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Abstract 

In this paper, we describe the Parallel Race Network, a race model with the ability to 

simulate cognition autonomously using a formal framework that is identical to the one 

used by the traditional connectionist networks. The Parallel Race Network assumes that 

the connections represent abstract units of time rather than strengths of association. 

Consequently, the connections in the network indicate how rapidly the information 

should be sent to an output unit. The decision is based on a race between the outputs. To 

make learning functional and autonomous, the Delta rule was modified to fit the time-

based assumption of the Parallel Race Network. Finally, the Parallel Race Network is 

used to simulate an identification task and the implications of its mode of representation 

are discussed. 
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Redefining the Rules: 

Race Models can autonomously simulate human cognition 

Connectionist networks have proven to be insightful models of human cognition. 

This is reflected in a recent survey showing that their progression in the literature has 

been exponential (Golden, 2002). Their popularity stems from their ability to simulate 

both learning and knowledge representation using a relatively small set of assumptions. 

These models use very simple processing units embedded within a large network. 

Information is stored as weighted associations and learning is achieved either by input 

accommodation (unsupervised learning) or error reduction (supervised learning). 

Although it enjoys less popularity than the connectionist network family, there 

exists a second family of models that can use simple processors to simulate cognition. It 

is the family of sampling models, which includes accumulator models such as random 

walk and race models. They share the common assumption that the senses (or input units) 

are sampled once or many times to produce a noisy representation of the information 

obtained from the outside world. This way of representing knowledge makes sampling 

models very powerful models to predict response time distributions (Luce, 1986, 

Townsend and Ashby, 1983). However, they are not used nearly as often as the 

connectionist network family for one important reason. As of yet, there exists no learning 

rule that allows these models to process information dynamically and autonomously. 

Thus, sampling theories have been useful when an analytical solution to a given problem 
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is sought (Huber and Cousineau, submitted). However, as far as simulating human 

cognition goes, they cannot compete with connectionist networks. 

The goal of this text is to bridge this gap between connectionist networks and 

sampling theories. We will show how a new sampling model, the Parallel Race Network 

(PRN) can be organized into a network that can autonomously simulate brain-like 

information processing. Our discussion will proceed as follows. First, we will present a 

member of the connectionist network family, the Perceptron.  This will allow us to 

review the formal aspects of these models: the architecture, the input-output 

representation, the integration rule, and the learning rule using a simple example. Then, 

we will briefly introduce an overview of several sampling theories with the aim of clearly 

showing these models’ focus on a time-based representation of the information rather 

than a strength-based one as is the case for connectionist networks. This is a profound 

change that allows thinking about brain processes from a radically different perspective. 

This will be followed by the presentation of the PRN. We will show that the formal tools 

used to run simulations with connectionist networks also work with the PRN. This 

breakthrough is directly linked to our reanalysis of the delta rule. We will show that this 

rule can be divided into two constituent operators, the joining operator and the 

aggregation function, which can be modified to accommodate race models. Finally, we 

will present simulations of a simple identification task conducted with the Perceptron and 

the PRN. This will allows us to argue that the PRN is a compelling alternative to 

connectionist networks. 



Redefining the rules 

5 

1. One type of connectionist network: The Perceptron 

We begin our discussion with a well-known member of the connectionist network 

family, the Perceptron (Widrow-Hoff, 1960, Rosenblatt, 1961). The limits of this network 

have been clearly documented. For example, it cannot solve non-linearly separable 

problems such as the XOR (Minsky and Papert, 1969).  Although newer network models 

have been shown to be more powerful due to the addition of different innovations such as 

hidden layers (McClelland and Rumelhart, 1986), more effective learning rules 

(O’Reilly, 1996), recurrent architectures (Anderson, 1995), lateral inhibition (Kohonen, 

1984), and unsupervised learning (Hinton & Sejnowski, 1998), the Perceptron possesses 

all the fundamental attributes of these current connectionist networks regardless of its 

apparent simplicity. Thus, the formal description of the Perceptron that we will present 

here will allow us to highlight the commonalities and the differences between 

connectionist and time-based networks. 

