in adding 
"clock" units at the input layer. These units are in no 
way influenced by the stimuli. However, at some time, 
they will turn on. The moment when this happens is 
arbitrary and we used 0 in all the simulations. In 
essence, these units simply indicate that time is passing 
and a decision can be based on this fact. As an 
illustration, we indicate in Figure 1 how the race 
network could solve an XOR problem [6]. 

The Perceptron has nice properties. It reduces the 
energy using gradient descent techniques. It is also an 
optimal classifier in the sum of square sense. By 
contrast, the properties of the race network are not 
known. It might perform some form of Lagrangian 
descent learning, but a demonstration is still to come. 

2 .  SI M U L A T I O N S 
We first describe the training problem and then the 

networks and how they were made comparable. 
Afterwards, we describe how noise and redundancy were 
manipulated. 

2.1. The  t ra in ing  prob lem and  i t s  
r epresen ta t ion  

The networks were all tested on the same problem, the 
XOR problem. It was chosen because it is well known 
and non-linearly separable. For a strength-based 
network, True is represented by 1 whereas False is 
represented by 0. For a time-based network, True is 



 

represented by 0 and False by ∞. This ∞ is meant to 
represents "never" but because it reduces the 
comparability of the two networks, we chose to use 1 
instead of ∞. This means that an input unit that does not 
receive stimulation will nevertheless turn on after 1 
arbitrary unit of time. This can be seen as a "spurious 
activation" or a false alarm. 

To signal the two possible responses, two output units 
were used so that when one had to turn on, the other had 
to remain off, and vice-versa.  

Because of the symmetry of the XOR problem, the 
exact same input-output sets can be used to train both 
networks. For example, the input {1,1} is seen as {True, 
True} for the Perceptron but as {False, False } for the 
race model. The only difference is that the responses are 
inverted: the Perceptron had to learn to activate the 
second output for the above input whereas the race 
network has to activate the first input. 

2.2. The  ne tworks  

In all the simulations, the race network used had two 
clock units but no hidden layer and two units on the 
output layer. The learning rate parameters were α = 0.5 
and ω = 0.1. We tried various αs with no qualitative 
changes in the results. The Perceptron used had one 
hidden layer composed of 6 units. The learning rate 
parameter α was 0.5. We also tested a Perceptron with 
two hidden units so that the total number of units in the 
two networks was identical. However, such a Perceptron 
could not learn the XOR problem on nearly 25% of the 
simulations. 

In the simulations, the order of presentation of the 
instances was random. Training was arbitrarily divided 
in epoch of ten trials. In all cases, it was interrupted 
after 5000 trials. To test that learning was successful, we 
used the following criterion: learning occurred if the 
sum of square error (SSE) between the network's output 
and the desired solution was reduced below 0.1 [7]. 
Because the race network tends to produce a very erratic 

learning curve (as seen in the following figures), the 
SSE obtained in a simulation were smoothed using a 
moving windows of 50 trials: The smoothed 
performance at trial i is the average of that trial, the 24 
trials that follows and the 25 that precedes it. All the 
simulations were replicated a hundred times. 

2.3. Redundancy  and  no i se  

Two levels of redundancy, noted with the letter ρ, 
were tested: either no redundancy (ρ = 1) or high 
redundancy (ρ = 10). In the no redundancy condition, 
the two input dimensions were not duplicated and so the 
networks tested had only two input units. In the high 
redundancy condition, the two inputs were duplicated 
ten times. Thus, there were 20 input units. For the race 
network, there were always two additional input units, 
the clock units, which were set to 0 on all trial, 
irrespective of the input presented. We also ran 
simulations where the clock units were also duplicated ρ 
times, but this did not change the results presented in the 
next section. 

Noise was added independently to each input using an 
exponential distribution. When the input was 0, an 
exponentially distributed random value was added. It 
was subtracted when the input value was 1 so that the 
resulting input value tented to be between 0 and 1. 
Values that exceeded 1 were truncated to 1 and values 
below 0 were truncated to 0. The exponential 
distribution is specified by a single parameter η, which 
is both the mean and the standard deviation of the 
population. It is lower bounded at zero but extend to ∞ 
(hence, the truncation procedure described above). 

