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ABSTRACT 

This paper presents a generalization of the race models involving parallel channels. Previous 

versions of this class of models involved only serial channels, either dependent or independent. 

Further, concrete applications of these models did not involve variability in the accumulator size 

(Logan, 1988) or were based on a specific distribution (Bundesen, 1990). We show that the 

distributions of response times predicted by the parallel race model can be solved analytically to 

yield a Weibull distribution using asymptotic (large n) theories. The model can be manipulated 

to predict the effects of reward on ROC curves and speed-accuracy decomposition. However, the 

major contribution of this paper is the implementation of a learning rule that enables networks 

based on a parallel race model to learn stimulus-response associations. We call this model a 

parallel race network. Surprisingly, with this architecture, a parallel race network learns a XOR 

without the benefits of hidden units. The model described here can be seen as a reduction of 

information system (Haider and Frensch, 1996) and is compatible with a priority learning 

system. An emergent property of this model is seriality: in some conditions, responses are 

performed with a fixed order although the system is parallel. Finally, the mere existence of this 

supervised network demonstrates that networks can perform cognitive processes without the 

weighted sum metric that characterizes connectionist models. 
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Introduction 

The aim of this text is to expand our knowledge of the race models by showing that there 

exist similarities between the race models and the connectionist networks. The major objective of 

this paper is to introduce a learning rule for race models. With it, race models and connectionist 

models can be compared on similar grounds. We will not undertake this comparison in this 

paper, its purpose being just to describe the parallel race network. To this end, we will first cast 

the race model into the form of a network of connections. A second objective of this paper is to 

describe the response times (RT) predicted by race models. Many predictions will be done in 

terms of the distribution of response times (averages can easily be derived from them). Finally, 

networks differ on what is being transported by the connections (sometimes called the channels 

hereafter). We show that race models don’t transport strength of activation. One important 

feature that we will address is redundancy of the channels. Redundancy turned out to be 

necessary to simplify the mathematics of the parallel race model. 

Overview of the race models 

Accumulator models and random walk models are generalization of the Signal Detection 

Theory (SDT) because they share the same coding in the form of samples coming from the 

senses. However, instead of taking a single sample from the stimuli, these two classes of models 

can take an arbitrary number of samples, this number changing from trial to trial.1 In these 

models, the samples can be evidence for one response or an alternative response. In some 

variants, the samples can also be evidence for both responses, or neither. Following Smith and 

Vickers (1988), the distinction between random walks and race models pertains on the evidence 
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accumulation process. For the former, the accumulation process is not independent because an 

evidence for one response implies a reduction of the amount of evidence for the alternative 

response. For the latter, the evidence accumulations are done in independent accumulators. 

However, the first accumulator filled triggers a response. Thus, the name of race model.2 

The class of accumulator models can be further broke down by whether the evidence 

collected are discrete, called simple accumulator models by Luce (1986) or continuous, called 

strength accumulator model. Examples of simple accumulator models are given by Audley and 

Pike (1965) where the sampling process takes a fixed amount of time, and by Pike (1973), where 

the time between two samples is continuous. An example of strength accumulator is given by 

Smith and Vickers (1988) where the time between two samples is fixed. 

Another important distinction between the race models is whether the channels bringing 

evidence to the accumulator are dependent or independent (Meijers and Eijkman, 1977). We 

describe one accumulator model, the Poisson race model because it recapitulates in a nutshell the 

following sections of this paper. 

The Serial Poisson Race Model 

One of the first quantitative description of the Poisson race models was described by Pike 

(1973, 1965; also see Van Zandt, Colonius and Proctor, 2000).  

Architecture: This model is essentially composed of a single channel that encodes information 

(under the form of spikes of activation) that is brought to a unit accumulating the spikes (an 

accumulator) containing K slots (see Figure 1, panel a). As soon as the accumulator is filled, a 

response is emitted. This model is serial (a sequential sampling model) because the spikes travel 

one at a time. It is also based on a race model since a decision criterion can be formulated by a 
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rule akin to “As soon as you have K evidences, respond”. In other word, the accumulator is a 

hard threshold unit. 

Insert Figure 1 about here 

Response times: From this, it follows that the response times of the output o is given by: 

 . ∑=
k

ito

where ti is the time separating spike i – 1 from spike i. 

Distributions: In order to derive the distribution of response times for this model, it is necessary 

to add one more assumption: how much time elapses between two spikes of activation. A simple 

assumption is to postulate that a spike results from a Poisson process so that the time t between 

two spikes are distributed with an Exponential distribution function T with a certain rate θ.  

The corresponding distribution of output response times is given by: 

  TO  *
K

=

that is, a convolution of K Exponential distributions. This problem is easily solved and O turns 

out to be a Gamma distribution with rate parameter θ and shape parameter K (Townsend and 

Ashby, 1983, Luce, 1986). 

Sequential vs. parallel sampling models 

Due to this serial architecture, the accumulators are located after a bottleneck. All the 

evidence must travel through the same channel, thus involving cumulative delays. Yet, as noted 

by Thorpe and Gautrais (1999), there might not be enough time for information jam: “We 

recently demonstrated that the human visual system can process previously unseen natural 
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images in under 150 ms... To reach the temporal lobe in this time, information from the retina 

has to pass through roughly ten processing stages. If one takes into account the surprisingly slow 

conduction velocities of intracortical axons, it appears that the computation time within any 

cortical stage will be as little as 5 ms.” (p. 1). Introducing a parallel architecture eliminates the 

bottleneck. This was one of the motivations of the model described in this paper since it is a fully 

parallel race model. 

Classic connectionist networks 

Parallel networks, in their simplest form, are composed of a network of fully connected 

input and output units. In some models, extra units are added in what is called a hidden layer 

(McClelland and Rumelhart, 1988) whereas in other variants, the input units are the same as the 

output units (Caudill and Butler, 1992). The output units must make decisions on the basis of the 

activation at the input level using some integration rule specifying how to ponder them. Thus, 

specifying an integration rule implicitly specifies the nature of the information flowing through 

the channels. 

In the early connectionist networks (Widrow-Hoff, 1960, Rosenblatt, 1962), the inputs 

were assumed to reflect the strength of activation. The channels reflected, loosely speaking, the 

relevance of the input with respect to the output. The decision is thus a sum of the input’s 

activation weighted by its relevance. The connections came to be labeled the weights. Panel b of 

Figure 1 illustrates this case. Past the weighted sum, some researchers added a threshold to the 

output. They were either soft, using a sigmoid function (McClelland and Rumelhart, 1986) or 

hard, with an absolute threshold (Arguin and Bub, 1995, Page, 1999). Learning in such network 

was thus to reduce the importance of non-diagnostic inputs. 
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The Perceptron 

The Perceptron is a classic example of a feed-forward supervised learning network. 

Architecture: The network is composed of two layers of units, the input units and the output 

units, which are fully connected. 

Response pattern: In this model, the outputs result from a weighted average of the input. The 

state of the output units can be given by a vector O whose relation to the input is given by  

  W IO  .=

where the dot represents the inner product. Contrary to accumulator model, this is not a race 

model since the overall pattern of output is the response. This is labeled a “distributed 

representation network” (Page, 1999). 

Learning rule: The learning rule consists in reducing the error between the network’s pattern and 

the desired pattern. This is done in Perceptrons using a simple rule correcting mostly the weights 

that were the most responsible for an error by a decrement ∆w using the formula: 

  ijjij Iodw )( −=∆ β

where ∆wij is the strength of the connection relating input i to output j, Ii is the ith input, and dj is 

the desired output on unit j. β is the learning rate, a free parameter. 

One utility of integrating a learning mechanism in a network model is to predict learning 

curves over time (Logan, 1988, Indow, 1993). More importantly, it can be used to reduce the 

number of free parameters. For example, consider a random walk model defined by boundaries 

and drift rates (e.g. Ward and McClelland, 1996, Ratcliff, Van Zandt and McKoon, 1999). If 

these parameters could be learned by exposure to stimuli, they would no longer be free to vary. 
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The only free parameters remaining would correspond to a description of the random 

fluctuations in stimulus sampling (i. e., variability).3 

Response times distributions in classic neural networks 

Analyses of response time (RT) distributions in speeded tasks show that they are lower 

bounded and always positively skewed. This general and very persistent result is rarely 

accounted for by modelers, and never used as a criterion for testing models. One method to 

implement RT prediction is to use a performance criterion (such as the squared error). This 

approach, used by Seidenberg and McClelland (1990), is based on the implicit assumption that 

there is a correspondence between the criterion and the RTs. Another solution is to use a 

dynamical multi-layered network. During processing, the activation increases until a given 

threshold is reached (see for example Cohen, Dunbar and McClelland (1990) where they propose 

to add to each unit a feedback loop similar to the cascade model of McClelland, 1979). Hinton 

and Shallice (1991) and Lacouture (1989) proposed a hybrid architecture where the output of the 

multi layered network is then decoded by a decision module equipped with a feedback loop. 