Architecture 

The Perceptron is a feed-forward network of connections between processing 

units. Hence, it is a unidirectional network and it does not allow for recursion. Typically, 

it is built with only input and output units, but more levels of processing units may be 

added if desired. Part (a) of Figure 1 illustrates a simple architecture. 

Insert about here: Figure 1 

Input-output representation 

The processing units in the Perceptron represents input using a strength of 

activation approach. By convention, a value of “0” shows no activation (the input is said 
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to be Off), whereas “1” shows very strong activation (the input is said to be On). Strength 

of activation is a continuous variable. Therefore, any value between 0 and 1 may be 

registered.  

For consistency, the connections between the processing units are also represented 

as strengths of association. Moreover, inhibitive connections may be represented in the 

network with the use of a negative value. For instance, “-0.5” shows a moderately strong 

inhibitive association. Finally, the outputs are also assigned the same numerical scale so 

that “0” shows no response and “1” shows a strong response. 

As all numerical values in these networks represent strengths, connectionist 

network can be called strength-based networks. Using the analogy presented in part (b) of 

Figure 1, the connections can also be described as weights showing the amplitude of the 

associations. 

Integration rule 

In a feed-forward architecture, the signal must propagate from the input layer 

(representing the senses) to the following layer. The equation describing how these 

signals are transformed is called the integration rule. In the Perceptron, the signals are 

modified by the weight of the connections through which they must travel. 

Let W be a matrix {wij} containing all the weights for the connections linking unit 

i on the input layer to unit j on the second layer. Furthermore, let A be the input vector 

{ai} representing the strength of the activation on the ith input unit. Then, the total 

activation of a unit on the second layer is assumed to be a sum of its inputs weighted by 
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the connection, as schematized in part (c) of Figure 1. Formally, if we denote the jth unit 

on the second layer by oj, we can write: 

 ∑
∈

×=
Inputi

ijij wao  (1) 

In order to compute the activation of all the units on that layer, we can generalize 

Equation (1) using the vector and matrix defined above. Therefore, O, the resultant vector 

{oj} is given by O = A . W in which the dot represents the standard inner product. It is 

important to note that the inner product actually represents two operations. First, it joins 

pairs of values, the inputs and the weights of the connections, by multiplication ( iji wa × ). 

Secondly, it aggregates all the received activation at an output unit by summing each 

connection’s level of activation. Thus, we may note the integration rule more explicitly:  

 WAO








Σ
×=  (2) 

in which 








Σ
×  expands the inner product to show separately the multiplication as the 

joining operation and the summation (Σ) as the aggregation operator. This notation, 

although more cumbersome, will be critical to our description of the Parallel Race 

network. 

Let us mention that this inner product is compatible with the input-output 

representation that we have assumed because 1 is neutral with respect to the 

multiplication and 0 is neutral with respect to the summation. This implies that a matrix 

with a diagonal composed of ones, while the remaining values are zeros, will be neutral 
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with respect to the inner product. This matrix is well known as the identity matrix I such 

that I . A = A . I = A, for any matrix A. 

Finally, note that strength-based network, such as the Perceptron, do not predict 

response times, but only the strength of the responses. Whether these networks can 

successfully explain response times has not yet been established (but see Usher and 

McClelland, 2001). However, it is easy to demonstrate that any Perceptron with a 

sufficiently large number of processing units will produce a normal distribution of 

activation at the output if there is noise in the input and/or the connections. This result is 

obtained by use of the Central Limit Theorem. 

Learning rule 

Traditionally, the Delta rule is used to implement learning in the Perceptron 

(Rumelhart, Hinton, & Williams, 1986). It modifies erroneous outputs by increasing or 

decreasing the weights of the connections as a function of input strength. Thus, the 

change in a connection weight, ∆wij, is proportional to the amount of error multiplied by 

the strength of the input: 

 )( jjiij oeaw −×∝∆  

in which ei is the expected output on unit j. In matrix form, we may write: 

 )(() OEAW −∝∆ ×  (3) 

in which E is the vector {ei} of the expected output on all the units and ()×  is the outer 

product, showing explicitly that pairs of values are joined using multiplication. Weights 

are updated by integrating the old weights and the corrections with a summation: 
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 WWW ∆+ ← αupdate  (4) 

in which α is a modeler determined learning rate parameter. This allows for gradual 

changes in the connection weights and prevents the network from entering a chaotic 

mode. 