We tested two noise conditions (η = 0.05 and η = 
0.10). The η = 0.10 condition will be called the high 
noise condition, even though the average value is close 
to zero (being 0.1) and the perturbation is between 0 and 
0.2 on 86% of the trials. 
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Fig. 1. How a race network can solve the XOR problem. The clocks are on at the onset of a trial. If present, the network 

immediately detects the presence of both input since the connections imposes no extra delays (w11 = w21 = 0 and threshold 
k1 = 2). If only one input is on, the output B will be triggered by it after a delay of 5 (arbitrary units of time) imposed by the 
connection (w12 = 5 or w22 = 5). Finally, if no inputs are present, the clock units will activate a response after a delay of 10.

 



 

3 .  RE S U L T S  O F  T H E  S IMU L A T I O N S 
We present the results in the no redundancy conditions 

(ρ = 1) followed by the high redundancy conditions (ρ = 
10). 

3.1. Learn ing  wi th  no i se  bu t  no  redundancy  
Figure 2 presents the networks’ performances for a 

typical simulation. The vertical axis represents the mean 
SSE for a given epoch. Table 1 shows the average 
performance across a hundred replications. 

We first look at the low noise conditions (top row): 
For the Perceptron, the average number of iterations to 
reach the criterion is near 2300 and the percent of 
successful learning is 98%. As of the race network, it 
does a few scattered errors, as seen in Figure 2. As 
training extend further, these errors became rarer. 
Learning is very rapid (270 trials) and very reliable 
(100% of successful learning). Because the race network 
is a winner-take-all network, the pikes are often the 
results of a single erroneous response. 

The major result of this section is in the bottom row: 
with high level of noise, the race network suddenly stops 
learning. Various learning parameters were tested with 
no change. The percent of successful learning dropped 
to 10%. By contrast, the performance of the Perceptron 
was unaffected by this amount of noise. As will be seen 

next, a totally different picture emerges when 
redundancy is introduced. 

The fact that the race network does not learn an XOR 
problem with high noise, whatever the parameters, 
suggests that it is a limit of the whole framework rather 
than an accidental limit of our simulations. In the 
general discussion, we suggest an approach to 
understand this limit. 

3.2. Learn ing  wi th  no i se  and  redundancy  
Figure 3 presents the results of a typical simulation 

when redundancy is high (ρ = 10). As seen, the results 
are very different from those of Figure 2. 

First, the race network learned in all noise conditions. 
Going from low noise (η = 0.05) to high noise (η = 
0.10) did slow down learning: the number of iterations 
roughly doubled as noise was doubled. However, 
learning was very robust: the criterion was reached in 
over 99% of the simulations. By contrast, the Perceptron 
behave in a totally different manner. For low noise, 
learning is faster (average of 1400 trials) and moderately 
reliable (76% of the simulations found a solution). 
Faster learning in the no noise condition was predicted 
by [4] who studied the role of redundancy in the 
presence of non noisy input. In the high noise condition, 
only 51% of the simulations found a solution in less than 
5000 trials (in which case learning was moderately fast 
with an average near 1700 trials). 

 

 
Fig. 2. Comparison of the Perceptron (left column) and the race network (right column) on the XOR problem 
when there is no redundancy (ρ = 1). Noise is either small (η = 0.05, top row) or high (η = 0.10, bottom row). 

One epoch represents 10 trials. 



 

These simulations raise the role of uncertainty in 
understanding neural networks' behavior. It does have a 
quantitative impact on speed of learning: the Perceptron 
learned almost two times faster in the high redundancy 
condition whereas the race network was three times 
slower. More importantly however is the finding that 
learning was unreliable in certain cases involving both 
noise and redundancy. Given a high level of noise, the 
race network was unreliable when redundancy was low 
whereas the Perceptron was unreliable when redundancy 
was high. This interaction is maybe the key difference 
between the two types of networks. We next look at 
theorems related to asymptotic distributions of noise 
than might suggest an explanation.  