Thus, although a few researchers have looked into this issue (e. g. Adams and Myerson, 1999, 

Seidenberg and McClelland, 1990, Lacouture, 1989), it is difficult for most classic connectionist 

networks to show that they can reproduce this general shape. In this respect, asymptotic theories 

(assuming large n) can greatly simplify the investigation. Indeed, the RT distribution of the 

parallel race model will be analyzed using asymptotic arguments. 
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Some applications of the race models 

The instance based theory of automaticity 

Logan (1988, 1992) was among the first to use a parallel race model. He postulated in his 

model that there is a competition across memorized instances of the presented stimuli, each one 

racing to fill the accumulator (thus the word racers often used to refer to these past instances). He 

assumed for mathematical convenience that the accumulator size was one, so that any single 

racer could trigger a response. He also assumed that racers are independent and identically 

distributed random variables. It turned out that these three assumptions are not necessary. First, 

as shown by Gumbel (1958, also see Leadbetter, Lindgren and Rootzén, 1983), any small 

accumulator size (in absolute, not relative to the number of input channels) would leave Logan’s 

prediction unchanged. Second, as seen in Galambos (1978), racers can be dependent, as long as 

dependency diminishes with any abstract measure of distance between the racers. This 

mathematical result is compatible with the idea that inhibition is a signal traveling from one unit 

to other units. If this signal has a finite velocity, then distant units will receive the inhibition after 

longer delays. Thus, the signal may be too late to inhibit the winner. The results of Galambos 

show that in these conditions, inhibition has only a marginal impact, at least in the asymptotic 

case where the number of racers is large. Third, Cousineau, Goodman and Shiffrin (in press) 

showed that the racers do not have to be identically distributed. In fact, the parameters describing 

the distribution of the racers can themselves be based on random variables with no disruption in 

Logan’s predictions. 
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A theory of visual attention 

Bundesen’s theory of visual attention (TVA, 1990) is a very elaborated model of vision, 

attention and identification. TVA assumes a competition between the various responses. This is 

thus a race model. Further, the samples are collected independently for each response. By using 

the Exponential distribution to model the variability in the sampling times, Bundesen showed 

that TVA is formally identical to Luce’s Choice model. 

The most relevant aspect of TVA for the present is that the decision is assumed to be 

based on the hazard function (Luce, 1986, Burbeck and Luce, 1982). It is well known that the 

hazard function of the Exponential distribution is flat, reflecting the fact that it has no memory. 

This means that TVA in its current implementation does not accumulate evidences. Hence, TVA  

is a race model but not an accumulator model. 

Overview of the paper 

Although the weighted sum approach had a profound impact in many fields, other 

approaches are possible. The one developed in this text is to assume that the network of channels 

is not described by how much evidence it brings, but rather by when it is received. 

In what follows, we will describe in depth the parallel race model. This model is general 

because it is not based on restrictive assumptions, such as a Poisson process in the case of the 

serial version. In fact, the parallel race model can be solved analytically for a broad range of 

distributions including the Poisson process. Because there is no serial architecture, the bottleneck 

is also removed. Yet, this model displays some serial effects as a response to noise. Further, we 

show that this model can learn to solve non-linearly separable problems (the XOR problem) 

without hidden units. 
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1- A deterministic Parallel Race Network 

The purpose of this section is to introduce all the key elements of the parallel race 

network (PRN). This section alone is sufficient to obtain a good intuitive grasp on the model and 

in fact, we strongly suggest the reader to take a pause before going to the following sections to 

tinker the concepts developed here. The reader should also try to solve the toy problems 

presented in Appendix A. 

The point of this section is to cast the parallel race model into a network of connections 

identical to those used in classic (feed-forward) connectionist networks (see Rosenblatt, 1961, 

McClelland and Rumelhart, 1988). The only difference is that PRN does not consider the 

weighted average of the connection strength but only the fastest connections.4 All the inputs in 

this section are assumed binary (present or absent). However, they are considered with respect to 

the time dimension. We want to know when the input is activated (how strongly being irrelevant 

here). As such, a present input will activate its connections early, in fact, at time t = 0 if there is 

no randomness in the system. On the other hand, an absent input will never activate its 

connections. We can assign a time t = ∞ for an absence of input. This is a major change in input 

representation. In PRN, zero and infinity means present and absent respectively whereas in 

classic connectionist networks (CCN), one and zero have the opposite meaning. This change 

often resulted in much confusion when I presented this work in the past. 

The output layers of PRN are composed of accumulator units.5 Their purpose is to get 

filled, at which time they fire. Every accumulator has a certain number of slots, represented by 

the accumulator size K; each incoming input fills one slot.6 Thus, the Kth fastest input unit will 

trigger a response from that accumulator. 
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In-between the inputs and the outputs, there are connections, also called channels. As for 

the input, the single relevant property of the connections in represented in the time domain: 

Some connections can be very efficient and introduce almost no delay for the information in a 

certain input to reach the accumulator of a certain output. Other connections may be less efficient 

(e.g. oppose a stronger resistance) to the transmission of information, so that delays will result. A 

connection with an infinite delay is simply a broken connection. Hence, connections with delays 

of zero are very effective channels whereas connections with infinite delays are off, again in 

opposition with the notion of weight in classic neural network. 

Delays and hard threshold are the key ingredients of a race model. Because evidence can 

arrive on parallel channels, we use the general label “parallel race networks”. 

These concepts will be discussed in more details in this section, along with two other 

fundamental aspects of PRN, namely, redundancy and time-out units. What we will not cover in 

this section are: (i) A fully elaborated mathematical notation. It will be described in Section 2. 

This notation will reveal important parallels between PRN and CCN. (ii) The introduction of 

noise (e.g. imperfect information transmission) in the inputs and the connections. With noise, it 

is possible to predict the shape of reaction time data produced by this model. Section 3 will solve 

the distributions of the PRN quite easily using asymptotic theories. (iii) The description of a 

learning rule. Assuming that the resistance to transmit information can be altered by exposure to 

stimulus-response pairs (supervised learning), a very simple learning rule can be proposed that 

will be described in Section 4. 
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Description of the PRN 

The PRN assumes that information (or activation, essentially the same thing in the 

parallel race model) travels along channels with a finite velocity. As such, delays are the modus 

operandi of this model. What is crucial is the moment when the inputs become activated and 

reach the accumulators. We show here how a parallel race network can integrate confusable 

inputs into distinguishable patterns of response by manipulating delays. 

Input-Output coding: In its simplest form, a parallel race model is composed of inputs and 

outputs, as seen in Figure 2(a). The purpose of the input units is to transmit the signals coming 

from the stimulus to the output. Each output is an accumulator (a threshold unit) with only 

integer-value sizes. 

As mentioned earlier, the inputs are not described by how strong the signal is but by 

when the signal is available. In this paper, we assume that a trial begins at time t = 0, although 

this choice is arbitrary. 

Insert Figure 2 about here 

Connections. As is generally the case in CNN, all the inputs have a connection to all the outputs. 

All these channels transmit information (often termed evidence in the following). In PRN, all the 

channels are described by how well the information flows through them. A very efficient channel 

will transmit the information with but a minimal delay. Here, we assume arbitrarily that the 

smallest delay can be zero, representing a highly efficient channels. At the other extreme, an off 

connection will be labeled with an infinite delay. 

The delays are neither arbitrary nor constant. They are set specifically to solve the 

problem, that is, to answer to the stimulus with the correct response in a given context. For 
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example, if an evidence is highly diagnostic for a response, it should reach the relevant 

accumulator with no delay (see the end of this section for alternative ways to interpret the 

delays). One purpose of the learning rule described in section 4 is to change the delays following 

exposures to the stimulus-response pairs. 

Redundancy: Because it is unlikely in a large system that information travels following only one 

path, we introduce redundancy in the inputs. Redundancy is obtained by simply duplicating each 

input by a factor ρ, hence, the total number of input is actually multiplied by ρ. 

Redundancy is not a necessary ingredient of PRN. This model can respond accurately to 

input in most problems without redundant input (one exception is the XOR problem, see 

Appendix A). Redundant inputs will however be useful in Section 3 where noise is introduced, 

allowing the use of asymptotic theories (when ρ is large). 

Thresholds and decision: In PRN, each output is an accumulator with K slots. An accumulator 

makes a response when all its slots are filled. This happens when the Kth fastest input reaches the 

accumulator. It is assumed that K is a finite integer number, small relative to the number of 

redundant inputs, and independent of it. 

All the accumulators can differ on there size K. This value can alternatively be called a 

threshold (or a boundary, by analogy with diffusion models). The thresholds and the delays in 

the connections are the two fundamental aspect of PRN. The second objective of the learning 

rule (Section 4) is to adjust the size of the accumulators when exposed to stimulus-response pairs 

so as to collect just the right amount of evidence. 

Clocks: Discrimination is difficult when the system has to make an answer for “nothing 

presented” (an accumulator responding to zero evidence is meaningless). Hence, the system must 
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be able to decide that after a certain amount of time, if the other accumulators have not reacted, 

then maybe it is time for a “nothing presented” guess. This implies that time is a source of 

evidence in itself. 

Perception of time can be achieved simply by the presence of clocks whose sole purpose 

is to tick at regular intervals. There exist empirical evidence for the existence of such clocks in 

brains. Oscillatory circuits (sometimes called pacemaker) are identified in the nervous system of 

many animals (including mammals; Chaplain, 1979, Levitan, Hamar and Adams, 1979, 

Changeux, 1983). Further, human behavioral data in favor of internal clocks were reported by 

Rousseau and Rousseau (1995) and Hopkins and Kristofferson (1980). In the last study, subjects 

had to listen to two taps and press a button when the third tap should occur. The results are 

exceptional (standard deviation in response times of 7 ms and symmetrical distributions) and 

they strongly favors “internally timed delays which can be inserted in the S-R chain” of 

processing (p. 241). 

Because some decisions are default responses when the network perceives nothing, extra 

temporal inputs are needed. We call them clock units or time-out units, noted with the symbol . 