Potentially problematic is the fact that Equation (3) can produce weights outside 

the allowable range (wij < –1 or wij > 1). For that reason, it is necessary to add an 

operation that bounds the output. One simple solution is to truncate any illegal output. 

However, a more elegant solution is to use a filtering function f so that the results are 

given by )(OO f← . Often, f is the sigmoid function, chosen for its mathematical 

tractability (Hinton, 1992). 

If the network is multi-layered, the error must be fed backward into the network. 

First, the weights in the last layer must be corrected. This produces a residual error that is 

assigned to the previous layer. This procedure is repeated backward until the first layer is 

reached or when no more residual error remains. 

2. Sampling theories 

In this section, we briefly present the sampling family of models or what can be 

called time-based models. The Parallel Race Network introduced in the following section 

is the newest member of this family. This review will allow us to outline these models’ 

common assumptions and their limitations. Figure 2 presents a simplified hierarchy. 

Insert about here: Figure 2 
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At the core of sampling models lies the notion that the senses are sampled and that 

this process produces a certain activation level. As the sampling process is not perfect, 

the activation level is a noisy version of the true physical stimulation. 

The first sampling model was the Signal Detection Model (SDM, often called the 

Signal Detection Theory, Green and Swets, 1966). It carries the assumption that the 

senses are sampled only once and the activation level can be either “0” if no stimulation 

is present or d' if a stimulation is present. The value d' depends on the strength of the 

physical stimulation and is often called perceptibility. Because of the noise added to the 

sampling process, there can be overlap between the activation levels for a signal present 

vs. a signal absent. Thus, an optimal decision rule is to use a criterion c to minimize the 

errors allowed (Dorman & Alf, 1969, Geschelder, 1985, Coombs, Dawes & Tversky, 

1970). Although the quantities d' and c are still often used to describe patterns of errors, 

the use of SDM as a model of cognition is now marginal. The limitations are that (i) the 

SDM samples the senses only once and (ii) the sampling time is not specified. 

To address this problem, the model was generalized in two ways yielding what we 

term the Multidimensional Signal Detection Model (MDSDM). The new core assumption 

was that n channels could be sampled in parallel and each channel could be sampled m 

times. The ideas about noisy sampling and decision criteria were preserved. However, the 

decision was now based on m activation levels per channel that had to be compared to a 

single criterion. Input aggregation was achieved by either calculating the average or 

finding the highest level of activation (Zenger and Fahle, 1997). These models were 

useful in describing detection accuracy when the number of items presented increased 
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(Shaw, 1980, Eckstein, 1998, Eckstein, Thomas, Palmer, & Shimozaki, 2000), but RT 

prediction is difficult within this model (Palmer 1998). 

The other branch of sampling models, more relevant to our discussion, is grouped 

under the generic term of accumulator models. These models assume that each input can 

be sampled many times, the exact number depending on the informativity of the samples. 

However, they are more complex than the SDM and the MDSDM because there can be 

noise on the magnitude of the sample, on the time between two samples, or on both. The 

criterion can be viewed as an objective that states how much activation should be 

received before an output unit is triggered. Thus, these models are said to accumulate 

activation and are triggered when an accumulator is full. 

Because the accumulator will always become full at some point in the presence of 

noise, two or more accumulators are placed in the network and the first accumulator to be 

filled makes the decision. Therefore, time is an essential aspect of accumulator models. 

One important distinction between different varieties of accumulator models is whether 

the criteria are dependent on other accumulators’ level of activation or not. Random walk 

models (with discrete activation times; see Ratcliff, 1978, Link, 1975, 1992, Smith, 1990) 

and Diffusion models (with continuous activation times; see Ratcliff, Van Zandt, & 

McKoon, 1999, Diederich, 1995) assume that the race is finished if one accumulator 

exceeds the others by a certain amount. On the other hand, race models assume that the 

criterion for one accumulator does not depends on the other accumulators' state (see Van 

Zandt, Colonius & Proctor, 2000, Smith & Vickers, 1988, Pike, 1973, Laberge, 1962, 

Logan 1988, Meijers & Eijkman, 1977). 
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One limitation of the accumulator models so far is that they assume a single-

channel architecture for each accumulator. If multiple samples are required, they must 

travel serially (often under the form of spikes of activity). This is a serious shortcoming 

because it entails that either the responses are based on a disjoint pool of information or 

that a "dispatcher" is necessary to select the channels on which information should travel. 