4 .  GE N E RA L  DI S C U S S I O N 
The role of many neural networks is to find a 

separation between the stimuli. Non-linearly separable 
problems are difficult because there is no single 
separation in the original input space. This is why 
hidden layers and non linear functions are required. The 
race network, owing to its clock units, can implement 
more than one separation, so it does not need a hidden 
layer to learn the XOR problem. 

When the input is noisy, its representation in the input 
space is changed from a point to a cloud whose density 
is higher near the center but which may extend far in all 
directions. The separations are no longer absolutely 
reliable but if the extend of the cloud is not too large, 

 

 
 

Fig. 3. Comparison of the Perceptron (left column) and the race network (right column) on the XOR problem when redundancy 
is high (ρ = 10). Noise is either small (η = 0.05, top row) or high (η = 0.10, bottom row). One epoch represents 10 trials. 

 

Table 1. Mean number of iteration required (max. 5000) to reach an amount of errors
 (SSE) below 0.01 plus or minus the standard error of the mean and percentage of

successful learning between parenthesis.

ρ  = 1 ρ  = 10
Perceptron Race Network Perceptron Race Network

η  = 0.05 2346 ± 75 268 ± 56 1724 ± 79 717 ± 49
(98%) (100%) (76%) (99%)

η  = 0.10 2715 ± 51 4461 ± 65 1665 ± 130 1205 ± 55
(100%) (10%) (51%) (100%)



 

the separations may be reliable most of the time. 
We can implement the clouds with a distribution 

function and measure its extent using the standard 
deviation. In the above simulations, we specified the 
standard deviation of the noise at the input (η). We thus 
want to know the variance at the output and check 
whether the limited domain of the representation 
adopted [0..1] is large enough to contain one (or two for 
the race network) useful separation. 

Following [8], let L(o) be the distribution function of 
the outputs. From Eq. 1, we have for the Perceptron that 
L(o) = L( a . W ). Thus, we are looking for the 
distribution of a weighted sum, so that the distribution 
function L is with respect to summation, that we note 
LΣ( a × W ). Assuming that the number of connections is 
large (this was not quite true in the simulations so the 
following has only a heuristic value), the question is 
thus to find the asymptotic distribution with respect to 
summation. The solution has been known for decades 
and is given by the Central Limit Theorem [9]. More 
importantly, it states that the total variance will be the 
sum of the input variances. If all the inputs have the 
same standard deviation η and their number is given by 
ρ, then the final standard deviation is 

 η Σ = η × ρ  (2) 
Hence, the size of the cloud increases with the number 

of redundant input. Because the range of values is 
limited to be between 0 and 1, there is a point where no 
separation is possible. 

This informal reasoning explains why the Perceptron 
could not learn the XOR when redundancy was high: the 
output standard deviation was ρ  times larger than in 
the no redundancy condition, probably spanning the 
whole range. 

For the race network, things are different.  L(o) is 
given by L( a .~  W ) which is the distribution with 
respect to minima L∨( a + W ). Assuming that the 
number of connections is large, the solution to this 
problem is given by the Extreme Limit Theorem [10]. It 
states that the final standard deviation has the following 
relation to the standard deviation of each input (assumed 
to be all equal) and the redundancy: 

 η∨ = 
γ ρ

η  (3) 

where γ depends on the specific nature of the noise 
distribution (its "signature", [10]; in the simulations with 
exponential noise, γ is 1). The important point is that ρ 
cancels the effect of noise. Noise can be increased, as 
long as redundancy is also increased, the net effect is 
equivalent to a low noise, low redundancy condition. In 
this framework, redundancy acts like a filter. 

The race network could not learn in the η = 0.10, ρ = 
1 condition because it had to maintain two separations, 

one more than the Perceptron. However, in the ρ = 10 
conditions, noise was reduced ten times. 

This paper suggested how noisy input could be 
modeled in a large scale network using between-channel 
and within-channel uncertainty. Faced with redundancy 
and noise, the race network and the Perceptron behaved 
in drastically different ways. This was demonstrated 
with simulations, and Equations 2 and 3 taken from 
asymptotic statistics seem to indicate the generality of 
this finding. If this network is to be used as a model of 
the human cognition, then it shows that a central 
question that ought to be examined is whether there are 
redundancy in the brain or not. 
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