Clocks do not have a special status in PRN; they are extra inputs in addition to those related to 

the stimulus. However, the activity of the clocks does not depend on the actual pattern of input 

presented. They are always on. Therefore, the time-out units are activated on every trial. The 

number of clocks is arbitrary (and can even be large), but for many problems, one clock is 

sufficient. Figure 2(a) shows a PRN with one clock. 
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Alternative representation (A): Priority learner 

The basic idea of the network is to let the information flows through it as fast as possible 

while avoiding conflicting responses. If responses A and B were to be made at the same time, the 

winning response would be random, which is of no use to the system. PRN thus let the response 

with the largest amount of evidence (say A) have priority while refraining the other responses for 

a little extra time. If after that extra time, response A is not emitted, then it is further evidence 

that B must be the correct response. The whole point of the parallel race network is thus to delay 

the movement of information. 

The easiest alternative representation is to express the parallel race model as a set of rules 

reflecting the priority of each response. For example,  

Rule R1: “Say response A as soon as you receive KA evidences”. 

When two responses are possible, the second must avoid interfering with the first. Even if both 

responses are based on some common information (embedded patterns), it does not mean that 

both answers should be emitted. It all depends on the presence or absence of complementary 

information. 

In the model, the absence of a signal is not coded in any way. The only way to know that 

an information is missing is to make sure it had plenty of time to arrive by now. The rule for the 

second response could be expressed by: 

Rule R2: “After a while, say response B is you received KB evidences”. 

Discrimination thus becomes the problem of finding how long is a while. Figure 3(a) represents 

such rules using a decision tree. The decision tree representation is misleading for one reason: it 

suggests that the rules are applied serially. This is not the case in PRN. 
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Insert Figure 3 about here 

Because this model is expected to react as soon as possible, it is assumed that the 

accumulator sizes are the shortest possible (given constraints on accuracy). With redundancy in 

the inputs, this model therefore disregard unneeded information, which makes it compatible with 

reduction of information theories. Haider and Frensch (1996, 1999) postulated such a model 

where only the smallest subset of diagnostic information is used to base a decision. Race models 

could be used to implement such a system. 
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2- Mathematical notations 

The Parallel race model can be represented by drawing units connected to accumulators 

(as in Figure 2a). However, a vector-and-matrix representation is much more convenient to 

compute the output of the network. Such an approach is widely spread when studying CNN. For 

example, in a two-layer network, the input and the connection weights are often represented by a 

vector I and a matrix W. The output is then simply given by a standard inner product O = I . W 

(here, the dot is used to show explicitly the presence of an inner product). The inner product 

performs a weighted sum of the input. However, the minima operator does complicate things 

since the inner product aggregates by summing columns. In the following, we propose a simple 

generalization of the inner product that overcomes this problem by introducing minima into 

vector operations. 

Let’s assume that the input is composed of nI dimensions. Suppose further that we add n  

time out units. We can define a vector I that contains all the information from the input and the 

clocks. Formally, let Ii > 0 denotes the moment when the ith input gets activated and let I denote 

the input vector {Ii}. I is of size ρ × (nI + n ) where ρ is the redundancy factor. Because the 

clocks are always on, we can see I as the input vector augmented by the time at which the clocks 

turn on. In general, Ii is the time at which dimension I becomes activated whereas I   is the time 

at which the clocks gets activated. 

All the inputs and the clocks have connections to the accumulators, represented by Dij > 

0, the delay between the activation of the input i and the moment when one slot of accumulator j 

is filled (the Dij can be seen as conduction times). In order to connect all the inputs i to all the 

output j, the vector D is a two-dimensional matrix {Dij}. Further, let D the delay matrix {Dij}.  
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There is no restrictions on the connections: some Ii my bring evidence in favor of one 

response, some Ii to the other, and some to both. There may even be evidence that will contribute 

to no accumulator. For example, if DiA is zero, this means that as soon as the input i is activated, 

this activation immediately fills one slot of the accumulator A (no delay). If, on the other hand, 

DiA is infinite, this piece of evidence will never reach the accumulator.  In other words, the input 

i is not an evidence in favor of response A.  Finally, if DiA = DiB, then input i is equally important 

to decide whether the response is A or B (with respect to response C, for example). D can also be 

seen as a matrix of connections for the input augmented by a matrix of connections for the 

clocks. 

Let KA denotes the size of the first accumulator associated with response A, and in 

general, Kj the size of the jth accumulator. Further, let K denotes all the accumulator sizes {Kj}.  

Figure 2(b) illustrates the three components using boxes: I (changing with the input), and 

D and K. 

For modeling purpose, we need to decide at what time the clocks become active (I ). In 

the following examples, we set this time at zero: the clocks are immediately active. This is 

unrealistic but it is not important since the delays in connections D j > 0 can compensate for fast 

clocks, delaying this temporal evidence for some time. 

The output time of the ith input to accumulator j is given by the sum Ii + Dij, so that the 

first slot of the accumulator j will be occupied with the fastest of all the { , at a time 

given by . The second slot will be filled when the second fastest input reaches the 

}iji DI +

}{ iji DIMin +
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accumulator, etc, until Kj slots are filled. The output of this accumulator occurs at time Oj when 

the Kj
th fastest input reaches the accumulator.  

As an example, suppose the following PRN having 2 inputs and 1 clock (no redundancy, 

ρ = 1) defined by the following: 

  

When presented with the input I = ( 0 5 2 ), the accumulator A will have its first slot filled at time 4 

(by the first input) and the second slot at time 6 (by the second input, arriving at 5, but delayed 

by 1 in the matrix D). The accumulator B will be full at time 5 (by the first accumulator). The 

first accumulator to fire is thus accumulator B at time t = 5, ending the trial. 

To summarize all these steps, we can’t use the standard inner product (unlike with CNN) 

because it is a combination of product and summation and PRN requires that the fastest time be 

kept. To that end, we propose a non-standard inner product that we will note . See Appendix B 

for a full description of this redefined operation. 

.~

With that operation, the response times of each accumulator given a pattern of input I are 

contained in a vector O = {Oj} given by: 

 . (1.1) DIO .~=

This notation has the same level of compactness as in CNN. However, it is not explicit in this 

notation that the accumulator sizes K must be provided. Appendix B also proposes a more formal 

notation, although more cumbersome. Of course, only one response can be made, given by the 

first filled accumulator j, at time t , the other responses being too late. }{ jOMin=
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In our previous example with , I ~  D yield ( 0 5 2 ) . .~   = . The 

response is thus given by the accumulator 2 at time t = 5. 

Despite its awkward look, remember that  is simply a (redefined) inner product 

between a vector and a matrix. Whereas the standard inner product is at the core of CCN, the 

redefined operation is at the core of race models. Although this  operator does not seem to 

facilitate the comprehension of the model, the following section will show that there exists a 

whole literature in statistics of extremes that connects to this operator. 

.~

.~

Alternative representation (B): A random walk representation 

The behavior of the parallel race model can be represented using a graph similar to those 

used with random walk models (see Figure 3(b) and Luce, 1986, Ratcliff, 1978, Ratcliff and 

Murdock, 1976). 

In random walk models, three parameters are of interest. First, there is the base 

accumulation rate, sometimes called drift and denoted δ. One conceptual difficulty in the parallel 

race model is that the fastest delay path (closest to zero) will fill the accumulator faster. It 

therefore corresponds to the highest accumulation rate. At a given trial, we can obtain a rough 

estimate of the accumulation rate by using the reciprocal of the average delay in I + D.7 

The second parameter describes the amount of variability, denoted η, affecting the 

accumulation rate and its distribution function (the amount of noise is set to zero so far). In 

addition, the distribution of noise, although often perceived as a qualitative parameter, has to be 

considered a free parameter. Indeed, in terms of fit, some distribution functions may provide 
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better fits than others, resulting in an informal (and often not reported) search over the 

distribution function space. 

For a given amount of redundancy, we could equate δ = 1 / E(I + D) and η = Var(I + D). 

However, a model with larger ρ will have faster accumulation rate δ because the fastest units are 

likely to be much faster when sampled from a larger pool of inputs. Therefore, the parameter ρ 

should also enter into the description of δ. Section 5 will consider the impact of ρ. 

Third, there are the boundaries. Boundaries have a direct representation in PRN: They are 

obtained from the accumulator size vector K. 

Figure 3(b) recapitulates the parameters, and shows the network in a form closely 

mimicking a random walk. Despite the above similarities, the parallel race model cannot be 

considered as a random walk model for at least three reasons. First, evidence for one response is 

not necessarily evidence against another response. Each accumulator collects its evidence 

independently. Second, there is no within-trial variability; all variability occurs between trials by 

computing different sets of noisy inputs (as seen in Section 3). Third, this model does not predict 

a Wald distribution. Random walk models with small steps (Luce, 1986), generally called 

Diffusion models, are based on assumptions that are opposite to race models assumptions, and it 

is instructive to see in what sense. Wald (1947), who laid down the assumptions behind diffusion 

model analyses, wanted to make rapid decisions based on observations. He assumed that each 

observation was costly and so he wanted to minimize the number of started observations. In 

PRN, the exact opposite is true: the observations (the inputs) are free. There is no cost in using 

an extra racer (increasing ρ). The cost comes from the total decision time, so it is important to 

minimize the number of completed observations that will be used (accumulator size K). In the 
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race model, since each observation is free, we can start as many of them as we want, but we will 

not wait for all of them before answering. Given this low cost, observations are best started in 

parallel, while in the Wald model, one is better use them in a sequential manner. 
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3- Introducing variability 

The version of PRN discussed in Sections 1 and 2 was deterministic. The next step is to 

introduce variability. Random fluctuation can be introduce in two different locations in the 

model: i) in the signal incoming time I, or ii) in the delays D. Randomness in I can be seen as the 

result of imperfect transmission of information. For example, if information is an impulse 

traveling on a neuron membrane, then the distance traveled or impurities in its composition can 

introduce small variability in the transmission rate. Delays D could be variable because of the 

availability of chemical neurotransmitters and their release that requires a certain amount of 

energy. 