Clearly, these options are undesirable. 

An ingenious way to avoid these limitations is to build a complete network of 

connections including parallel sources of input that allows the model to select channels 

autonomously. This is the solution that we wish to present by introducing the Parallel 

Race Network. 

3. The parallel race network 

The Parallel Race Network is a new variety of accumulator models within the 

sampling theory family. Each output unit is postulated to be an accumulator that is 

triggered when a certain number of inputs are received. For simplicity, the activations are 

assumed to be discrete. Hence, each activation received is said to fill a slot in the jth
 

accumulator that has a total size of kj. The time that elapses between two activations is 

continuous. Processing, as the name of the network implies, involves a competition 

between the outputs units: the first accumulator to be filled wins the race and therefore 

determines the answer. 
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Architecture 

The architecture of the Parallel Race Network is identical to that of the 

Perceptron. There are units connected to the senses on the first layer and one or many 

layers of units that accumulate the activations from the previous layers. Figure 3, part (a) 

illustrates a two-layer PRN. 

Input-output representation 

Conceptually, the values assigned to the inputs in the PRN differ markedly from 

those used in the Perceptron because they code a different aspect of the input. Whereas 

the Perceptron codes input strength, the PRN codes input arrival times represented in 

arbitrary units. If the input is immediately active, it is represented by “0”. However, it is 

possible for an input never to be activated. In this case, it would hypothetically react after 

an infinite amount of time “∞”. This transition from {0,1} in the Perceptron to {∞, 0} in 

the PRN may initially seem counter-intuitive. Yet this type of representation clearly 

emphasizes the PRN’s focus on the temporal aspect of the activation. This point is 

schematized in part (b) of Figure 3. 

Insert about here: Figure 3 

The connections are also considered with respect to time. An input that is strongly 

related to a certain response may be postulated to fill immediately one slot of the 

corresponding accumulator. Likewise, it can be supposed that an uninformative input will 

never reach the accumulator even though it may be active. One way to implement these 

assumptions is to introduce delays in the connections. A "slippery" connection is one that 

does not delay the passage of information. To use the familiar expression, this connection 
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will be said to be “On”. Similarly, a connection that offers “resistance” will delay the 

passage of information indefinitely and will be said to be "Off". In terms of passage 

times, the first case introduces a delay of zero and the second case introduces an infinite 

delay. Thus, the coding {∞, 0} is also used to express the state of the connections. 

Integration rule 

Let dij be the delay introduced by information traveling from the input i to the 

output j and D = {dij} be the full matrix of connections.1 Further, let A = {ai} be the 

moment at which the ith input gets active. An accumulator with k slots will react when k 

activations are received. Each input become active at a time ai and is delayed in the 

connections by a time dij so that it reaches the jth accumulator after a total time of ai + dij. 

All the inputs will reach the jth accumulator after the times given by a list {ai + dij} for all 

i. The accumulator will be triggered as soon as the kj
th fastest signal is received. The time 

for the kj
th fastest is determined by the kj

th smallest time in the list {ai + dij}. Thus, the 

decision time for the jth output is given by: 

 iji

k

inputij dao
j

+=
∈
∨  (5) 

in which 
jk

∨  locates the kj
th smallest element of the list. The central role of the Minima is 

schematized in Part (c) of Figure 3. 

Equation (5) is functionally very similar to Equation (1). For each output, couples 

taken from the inputs and the connections are joined, and the resulting list is aggregated 

into a single summary value. However, the PRN does not use the same operations as the 

Perceptron to accomplish this goal. First, an addition is used to join pairs of values 
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instead of a multiplication. Secondly, the minimum is used to execute the aggregation of 

the list instead of the summation of activation used in connectionist networks. These 

operations over all the outputs may be summarized using the following matrix notation: 

 DAO








∨
+=  (6) 

in which 








∨
+  represents a redefined inner product that shows explicitly the use of an 

addition as a joining operator and the minimum for the aggregation operation. We will 

note the redefined inner product more compactly with . 

Here, O is a vector that contains the times at which each of the outputs fired. Once 

again, note that only the fastest output matters. Nevertheless, the vector contains the 

information of all the participating output units. Thus, this representation allows for the 

evaluation of phenomenon such as confidence levels without the addition of extra 

parameters (For example, see Huber, Cousineau & O'Reilly, in preparation). 

It can also be appreciated that the redefined inner product 








∨
+  has an elegant 

relationship with the input-output representation values {∞, 0}. Indeed, the value 0 is 

neutral with respect to addition and ∞ is neutral with respect to minimum. Therefore, a 

matrix with all values set at ∞ except for the main diagonal set at 0 would yield a neutral 

matrix with respect to . By analogy to work on linear algebra, we call this matrix the 

redefined identity matrix, which we note 
~
I  so that 

~
I   A = A  

~
I  = A. 

One final attractive quality of the PRN related to its integration rule is its capacity 

to predict response times when noise is present. This model only allows noise that is 
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positive.  That is, noise simply creates further delays in the time taken for the activation 

to reach the accumulators. Using a proof developed by Cousineau, Goodman and Shiffrin 

(2002), which can be termed the "Extreme Limit Theorem", it is possible to infer the 

distribution of these finishing times. Under very general conditions (satisfied here), the 

theorem shows that the distribution of the kj
th fastest activation follows a Weibull 

distribution. This distribution is generally positively skewed and is congruent with 

response time data (Luce, 1986). 

Learning rule 

The PRN requires a supervised network with two learning rules: one to speed up 

the connections that convey diagnostic information and one to update the sizes of the 

accumulators. The corrections are based on the error between the actual outputs and the 

desired output E. In its simplest form, the desired output consists of a 0 for the output that 

should fire first and ∞ for the outputs that should not fire at all. 

The learning rule that we present here is called by analogy with Equation (3) the 

redefined Delta rule, or 
~
∆  rule. The delay between the input unit i and the output unit j 

must change in proportion to the error (defined here in terms of precocious responses) 

and the times at which the inputs were available: 

 )( jjiij oead −+∝∆  

in which ej is the expected response time of unit j. In matrix form, we may write: 

 )(() OEAD −∝∆ +  (7) 
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in which ()+  is a redefined outer product showing explicitly the use of addition to join 

pairs of values. The matrix is updated by determining the shortest delay between the old 

delay and the corrected delay: 

 DDDD ∆+ ← ∨ ϕupdate  (8) 

where ϕ is the learning rate parameter for the delay. Comparing Equations (3) and (4) 

with Equations (7) and (8) respectively, note that wherever a multiplication was used in 

the previous equations, an addition is used, and wherever a a sum was used, a minimum 

is used. Thus, the changes made in the integration rule, going from a standard inner 

product 








Σ
×  to a redefined one 









∨
+  are mirrored by equivalent changes in the learning 

rule. 

Accumulator sizes must also be changed throughout learning. Let K be a vector 

containing all the accumulator sizes {kj} for the jth accumulator. In case of an error, the 

size of the output that missed the response is updated using this rule: 

 )(# missedmissed
update

missed Sign KAKK −+ ← ω  

where Sign(x) returns +1, -1 or 0 depending on whether x > 0, x < 0, or x = 0 respectively. 

#A returns the number of inputs that were active at the time the error was detected. In 

other words, the size of an accumulator is increased if its number of slots was smaller 

than the number of input it received. Finally, ω is the learning rate parameter for the 

changes in the accumulator sizes. 

 We believe that our formal description of the PRN is very promising from a 

modeling point of view as it shows unequivocally that these time-based models of 
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cognition may be implemented as easily as the current strength-based networks while 

avoiding the limitations of previous accumulator models. To illustrate this last point, we 

now present a simulation in which both the Perceptron and PRN solve a simple problem. 

4. An example 

In this section, we use the Perceptron and the PRN to simulate human 

performances in an identification task involving letters (conducted by Larochelle, 

Lefebvre and Cousineau, in preparation). The stimuli were eight lowercase letters {n, h, 

b, u, y, q, p, d}. To minimize the number of possible features, the "y" was drawn as a 

reversed and inverted "h" (see Figure 4). It turned out that the participants found these 

stimuli difficult to search for, even after extended practice with consistent mapping 

(Shiffrin and Schneider, 1977).  