In addition, we show here how PRN can adapt to noise. In the following, we use the 

parameter η to describe the amount of noise present on the input channels. More generally, we 

should have noise in the input and noise in the connections. We should thus use ηI and ηD. 

However, because of the additivity between I and D, this generalization is trivial and will not be 

detailed much. 

At this point, the redundancy factor is crucial because the larger redundancy is, the less 

variable the fastest units are. Thus, we intuitively see that increasing redundancy reduces the 

impact of noise. 

The objectives of this Section are to derive the distribution of times to fill one 

accumulator and the distribution of response times across accumulators. 

Because we handle various types of variables in this section, a short note on the notations 

used is required. We use a bold letter to denote a random variable and a handwriting font to 
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denote distribution functions. For example, t is one possible value of the random variable t with 

distribution function T. 

Variability in the input 

When I and D are deterministic (not random) variables, the redefined dot product 

provides a convenient way of computing the response times. However, with random variables, 

individual response times are not as informative as the whole distribution of response time, out 

of which mean and standard deviation can be deduced easily. Before analyzing the distribution 

of the output O, we first define what we mean here by noise and then solve the distributions. 

Given a pattern of input with its ideal activation times I, we can define the actual, noisy 

activation times by: 

  noiseI +=:I

Here, we chose to use additive noise for both simplicity and plausibility. The noise must also be 

in the time domain so that the average noise is the average amount of delay before the ith input Ii 

reaches the network. With additive noise, the extra delays are independent of the ideal activation 

times and independent of the other channels. 

Similarly, we can define: 

  noiseD +=:D

The noise can be described by a distribution function. The most important restriction is 

that it is never negative. Indeed, noise cannot make a signal available earlier. As such, the 

Gaussian distribution (among other) cannot be used in conjunction with PRN. In this paper, we 

suggest to restrict ourselves to the family of power distributions, of which the Exponential, the 
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Gamma, and the Weibull distributions are members (but not the Lognormal, the Gaussian and 

the Ex-Gaussian distributions). This choice is justified for mathematical tractability only. 

Distribution of response times when variability is introduced 

The first step is to infer the distribution of times before one accumulator is filled. This 

amount of time depends on the actual pattern of input and the size of the accumulator. If the 

inputs are highly dynamic, that is, various dimensions are accessible at different times, we would 

have to compute the output distributions for each output and each input pattern. This would be 

the case for speech recognition where various sounds are available at various moments 

depending on the word. For example, the sound ‘a’ in “alibi” and “dimensionality” occurs at 

very different moments. For visual stimulation inside the fovea however, it is more reasonable to 

think that the dimensions presented are ideally (before noise) available at stimulus onset (t = 0) 

in which case the accumulator size is the only relevant information. With this caveat in mind, we 

will not subscript the output distribution functions with the input pattern used. 

In order to find the distribution function of each accumulator, we assume ample 

redundancy so that asymptotic theories can be used. The problem is to find the distribution of the 

Kj
th

 fastest incoming signals. Statistics of extremes (minima or maxima) studied such problems 

and Appendix C presents a brief overview of the results. 

The problem is to find the distribution of the response times of each accumulator. Let 

O = { Oj } be a vector containing the response times of each accumulator (of which only the 

fastest is observable).  

 O = I  D (3.1) .~

where, as usual,  finds the K.~ j
th fastest combination of input plus delays Ii + Dij. 
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By analogy to Eq. 3.1, we can define O as a vector of distribution functions given by: 

  }

}

),({}{ ~ DI OO ⋅== Li

where L returns the asymptotic distribution of I and D with respect to ~ . Now, the first step is 

to join, that is, to sum the delays in the input and the delay matrix so that the convolution 

describes the combination of I and D: 

.

  )*({ DIO MinL=

At this point, solving the network’s distribution is simply to find the asymptotic distribution with 

respect to minima, a well-known problem is statistics of extreme (Gumbel, 1958, Galambos, 

1978), yielding Weibull distributions for the accumulators: 

 } (3.2) { ,, γβαW=O

where W is the Weibull distribution whose functions are given by 
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in which α, β and γ are parameters depending on the accumulator sizes and the number of 

activated input, thus related to the input pattern. Apparently, γ, the shape parameter is related to 

the physical aspect of the network and could be a constant across the accumulators (Cousineau 

and al., in press).8 

It is important to see that O is not directly observable because all the accumulators are 

racing: the fastest one wins. For example, a slow response to a certain input pattern may be 
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censored because another accumulator produced a faster (incorrect) response. The observed 

distributions will therefore be distorted in some predictable way by the other responses’ 

distributions. The observed distributions of response times {RTj} are given by: 

 }...,)](1[)(1{}{ AjtFtf
P jk

kj
j

j =−== ∏
≠

RTRT  (3.3) 

where  is a normalizing value to make sure the density function 

has an area of 1 (Van Zandt, Colonius and Proctor, 2000). For example, in a Yes-No experiment, 

by combining which type of input was entered and which accumulator responded, we could 

derive four RT distributions for the hits, misses, false alarms, and correct rejections. Assuming a 

constant γ, the resulting RT distributions would be based on four parameters, α

∫ ∏
∞

= ≠

−=
0

)](1[)(
t jk

kjj duuFufP

y βy for a “Yes” 

input and αn βn for a “No” input. Note that the corresponding RT distributions are not Weibulls; 

in fact, the Eq. 3.3 does not have a closed form solution. Some informal simulations (reported in 

section 5) indicate that the theoretical RT distributions are close to Weibull. Further works along 

the lines of Eq. 3.3 will be done in the future. 

Integration and discrimination in the PRN 

The capabilities of PRN can be loosely dichotomized into integration and discrimination. 

Integration is the ability of a system to select from a rich environment the relevant information. 

In PRN, this is accomplished by setting Dij to the shortest possible delay for relevant information 

and to a very long (ultimately infinite) delay for irrelevant information. 
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Discrimination is the ability to select the right response given a certain pattern of input. In 

presence of noise, this can be very difficult to achieve. If two distinct responses are to be made 

using, as source of evidence, the same inputs (the worst case being an embedded pattern; see 

later), they may well fire at approximately the same moment. This is a problem if, for example, 

the response is a yes/no response. Any slight variation in the incoming information time resulting 

from noise will determine which response will be first, independent of the actual input. The 

second response should be suppressed. Perceptrons do not have this problem because high 

activation for one response should at the same time result in low activation for the opposite 

response. Similarly, a race network would have to make sure that a fast response for one 

alternative is accompanied by a very slow (and ultimately a never coming) response for the other 

alternative. 

As an example, suppose the following case where response A is to be triggered by the 

pattern IA = {0, ∞, ∞, … ∞}n where 0 denotes an input activated by the stimulus and ∞ an 

absence of input. Response B results from the complementary pattern IB = {∞, 0, 0, …0}n.  

Obviously, the thresholds are 1 and n - 1 for response A and B respectively. This should work 

except that in presence of noise, it is always possible that the first input becomes activated from 

spurious activation (noise). Since collecting the n - 1 evidences for B will take some time, it is 

likely (depending on the amount of noise) that false alarms will occur in the meantime. 

One way to keep discrimination reliable is not to make hasty decisions (after all, race 

models are all about time!). Suppose it takes an average of 100 ms to collect n - 1 evidences 

when in presence of pattern IB, why not delay activation of the input I1 (real or spurious) for 120 

ms? In other words, collecting n - 1 evidences is in itself good evidence that we are in presence 
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of the pattern IB whereas collecting one evidence is not really convincing. The delays therefore 

should reflect the odds of a particular input in presence of noise. 

Another case where discrimination is difficult is in the case of embedded patterns. Let us 

suppose that the pattern of input for the first response IA is {1, 0, 0} and for the second IB is 

{1, 1, 0}. Activation for IA is included in the activation pattern IB and in order to be sure that A is 

the right choice, the system must be sure that I2 will not become activated in the next few 

moments. In presence of unbounded variability, it is impossible to have a perfect confidence that 

Ii will not fire soon. One solution is to proceed with an on-average reasoning: if, on average, I2 is 

activated after 200 ms ± 20 ms standard deviation given pattern IB was presented, then after 260 

ms (three standard deviations), the system can guess confidently that I2 was not presented. 

Therefore, the first input should be delayed 260 ms before reaching the accumulator A (D1A). 

Alternative representation (C): A reversed Signal Detection Theory analogy 

This section draws a few parallel between PRN and SDT. For simplicity, we assume that 

the network is geared to solve a detection problem (with one accumulator) and that the time-out 

nodes are responsible for the “No” answers (see Appendix A for a complete solution). This is 

arbitrary, other input units could be responsible of the “No”, but the clocks are ideal for our 

illustration since they must be delayed to be informative. 

The model described so far can produce misses when some Ii are activated too late, as a 

result of variability in the total time to fill the A accumulator. Consequently, the clock units 

(variable since clocks are also subject to noise) fills the accumulator B, resulting in an erroneous 

B response. 
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Before we look at how false alarms can be introduced in the parallel race model, we will 

briefly look at the signal detection theory framework for a similar reasoning (see Figure 4(a)). 

Signal detection theory assumes that the critical value is not time but the strength of activation 

(more in line with connectionist networks). According to signal detection theory, an incoming 

signal S is defined by a distribution of activation (often a normal distribution). Noise N also has a 

distribution of activation, generally with smaller values. Because the system does not know 

whether input is present of not, it uses a criterion c that can be optimal or not (Zenger and Fahle, 

1996). Most important is that for signal detection theory, c is a constant value. Hits are given by 

Pr(HIT) = Pr(S > c). Independently, false alarms can occur if noise is too high and confused with 

the presence of a non-existent signal, with probability Pr(FA) = Pr(N > c). This framework 

predicts specific curves for the Receiver-Operating Characteristics (ROC) graph (Green and 

Swets, 1966) as the criterion c is moved by putting emphasis on hits to the detriment of false 

alarms (or vice-versa). 

Insert Figure 4 about here 

In the Parallel race model, there is no false alarm so far because there is no spurious 

activation in the absence of inputs. Time-out units are the only way to conclude a trial when no 

input is present. In what follow, we assume that there is a spurious amount of activation time Sp 

that can fill the accumulator A (with distribution function AO ). Sp could occur very early in the 

trial (thus being confused with a signal), although it is unlikely. Figure 4(b) shows Weibull 

distributions for signal present S and spurious activities Sp. Weibull were used because 

asymptotically (if ρ is large), this is the shape they will assume. 
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In this version, a miss occurs when a signal is slow to activate the input Ii . However, Ii 

has to be larger than the time-out units C, which fill the B accumulator in a time whose 

distribution function is given by OB. Thus, in terms of signal detection theory, the criterion is not 

a constant but changes from trial to trial and Pr(HIT) = Pr( S < C). Similarly, a false alarm occurs 

when Sp occurs before the clock, Pr(FA) = Pr( Sp < C). Given that S, C, and Sp define the values 

sampled from OA, OB, and AO  respectively, it is possible to compute these two probabilities and 

have one point on the ROC curve. By manipulating emphasis on signal-present or signal-absent 

responses, we obtain other points along the curve. The following illustrates what is meant by 

manipulating emphasis in PRN. 

Given that redundancy is present, one solution to be sure that a signal is present is to wait 

for independent confirmations. This is very simply done in the parallel race model by increasing 

the threshold KA. Similarly, to avoid false alarms, increasing KB is a good solution. Formally, the 

probabilities are given by: 

)|Pr()Pr( KHIT CS <= ∫ ∫
∞ ∞

=−=
0 0
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where f returns the pdf and F, the cdf, S is distributed as OA, and C is distributed as OB. 

Replacing S for Sp gives the equivalent results for Pr(FA), where Sp is distributed as AO . As an 
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illustration, we used in Figure 4(c) Weibull distributions with standard deviation of 1 for OA and 

5 for AO  and manipulated K within each curve. What is generally interpreted as a change in 

criterion c is obtained by increasing thresholds in the Parallel race model. In other words, 

criterion shift does not result from a change in a physical criterion but in the number of evidence 

collected without changing the time-out distribution. In the Figure, the three distinct curves are 

obtained by manipulating the position of OB of the time-out distribution, that is, how long the 

clock units are delayed (noise notwithstanding). This is the same as changing perceptibility 

(usually measured by d’). Overall, the curves seems plausible (but see Yonelinas, Kroll, Dobbins 

and Soltani, 1998) although it is not the aim of this alternative representation. 

Conclusion 

We added noise to the PRN using very general distribution functions I and D. Despite 

the generality of these assumed distribution and using asymptotic theories of extremes, we 

solved the distribution times to fill every accumulator. Of course, since only the fastest 

accumulator wins, the Weibull distributions are somehow distorted using Eq.3.3. Nevertheless, 

the important point is that the presence of noise changes nothing with respect to how the network 

operates. It is always a question of delaying les diagnostic information and waiting for a critical 

number of them. Noise, introducing a larger uncertainty on how long to wait, simply increases 

the delays. The system has to wait longer if the inputs are often delayed. This is a natural 

extension of the underlying assumptions of the PRN. 
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Meyer, Irwin, Osman and Kounios (1988) suggested a method to address the question of 

internal noise using speed-accuracy decomposition techniques. As seen in Appendix D, the 

model exhibits typical patterns of speed-accuracy trade-off (SATO) when time constraints are 

imposed. In this case, a third response (C: “Respond now”) is added to the system. Its 

connections, D C are activated by an external signal rather than by an internal clock. SATO plots 

can be obtained with one extra hypothesis related to the guessing content.  
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4- A parallel race model with a learning rule: A parallel race network 

So far, the PRN turns out to be a very flexible model. A compact mathematical notation 

stem from it (Section 2) and it supports the presence of noise quite naturally (Section 3). It also 

offers alternative representations (Random walk, Priority learner, reverse SDT) that help 

understanding its behavior.9 However, the parallel race model cannot describe the dynamic of 

changes in D and K when the external conditions change. For example, suppose a task where, at 

some point, some distractors are no longer shown so that formerly irrelevant features become 

diagnostic. It is not clear how the parallel race model would adapt to changes because so far, it 

lacks learning mechanisms. 

This is in opposition with the parallel distributed processing (PDP) models (McClelland 

and Rumelhart, 1988) where the learning mechanism is fully described. However, there is no 

clear consensus on what kind of RT distributions PDP models predict. Thus, the predictive 

strength of the parallel race model (the RTs) is the weakness of PDP models, and vice versa for 

learning. 

In this section, we fill this gap by providing the parallel race model a simple learning rule. 

The objective is that the network finds itself the right delays D and the appropriate thresholds K. 

The learning rule described is simple and when we tested the resulting network with the 

problems described in Appendix A, it always converged toward the theoretical solutions. 
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Description of the Parallel Race Network 

Architecture 

The physical implementation of the network is the same as before (refer to Figure 2). As 

usual, inputs are considered to be signals coming from the stimulus. Because signals take time to 

travel, inputs are defined by the moment their activation reaches the input unit, not by their 

strength. As such, signals are stochastic: either a signal has arrived, or it has not yet. However, if 

there is no signal, there is still the possibility that the input unit receives a spurious signal from 

random activation. We assume that spurious signals whose distribution function is given by I  

will arrive on average after a larger amount of time (the variability of I  is larger than the 

variability of I). As before, the connections D between the inputs and the accumulators are not 

weights but delays in the transfer of information. 

The accumulators’ role is to integrate the number of evidence coming from the inputs. 

Accumulators are filled by incoming signals; each activated signal takes 1 slot. Accumulators are 

in effect a thresholded unit because they trigger a response only when enough evidence is 

received. 

Decision 

Response times are computed in exactly the same way as before. However, as seen next, 

the learning rule allows thresholds to increase by non-integer values. Because only integers can 

be used for the accumulator sizes, we use the integer parts of the thresholds  K  in the decision 

rule and write: 

  DIO .~=
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which is, in the more elaborated notation of Appendix A, noted: 

 . DIO







 +



=
KMin

As usual, only the fastest accumulator makes a response j such that Oj = Min{O}. 

Learning 

Learning in the parallel race network takes place when an error occurs. There are two 

types of errors:  

i) For the accumulator j which has produced a false alarm (it has fire too soon while 

it should have remained silent), one of the delay Dij responsible for that error (i. e. 

one of the Kj
th fastest delays {Ii + Dij}) is increased by an arbitrary value ϕ. In 

other words, because that accumulator was filled too rapidly, it slows one of its 

inputs to avoid this error again (through the connection Dij). 

ii) For the accumulator that missed (it remained silent while if should have fired), the 

threshold Kj is modified. If the total number of actual input activated on that trial 

is larger than the value of Kj, the size of that accumulator is increased by an 

arbitrary value ε (or vice-versa). As long as errors occur, the accumulator size will 

vary to reflect the number of input. 

At the beginning of a simulation, all thresholds Kj are set to 1, and delays Dij are set to 

random uniform numbers between 1.0 and 1.1 in arbitrary units of time. We used random initial 

delays to avoid tied decisions. Otherwise, it would make the error attribution difficult to assess. 

In the simulations of Section 5, the changes in delay ϕ were set to a small value, 0.5, and 

changes in threshold ε were set to 0.2. The choices for ε and ϕ were arbitrary and we tested 
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different values with no qualitative change on the learning behavior of the network. The only 

restriction is that ε be smaller or equal to 1, otherwise  Kj  might not assume all the successive 

integer. For example, with ε = 1.5, on the second miss, the effective threshold would jump from 

2 (  2.5  ) to 4 (  4  ), skipping the value 3. 

Overall, this network embodies two principles: i) the response is a competition among 

accumulators, each waiting for Kj supportive inputs before it fires. It is a winner-takes-all process 

because one or a limited number of inputs will end a trial. ii) The learning is a cooperative 

process. If the accumulator connected to response j fires too rapidly, it will be a false alarm. The 

system needs to slow these accumulators by increasing the delays. 