Our goal in presenting the following simulations is not to set up a head-to-head 

competition between two models. Rather, we wish to show that race models can 

autonomously simulate human cognition as well as connectionist networks and that their 

time-based representation provides new insights in understanding old problems. 

Insert about here: Figure 4 

Learning with the Perceptron 

A two-layer Perceptron was trained to identify the stimuli of Figure 4. Each 

column in Figure 4 coded one stimulus.  For the simulation, the "+" were replaced by 

“1”s and the empty locations were filled with “0”s in order to respect the input-output 

representation of the strength-based network. Before training, the connections were set at 
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random. Uniform random values between –0.5 and +0.5 were used. The learning rate 

parameter was set at α = 1. The task of the network was to decide which letter had been 

presented.  The features were presented as input and network responded with the 

activation of one of the eight outputs. The architecture of the network was composed of 

five input units and eight output units. The connections were contained in a 5 × 8 matrix. 

The network was trained for 300 epochs. Each stimulus was presented once in a random 

order within an epoch. 

Part (a) of Figure 5 shows the errors that the network produced. They were 

measured using the Root Mean Square Deviation (RMSD) between the expected and 

observed output across all eight outputs. If we assume that a RMSD below 0.3 indicates 

successful learning, the Perceptron took an average of 165 epochs to learn to identify the 

eight letters when the simulation was replicated a thousand times. 

We have schematized the Perceptron’s solution to the identification problem in 

Part (b) of Figure 5 using a bubble plot. The bubble sizes are directly proportional to the 

strength of the associations. This bubble plot was filtered in Part (c) of Figure 5 to show 

only the largest weights in order to better evaluate learning. We can see from the bubble 

plot why the stimuli are difficult to discriminate. For example, the letter "n" is totally 

embedded within the letter "h" which is itself embedded within the letter "b". Because 

there is no feature to signal the absence of a bar up, the "n" output must be strongly 

associated with the bar to the left. However, if a bar to the left is presented, it does not 

imply necessarily the presence of an "n". Thus, the network had to develop inhibitive 
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connections. Finally, as is always the case when dealing with simple connectionist 

networks, there is no straightforward way of predicting any kind of response time data. 

 

Learning with the parallel race network 

The PRN was also trained to identify the stimuli in Figure 4. All "+" were 

replaced with “0” (present) and the other locations were replace with “∞” (absent). The 

architecture of the network was identical to that of the Perceptron presented in the 

previous section. The PRN was initialized with random delays large enough that they 

could be reduced through training. Random uniform numbers between 100 and 110 were 

used to serve as arbitrary units of time. Furthermore, all the thresholds were set to 1, the 

lowest possible value. We set the learning rate parameters ϕ to 1.1 and ω to 1. These 

numbers were arbitrary except that ω had to be smaller or equal to 1 so that all successive 

threshold sizes could be tested by the learning rule. The network was trained for 300 

epochs through all the eight inputs. The stimuli were presented randomly within each 

cycle. 

Part (a) of Figure 6 shows the percent of error throughout learning. It was 

unnecessary to plot all 300 epochs because the PRN learned the problem quickly. In fact, 

in over a thousand replications, the networks never took more than eight epochs to 

identify all eight stimuli without error. Notice that this is much faster than the average 

165 epochs that the Perceptron took. 

Insert about here: Figure 6 
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Part (b) of Figure 6 shows the delay matrix of the network illustrated using a 

bubble plot. The bubble sizes are proportional to the duration of the delay for any given 

connection. The large bubbles represent units that have no chance of triggering a 

response because they are the slowest. Consequently, the small bubbles represent units 

that are highly involved in triggering a response because they are the fastest. Once again, 

we filtered in Part (c) of Figure 6 to highlight the important connections. As can be 

observed, the solution is similar to that of the Perceptron. 