Alternative representation (D): How long to wait for friends.10 

You are at the corner of a street, waiting for a friend who is late. How long are you going 

to wait? In this situation, there are no false alarms (unless you are prosopagnosic), but there can 

be misses if you leave too early. Of course, your friend might never come too, in which case, the 

earlier you give up (correct rejection), the better it is for you. The best course of action is to give 

up reasonably fast for a first meeting, but if you later discovered that just missed your friend, 

then, you are going to increase your tolerance, how long you wait. In effect, you delay the time-

out (give-up) signal to accommodate that friend. Depending on the punctuality of your various 

friends, you end up with different delays for each. These delays are learned by a trial-and-miss 

procedure. This is exactly the procedure implemented in PRN. 
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5- Simulations and experiment 

Section 4 presented a learning rule that seems both simple and intuitive. Application of 

this rule to deterministic input (no noise) is straightforward, and the reader is invited to apply it 

to the problems presented in Appendix A or check the web site for the results. However, despites 

all the mathematical and statistical niceties that we developed in Sections 2 and 3, we have no 

certainty that this learning rule can learn and settle in a stable configuration of delays and 

thresholds when the inputs are noisy, redundant, or both.11 

In this section, we explore the capabilities of PRN to learn a difficult problem, the XOR 

problem. We first show that this network can learn such a non-linearly separable problem even 

though it does not have hidden layer units (the XOR problem is described in Appendix A; 

Minsky and Papert, 1969). Second, we explore the impact of noise on the learned delays. Using a 

SDT analogy, we already know that the more noise is present in the input, the slower the time-

out units should be to avoid misses. Indeed, the learning rule adapts the delays in such a manner. 

Third, we look at the simulated response times and look at how similar they are to known 

distributions. Finally, we present a small experiment with human subjects aimed at testing a 

simple prediction of a time-based network. 

Review of the XOR problem and overview of the simulations 

A two-dimensional XOR problem is one where both inputs present and none present 

elicit the same response (say response A). When there is no redundancy (ρ = 1), if two inputs are 

present, an A response can be made immediately. This suggests that the delays between the 

inputs and the accumulator A (call them t0) should be very short or even zero and the 
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accumulator size should be 2. When redundancy is present (ρ > 1) however, accumulator A 

receiving 2 inputs does not mean that the conjunction is present since both activation could 

results from the same redundant input. In fact, if one dimension can send ρ redundant activation, 

an accumulator size of ρ + 1 or greater is the only one that guaranties that 2 inputs are present. 

On the other hand, receiving a single evidence is enough for the alternative decision, say B. Yet, 

this decision must not be hasty since other evidences might be on their way. Thus, the delay 

between any input and accumulator B (call it t1) should be large, al least larger than the average 

time to receive ρ + 1 evidence on accumulator A. 

In the same vein, the clocks connected to the A response should be even more delayed 

(call this delay t2), at least more than the average delay to say B which is itself larger than the 

average time to detect the presence of the conjunction. 

Figure 5, panel a, illustrates the theoretical solution to a XOR problem inside PRN. 

Insert Figure 5 about here. 

To check the ability of the PRN to learn, we ran simulations where both I and D were 

noisy and redundancy manipulated. The delay matrix D was modified on every trial by adding 

uniform random delays in the range [0..0.1] in arbitrary unit of time (Dij  ~ Uniform[0, 0.1]).12 

This represents a small amount of noise, but since it is additive with noise in the input, the 

overall amount of noise used will be more important in some simulations. The inputs were either 

0 if the dimension is on, or 10 if it was off (spurious activation). To this, we added exponentially 

distributed noise. We chose to describe the magnitude of noise by the mean delay η added to the 

inputs (I ~ Exponential [η ]). Thus, η is the average increase in Ii. The choice of the Uniform 
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and the Exponential distributions is arbitrary. However, both satisfy the criteria C1 and C2 

presented in Appendix C. On some trials, the noise in one of the two inputs may exceed D1B, 

resulting in information on that relevant dimension coming too late (response B occurred). 

Because the Exponential is unbounded, there will always be cases where the diagnostic 

information will arrive too late ( Pr(I2 > I1 + D1B) > 0 ). Spurious activation for the absence of 

signals was also noisy, the increment in delays being on average 10 times slower ( I  ~ 

Exponential [10 × η ]). 

Figures 5(b) and 5(c) show the two distributions of noise that we added to the delay 

matrix and to the input signals. We used η = 0.5 and η = 2 for small and large amount of noise 

respectively, in arbitrary units of time. η = 0 means that no noise at all was added. 

We also manipulated redundancy ρ by providing ρ paths where information on 

dimensions 1 and 2 and the clocks can travel (in this case for a total of 2 ρ inputs). Each path 

resulted in inputs with its own noise. Accordingly, the rows in the matrix D were duplicated so 

that each input i have its own connection to the accumulators. 

All the simulations were done by first initializing a random network as described in 

Section 4. Two time-out units were added to all inputs. Training was performed by selecting an 

input-output pair randomly. For example, {0,0} {0,∞} means that when both inputs are on 

{0,0}, the first accumulator should respond first. The input was duplicated ρ times and then 

noise was added to each channel. The delay matrix also received noise on every trial. Based on 

the thresholds, the time to fill each accumulator Oj was obtained by finding the Kj
th fastest input 
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and the fastest accumulator made a response. An epoch of training consisted of 10 trials. The 

number of epoch varied in the following simulations. 

Overall, the parameters η and ρ are manipulated and a matrix D and a vector K is learned 

by PRN. Sample programs to simulate PRN are available for Mathematica on the author’s web 

site at http://ocean.sim.umontreal.ca/cousined/papers/07-PRM/.  

Learning a XOR problem. 

This first set of simulations explored the learning capabilities of the PRN in presence of 

noise and redundancy. 

We ran PRN on the XOR problem for 200 epochs (2000 trials). Figure 6 shows the 

percent of errors (P(e)) made by the network averaged over epochs. In Figure 6, there is no 

redundancy (ρ = 1). As seen in panel (a), learning a XOR problem is rapid (115 trials) when no 

noise is added (η = 0.0). Such a fast learning is surprising since CCN typically requires hundreds 

or thousands of trials to do the same (O’Reilly, 1996).13 Right part of the Figure shows the 

solution adopted by the network (compare with the matrix solution in Figure 5(a). t3 is 

represented by the largest delays (8.04 arbitrary units of time). t0 corresponds to an average base 

delay of 4.05. The increase in t0 occurred while the thresholds were stabilizing at the correct 

values. It took about 110 trials to adjust them. 

Insert Figure 6 about here 

Figure 6(b) and (c) show two learning sequences for the XOR problem with two level of 

noise in the signal (η = 0.5 and η = 2.0), but again, no extra redundancy (ρ = 1). As seen, after 

2000 trials, the network still produces a few errors, but they are well spread out, and result only 

http://ocean.sim.umontreal.ca/cousined/papers/07-PRM/
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from noise. Four patterns of error are in fact possible. On a {0,0} input, one of the channel may 

be slow to be activated, resulting in a false B response. On a {0,∞} or {∞,0} input, the activated 

dimension could be slow or spurious activation could occur early on the inactivated channel, 

resulting in either a false A or false A’ response respectively. Finally, when noting is presented 

{∞,∞}, spurious activation could happen earlier than the clocks, resulting in a false B response. 

As the number of epoch is increased, errors become more and more sparse.14 For η = 2.0, the 

network produced 2% of errors in the last 100 epochs. To avoid misses, the system adapted to 

the variability in the input by increasing the average delay between t0 and t1.  

The delay matrix can also be seen with a Random Walk representation. Informally, we 

can set drift rates as the reciprocal of the delays, shorter delays meaning faster accrual of 

information. When a small amount of noise is used (η = 0.5), drift rates for response B are about 

1.5 times smaller than the drift rate for response A, and drift rates for response A’, about 2.0 

times smaller than the drift rate for A. With more noise (η = 2.0), these figures increased to 

about 4 times and 7 times smaller, respectively. Clearly, delays are affected by noise. 

Thresholds, on the other hand, are not affected by noise. This is expected since so far there is no 

redundant signals and thus no room for larger thresholds. 

Apart from noise, we also manipulated redundancy ρ. It is possible, when ρ is larger than 

1, that the input can access the system by more than one path. The following set of simulations 

tries to assess the impact of redundancy on learning. Because we showed in Cousineau and al. (in 

press) that asymptotic distributions converge rapidly, we explored only values of ρ between 1 

and 16. 
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Figure 7 shows the impact of redundancy for two levels of noise (η = 0.5 and η = 2.0). As 

seen, learning is barely slowed down by the redundant sources of incoming signals, errors 

reaching a lower asymptote in less than 1100 trials for ρ = 16. This means that the extra inputs 

learn rapidly to coordinate their action (through the delays D). Further, adding noise in 

conjunction with redundancy did not hinder learning, the network finding a stable configuration 

with only occasional errors. 

Insert Figure 7 about here 

In sum, PRN can learn very rapidly a difficult problem. Further, noise and redundancy 

have merely no effect on learning. We see next that redundancy, though having only a limited 

effect on the amount of trials to reach close to perfect performance has a profound, opposite 

effect to noise on response times. 

Relation of redundancy and noise on delays and thresholds 

The purpose of this section is to evaluate how the noise and redundancy factors affect the 

internal delays D and the thresholds K. For example, how long should be t1 so that response B is 

discriminated efficiently from response A, allowing for 3% of errors, and similarly, how long 

should be t2 for response A’. We first derive an informal theoretical relationship to gain some 

preview of the results. In this preview, we will not aim at perfect performance but rather at 

performance with 3% of errors. We then present actual simulations to check whether the learning 

rule does perform as expected. 
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Theoretical delays as a function of η and ρ  

To have an intuition of the following arguments, the best analogy is the reverse SDT 

analogy. In this view, the B response should be delayed, compensating for uncertainty in the 

input. This is the role of the t1 delay. Thus, the more noise, the larger t1 should be. On the other 

hand, if we wait for the KA fastest ones, variability will decrease as redundancy increases. This 

results in a narrower distribution for the A responses and thus the B responses can be closer to 

zero. Redundancy undoes what noise accomplishes. 

The objective of this subsection is to formalize more precisely this relationship. In the 

following, for simplicity’s sake, we ignore the A’ responses, concentrating on the A and B 

responses and on the false B errors to IA = {0,0} input. Errors are a critical aspect because to 

totally avoid errors, the distribution of the B responses would need to be infinitely distant from 

the distribution of the A responses. 

An error occurs when signals come too late and the alternative response fires. This 

happens when the signal is detected after the response B is emitted, E( I ) + t0. We can imagine 

that 

  (5.1) 01 ) E( tt A += Iθ

that is, the delay t1 is θ times above the average time to receive all the dimensions relevant to 

response A. t1 is like a criterion in the reverse SDT analogy and θ can be seen as the tolerance 

parameter. 

Thus, the probability of an error is given by: 
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This last equation can be approximated using on-average reasoning: 

  ))() E( Pr()Pr( AA Eθnoiseerror II +>≈

Setting Pr(error) at 3%, a pre specified level of errors, and knowing that 97% of the Exponential 

distribution is located below three means, we can solve: θ = 2  

The factor E(IA) in Eq. 5.1 is still unknown. It would be tempting to equate E(IA) with the 

average delay in the signal on a signal channel, η in our case. However, this is erroneous. This is 

a parallel system and the pattern IA can be recognized based on the fastest channels, not the 

average channels. 

A formula derived in Cousineau and al. (in press, section 3.2) suggests that E(IA) = 
γ ρ
η  

so that Eq. 5.1 becomes: 

 01 tt +≈
γ ρ
η

θ  (5.2) 

where θ = 2 is the tolerance parameter described previously, γ is the shape of the asymptotic 

distribution of RT and t0is zero in the solution of the XOR problem. This estimation is based on 

the postulate that the redundancy factor is large. For small ρ, this is incorrect in the general case 

but nevertheless produced valid approximations when ρ was greater or equal to 8. 

Figure 8 shows the theoretical surface representing the needed amount of time t1. With a 

small amount of noise (η = 0.5 arbitrary unit of time) and no redundancy (ρ = 1), the 
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accumulator B has to wait about 1 arbitrary unit of time before being confident that dimension 2 

is indeed absent. This value increases to 4 units of time when the average noise delay η is 2 

units. Redundancy reverses this trend. With small noisy delays but high redundancy (η = 0.5 and 

ρ = 8), a very short delay (t1 = 0.25) is enough to be sure no inputs are present on dimension 2. 

Insert Figure 8 about here 

Overall, this predicts that increasing noise should have a linear effect on the B response 

times but that the effect of redundancy should be a power curve. Further, the curvature of the ρ 

function, γ, should be the reciprocal of the RT distribution shape.15 According to this view, the 

reduction in scale in turn predicts a reduction in mean response time and standard deviation. The 

form of the reductions should be power functions, an observation that seems reliable (see Newell 

and Rosenbloom, 1981, Logan, 1988, Anderson and Tweeny, 1997, Cousineau and Larochelle, 

submitted and Cousineau and Lefebvre, submitted, for more on power curves; but see Rickard, 

1997, Heathcote and Mewhort, 1995, Heathcote, Brown and Mewhort, 1998, Myung, 2000).16  

The main point is that in normal situation, the starting point of the alternative response t1 

is a function of the triplet {η, ρ, θ}. η and ρ describe the variability of the signal and θ 

determines how many errors are tolerated, i.e., how much overlap are allowed between the A and 

the B responses. 

To further test this relationship, and because the model is much more complex, owing to 

the learning rule, we ran simulations using a factorial design involving η and ρ simultaneously. 

We continue to use the XOR problem, because there is no counter indication that forbids it: it is 

a plain regular problem for parallel race models.  
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We ran the simulations for 4000 learning trials in which we varied ρ (1, 2, and 4) and η 

(0.5, 1.0, 1.5, and 2.0). Each combination of η × ρ was replicated ten times. For each, we 

extracted two summary values described below (∆K and log ∆D) obtained at the end of training, 

and submitted these results to two distinct ANOVAs. 

To accomplish these analyses efficiently, we needed to reduce the matrix D and the 

vector K to a few summary values. We concentrated on the following summary values. First, we 

summarized the D matrix by considering only the two responses “both input present” (response 

A) and “one input present” (response B). For these, we took the average delays in each section of 

the matrix t1 and t2, called 1t  and 2t . These averages excluded the time-out units t3 since these 

are used for the third response “nothing present” (response A’). Finally, we computed the 

difference ∆D = 2t  – 1t . Based on the estimate postulated in Eq. 5.2, ∆D should be proportional 

to 
γ ρ
η

θ  and because of this multiplicative relation, we considered log ∆D in relation with log η 

and log ρ.17 The second summary value is the difference between the two thresholds ∆K = KB –

 KA. 

Learned delays vs. optimal delays 

The first ANOVA on Log ∆D (Table 1, top part) reveals that both log noise and log 

redundancy affect log ∆D significantly. The results confirm what we expected, and the weight 

for the log ρ factor is close to -1/γ (in the asymptotic case, γ should be 2 because both the 

Uniform noise in D and the Exponential variability in I add 1 to the shape of the simulated 

response times distribution). The intercept (5.2) reflects the value of log θ . It means θ is very 
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large, suggesting very few errors remain after 4000 trials. Indeed, the overall error rate was less 

than 1%. 

Insert Table 1 about here 

In terms of a random walk representation, we see that the accumulation rates depend on 

both the amount of noise and redundancy. The model adapts to noise by increasing delays, 

resulting in a slower rate of accumulation and benefits from redundancy by reducing delays. 

Learned threshold vs. optimal thresholds. 

At this time, it is not clear if, in presence of redundancy, the system will learn to use the 

smallest possible thresholds or not. We had the feeling in Figure 6 that they were not affected by 

noise, but since ρ was constant to one, this remained to be confirmed.  

As seen in the bottom part of Table 1, the difference in threshold ∆K is significantly 

affected by redundancy only. When redundancy increased by one, the lag between thresholds 

increased by 0.4. In one sense, the increase in ∆K is not as fast as it could be (it should be 1.0 ρ). 

This suggests that the network does not use all the available information, thus making erroneous 

decisions. On the other hand, this increase is not a surprise: Collecting KA evidences when twice 

as many channels are on is faster. Thus, if by time t1, the accumulator A is filled, it indicates a 

high accrual rate. In terms of a random walk representation, the boundaries are not increased as 

rapidly as redundancy. The larger ρ is, the more stable the winners are, and thus, the criterion t1 

can be set closer to t0. 
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Distribution analysis 

We are also interested in the distributions of the simulated response times (SRT). Because 

variability in D is uniform and variability in I is exponential, the results from statistics of 

extremes (Section 3) predict that the SRT distribution for one accumulator will be exactly 

Weibull with shape γ of 2. However, the response distribution may only look approximately 

Weibull since two accumulators are in competition. This section explores this issue. 

As in previously, the network was trained on a XOR problem for 4000 iterations. Among 

the last 1000 SRT, we kept the response times to the input pattern IA = {0, 0}. The SRT thus 

collected constituted one sample. We repeated this procedure 100 times for each combination of 

η × ρ. Each sample was subjected to distribution analysis (Cousineau and Larochelle, 1997) to 

test which distribution fitted best (comparing the Weibull, LogNormal, and ExGaussian 

distributions). 

As can be seen in Table 2 (top part), the SRT distributions were mostly Weibull (all 

percent best fit larger than 40%). Surprisingly, with an intermediate amount of redundancy 

(ρ = 4 and ρ = 8), the index of fit in favor of the Weibull was at its lowest, favoring almost 

equally the LogNormal (Ulrich and Miller, 1993). This factor stabilizes as ρ increases to larger 

values. As seen in the second part of Table 2, noise did not have any impact on percent best fit, 

being in 80% of the case better fitted by a Weibull distribution. 

Insert Table 2 about here 

In addition, we analyzed the estimated parameters α, β and γ of the best-fitting Weibull 

distribution to the SRT. Figure 9 shows the average parameters. As seen, the shape parameters γ  ˆ
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slowly converge toward 2, the expected shape for O. This parameter is slow to converge and we 

had to explore larger amount of redundancy (up to ρ = 32). For small ρ, the asymptotic argument 

is only an approximation and  is generally smaller than 2. This confirms that the shape γ does 

not depend on the amount of noise used in the simulations. In contrast, we see that noise and 

redundancy both affect the position α  and the scale  with roughly the same multiplicative 

pattern described in the previous section (and illustrated in Figure 8). Hence, a preliminary 

conclusion is that if we could manipulate redundancy and noise by manipulating the stimuli, we 

might be able to obtain distinct values for estimated γ  on one side and α  and  on the other. 

However, it is not clear at this point how redundancy can be manipulated empirically (Miller, 

1982, Colonius, 1988, 1990, Diederich, 1992, Townsend and Nozawa, 1995, Cousineau, 2001). 

γ̂

ˆ β̂

ˆ ˆ β̂

Insert Figure 9 about here 

Experiment with a XOR task 

In the following, we contrasted some predictions of the PRN on the XOR task with 

empirical data. The most important prediction, one that has been disregarded by many CCN 

concerns the absence of input. PRN specifically predicts that absent input will be detected more 

slowly than present input. On logical grounds, this prediction is easy to understand since we are 

always more readily confident that something is present if we see it than that nothing is there if 

we don’t see anything. However, PRN further supported this from approximations to ∆D (Eq. 