However, the PRN did not struggle as much as the Perceptron with the embedded 

letters “n” and “h” because its time-based representations solved the problem by simply 

waiting. Indeed, the network determined that a given stimulus was an "n" by monitoring 

whether the "h" and "b" units had answered first. When these units did not, the network 

concluded that an "n" had to have been presented. By contrast, the Perceptron had to 

develop inhibitive associations. Thus, the PRN provides an elegant solution to this 

seemingly paradoxical situation in which simpler stimuli (in terms of number of features) 

actually produce longer response latencies. This type of counter-intuitive result has been 

obtained in several studies, such as the word superiority effect (Rumelhard, & Siple, 

1974), the triple conjunction search (Fournier, Eriksen & Bowd, 1998) and the 

redundant-target procedure (Miller, 1982). 

Finally, for the letters "p" and "d" which are composed of three features, the 

accumulator sizes stabilized at two because two features (the left and down features or 

the right and up features respectively) are sufficient to identify them unambiguously. The 
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PRN thus reduced the amount of information manipulated, a result also compatible with 

some empirical findings (Haider and Frensch, 1996, 1999). 

Because there is no noise in this model, the output response times are 

deterministic and have no variability. Yet, each stimulus settled at different response 

times, the one containing less information having a lower priority. This allows for an 

ordering of response times such as RT"n" ≈ RT"u" >> RT"h" ≈ RT"y" >> RT"b" ≈ RT"q". Thus, 

RT ordering should be preserved even in the presence of variability and noise 

(Cousineau, Goodman, & Shiffrin, 2002, Cousineau, submitted). 

Before concluding, a note on the rate of learning is in order. As we saw, the PRN 

learned 20 times faster than the Perceptron. Yet, we do not believe that learning speed per 

se is a major issue here. Indeed, it is quite conceivable that more sophisticated 

connectionist networks would have solved our identification task more quickly. The 

promising observation is that the PRN, equipped with an architecture and a learning rule 

of comparable complexity to that of the Perceptron, found a solution because it formed a 

localist representation at the output level (as opposed to a distributed representation, 

Page, 2000). Thus, the winner-take-all decision rule adopted by the PRN might produce a 

more efficient error-driven correction when used in conjunction with a localist 

representation. 

5. Conclusion 

In this paper, we showed that the essential feature of the connectionist network 

family is the use of the standard inner product that integrates the inputs using a weighted 
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sum. It is present in the Perceptron and in other models such as Anderson's 

autoassociator, the Boltzmann networks, and the Hopfield networks (Freeman, 1994). 

One exception is Kohonen's (1984) Self-Organizing Map. Then, we showed that it was 

possible to modify this core feature without affecting the network’s ability to be 

operational. Two important steps had to be taken though.  

The first and most profound change was a new way to represent the inputs and the 

connections in the network. Rather than viewing the values in terms of associative 

strengths, we decided to view the values as units of time. Secondly, to accommodate our 

new time-based representation of the network, the learning rule’s constituent operators 

were modified. The joining operator was changed for an addition and the aggregate 

function was changed for a minimum. These changes, while keeping the newly created 

network in line with previous networks from a mathematical perspective, created a race 

model that has the ability to simulate human cognition autonomously. The establishment 

of this link between the two families of models is our key result. 

We believe that calling this new rule, a redefined delta rule, is most appropriate 

because it preserves the spirit of the original delta rule. That is, it allows the network to 

solve problems by reducing the importance of connections that contribute most heavily to 

the error in the output. More importantly, this is achieved without any intervention on the 

part of the modeler. Future work will explore the possibility to use a redefined Hebbian 

learning rule in the context of an autoassociator race network. 

Eventually, it will be interesting to determine whether this redefined rule is based 

on gradient descent. Presently, this question cannot be answered, as the redefined inner 



Redefining the rules 

24 

product is very different from anything that is used in linear algebra. Nevertheless, we 

believe that this issue is not a pressing one and that given further analysis, it will be 

resolved. Our experience with the PRN shows that given a sensible architecture, 

integration rule, and learning rule, many different types of networks can produce fast and 

reliable learning. In addition to the PRN, we are currently trying other mutated networks.  

One simplifying assumption that was made is that only one input can fill one slot 

when it reaches the output (discrete evidence). This move is open to criticism if one 

believes that it lacks biological validity. One possible solution would be to adopt a 

continuous form of coding (Smith and Vickers, 1988). However, this would complicate 

things a lot because the "Extreme limit theorem" would no longer be applicable 

(Cousineau, Goodman, & Shiffrin, 2002). An indirect solution is to assume a lot of 

redundancy in the connection paths. If we assume that a single input can travel through 

hundreds of connections (as is presumably the case in the brain) and if we assume that the 

accumulator sizes are large, then we would, once again, obtain a quasi-graded 

representation of the input. This massive-redundancy approach (first proposed in 

Cousineau, 2001, submitted) preserves the applicability of the Extreme limit theorem and 

might be biologically plausible. For example, Thorpe and Gautrais state that it was (1999, 

p. 1): 

"[…] recently demonstrated that the human visual system can process previously 

unseen natural images under 150 ms. […] To reach the temporal lobe in this time, 

information from the retina has to pass through roughly ten processing stages. If 

one takes into account the surprisingly slow conduction velocities of intracortical 
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axons, it appears that the computation times within any cortical stage will be as 

little as 5 ms." 

Although it may be argued that our time-based approach and the race between 

signals it favors is both plausible and appealing, we are not suggesting that strength-based 

approaches should be dismissed at this point as they seem to account naturally for several 

empirical findings. For instance, it has been shown that the strength of activation of a 

single neuron diminishes with time (Tsodyks & Markam, 1997) and that this refractory 

period may have an important role in priming studies (Huber & O'Reilly, in press). Yet, 

connectionist networks also need subsidiary assumptions to account for this type of 

finding.2 In any case, evaluating connectionist models strictly from the perspective of 

biological plausibility has not been the most productive endeavor as proponents of 

different models can always show that a given assumption does not clearly map onto our 

present knowledge about the brain. Here, the most salient example may be the attacks on 

the original delta rule (O'Reilly, 1996). 

Rather, our goal was to show that there is a viable alternative to connectionist 

networks for those who are in the business of simulating human cognition in order to gain 

a better understanding of the mind. Furthermore, we believe that the Parallel Race 

Network’s time-based representations have the potential to generate exciting new 

explanations for a wide variety of tasks, such as identification. In particular, the parallel 

race network seems to offer an ideal framework for the simultaneous modeling of error 

rates and response times. Thus, this is an invitation to explore the possibilities that a shift 

in perspective can offer. 
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Footnotes 

                                                 

1 These connections code the waiting time and so we thought of calling them "waits". Although elegant, 

this notation might be confused with  "weights" is spoken discourse. 

2 Note that the refractory period could be modeled by reducing the probability that a redundant unit will fire 

for a given amount of time once it has fired. This would introduce a longer delay in the transmission of 

activation and is compatible with our time-based perspective. 



Redefining the rules 

33 

Figure Captions 

Figure 1. Schematized representation of a simple two-layer strength-based network, the 

Perceptron. (a) Architecture and input-output visual representation. (b) Weights as an 

amplitude. (c) The integration rule using a summation. 

Figure 2. Brief genealogy of the sampling models. 

Figure 3. Schematized representation of a simple two layer time-based network, the PRN. 

(a) Architecture and input-output visual representation. (b) Delays as an amount of time. 

(c) The integration rule using a minimum. 

Figure 4. Stimuli used in the example and their featural composition. A "+" indicates the 

presence of the feature, an empty location, its absence. 

Figure 5. Example of a learning session with the Perceptron. (a) Errors done by the 

network through training epochs measured by the root mean square deviation between the 

observed output and the desired output. One epoch represents a cycle through the 8 

stimuli, in a random order. (b) The solution found, in terms of the connection weights in 

the bubble plot. Large bubbles indicate strongly associated connections whereas small 

bubbles indicate weakly associated connections. Filled bubbles indicate positive weights 

and empty bubbles, negative weights. (c) Same as previous but filtered to show only the 

relevant weights. 

Figure 6. Example of a learning session with the PRN. (a) Errors done by the network 

through training epochs measured by the percent of errors. One epoch represents a cycle 

through the 8 stimuli, in a random order. (b) The solution found, in terms of the 
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connection delays in the bubble plot and the corresponding threshold sizes beneath the 

bubble plot. The smaller bubbles represent the shortest delays (an average of 94 units of 

time) and the largest, the longer delays (105 units of time on average). (c) Same as 

previous but filtered to show only the relevant delays. 
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