5.2). Simulations also supported this claim since t2 – t1 and t1 – t0 are the same in Figure 6 for a 

given amount of noise. 
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This predicts the following mean RT ordering: Response A (both input present) should be 

faster than response B (only one input present) itself faster than response A’ (no input present). 

Further, because RT should reflect ∆D, it predicts that the mean RT difference between response 

B and A should be identical to the difference between the mean RT between response A’ and B. 

Another question is how the variability in response times changes as we go from 

responses with short delays to responses with long delays. It is often the case in psychology that 

longer response times are also more variable. This possibility is not a logical consequence of 

PRN. Thus, following the reverse SDT analogy, overlap between competing response’s 

distribution (and error rate) is set by shifting the second response distribution toward longer base 

delay. However, if the second response is more spread out, the shift does not have to be as large 

to achieve an equivalent amount of errors. The following experiment will explore this issue as 

well. 

Experiment 

The experiment is a simple XOR task were subjects had to detect two signals or no signal 

with one response and a single signal with a second response. 

Subjects: Two students from Université de Montréal, one undergraduate and one graduate, one 

male and one female, participated to the experiment for money. Both were right-handed and had 

normal or corrected to normal vision. 

Stimuli: The stimuli were low-luminance dots 1 pixel in size. The luminance was 0.35 cd/m2 on 

a background luminance of 0.003 cd/m2. There could be either zero, one or two dots presented in 

one of two possible locations in the center of the computer display. The two locations were 

horizontal, separated by 5.5 ° and viewed at a distance of 50 cm, using a chinrest. 
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Procedure: The subjects were first dark-adapted for a period of 10 minutes. Followed 720 trials 

with no break. Each trial consisted of a 1 s tone (400 MHz) followed by either zero, one or two 

dots. The subjects’ instructions were to response with the key “/” using the right hand if only one 

dot was present or with the “z” using the left hand otherwise. The test display stayed for 2 s or 

until a response, measured with ms accuracy. 500 ms separated each trial. The number of dot 

conditions were equally likely, resulting in the response “z” being twice more frequent than the 

“/” response. When one dot was visible, left and right locations were used equally often. 

Results 

Figure 10 shows the mean RT and the percent of errors as a function of the number of 

dots. The position (left/right) of the dots had no impact on the mean RT (F(2, 24) <1) but had 

one on the errors (F(2, 24) = 38.2, p < .05). 

Insert Figure 10 about here 

As seen in Table 3, the change in mean RT ( RT ) is linear with a slope of 17 ms per dot 

absent (r = 0.114, p < .001). Also seen is the fact that standard deviation in RT ( RT ) is 

increasing with increasing uncertainty. This suggests that the longer the delays, the more 

variability there is. Further, we see that the change in standard deviation is not perfectly linear, 

being much larger when no physical evidence sustains the response. This suggests, in terms of 

PRN, that the internal clocks are more variable than external signals (Rousseau and Rousseau, 

1996, Hopkins and Kristofferson, 1980). 

Insert Table 3 about here 
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Figure 11 shows the RT distributions of the subjects and Table 3, the best-fitting Weibull 

parameters obtained with PASTIS (Cousineau and Larochelle, 1997). The Weibull parameters 

are used only as an approximation since, because of response competition, the observed 

responses are not exactly Weibull. 

As seen, the shape parameter  is constant at near 1.90. This estimate’s reliability should 

be varying with redundancy (for example, increasing the number of redundant photons reaching 

the retina), but since we did not manipulated ρ, we can’t conclude anything on this value. 

Further, the change in mean RT is mostly accounted for by an increase in the scale of the 

distribution, measured by . The position of the distributions α  seems to indicate a small trend 

to be increasing with uncertainty, but this trend is itself uncertain. PRN does predict an increase 

in α  as the delays are increased, which should be the case for a XOR problem. 

γ̂

β̂ ˆ

ˆ

Overall, the pattern of results suggests one last analogy. Clearly, the observed RT 

distributions overlap amply, which should, according to a reverse SDT analogy, predicts many 

errors despite the observed data. I believe we are trying to study rocks falling in the middle of a 

lake from the waves that reach the bank. Any slight variation in their falls will be amplified by 

the propagation of the wave. However, if the delays between the impacts are small, the 

difference in the waves will remain small all along, soon becoming not significant. The same 

may be true if the PRN is organized in layers. Each winner of a given layer will send redundant 

signals of its success, thus allowing the race to propagate to other layers. Indeed, we may have 

some indications of this since we have a very small effect of  but a huge effect of . This issue 

is left for further research. 

α̂ β̂
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Finally, researchers analyzing PRN responses would have to explain why conjunctions 

are answered faster than disjunctions. Such results are sometimes found in empirical studies such 

as in the present experiment or for example, Trabasso, Rollins and Shaughnessy (1971). 

Similarly, Fournier, Eriksen and Boyd (1998) found faster RTs for a triple conjunction than to 

double conjunctions in the same task. Robertson (2000) also has data in a cued search where 

detecting the conjunction is faster than detecting objects with only one of the two features, itself 

faster than detecting objects with none of the features. These effects are mirrored by the word 

superiority effect (Reicher, 1969, Rumelhart and Siple, 1974). In a typical task, subjects are 

presented strings of letters. The results show that letters are typically reported more accurately if 

they are part of a known word. The logic of the parallel race model suggests that words will be 

accessed rapidly if present in the lexicon (therefore preventing decay from iconic memory) and 

that all the other responses will be on stand-by in the meantime. By contrast, the logic that 

prevailed in the past suggested that faster RTs resulted from easier stimuli. This lead Smith and 

Havilland (1972) and others (Schyns and Rodet, 1995, Goldstone, 1998, Travers, 1973) to 

postulate the existence of a unitization process where distinct parts could be unified (or chunked, 

Newell and Rosenbloom, 1981) so that complex inputs could be processed as if they were a 

simple feature. This hypothesis was the result of an unconscious “serial” tradition prevalent at 

that time. Further, how such unitization was accomplished was not explained, but simply labeled 

“perceptual learning”. This term just pushed the responsibility of the explanation to others. In 

fact, we think that perceptual learning is the cornerstone of cognition, not perception. In this 

respect, the parallel race model provides a tentative explanation that breaks with the serial 

tradition. 
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General Discussion 

The parallel race model is very general because it not only predicts error rates, but also 

makes clear predictions on mean RT, on RT variance, on the whole shape of the RT distribution, 

and on phenomena such as the effect of rewards on the receiver-operating characteristics (ROC) 

curve and on speed-accuracy trade-off (SATO).  

It is tempting to call PRN a “race-race” model. Indeed, it is a race model at two distinct 

levels. First, and following the usual meaning of the expression “race model”, this model has 

accumulators and each one is racing to be the first to trigger a response. At this level, this is a 

between-accumulator race model. Because there are generally few accumulators, we can’t use 

asymptotic theories to infer the distribution of RT, and thus need Eq. 3.3. Second, when a single 

accumulator is considered, we have redundant channels in competition to be the first to fill the 

accumulator. Thus, we have a race going on within accumulator. Assuming large redundancy 

(and the more technical assumptions C1 and C2 of Appendix 3), this within-accumulator race can 

be solved analytically, thus serving as input to Eq. 3.3. 

More importantly however is the fact that PRM is a gate. It is a gate first because it shows 

how supervised connectionist networks and accumulator models can be related and unified under 

a unique network architecture. The single fundamental difference between the two is the use of 

summation or minimum to ponder the incoming evidence. In the first case, the evidence are 

meaningful if thought as strength of the input and strength of connections whereas in the second 

case, the evidence are seen in the time-domain as moments when the input becomes available 

and how determinant they are with delays in the connections. 
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Second, PRM is also a gate because to my knowledge, it is the first time that distributions 

of response times are so tightly coupled to the mathematical operation used to compute the 

output of a network (relating  with ). This coupling is possible here owing 

to the flexibility of asymptotic theories. This makes quantitative predictions much easier and 

often, it is not necessary to simulate the model to gain knowledge of its behavior. 

DI







 +

KMin

)*( DI
KMinL

Finally, PRN is a gate toward a possibly new field of mathematics, non-linear linear 

algebra. Indeed, redefining the inner product opens a totally new area for matrix operations. In 

this new area, the identity matrix is particular since the main diagonal is composed of zeros and 

the remaining locations are occupied with ∞. The zeros are neutral with respect to the joining 

operator whereas ∞ is always rejected by the aggregate operator, minimum.18 If we can make a 

formal proof that PRN can learn, it will be a demonstration that this new area can support 

complex reasoning. 

Summary of PRM 

In one sense, PRM is a race model because of the competition between accumulators. In 

another sense, it is a connectionist network by its architecture, identical to two-layer Perceptrons, 

and by its ability to learn (McClelland and Rumelhart, 1988). However, its learning ability is not 

limited by linearly separable problems (Minsky and Papert, 1969, Medin, Wattenmaker, 

Michalski, 1987). PRN classified rapidly all the 2D problems used in this text with or without 

noise and with or without redundancy. Its integration rules also make it similar to Random Walk 

models (Ratcliff, 1978, Ward and McClelland, 1989). Finally, this model makes predictions 
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sustained by simple mathematical relationships, about two aspects of the behavior, speed-

accuracy trade-off and the receiver-operating characteristics. 

This model is tailored to predict response times because the notion of time is the 

primitive of this system. When statistics of extremes are incorporated, most of its mathematical 

properties are easy to infer. At the same time, once the concepts of associative strength and 

weigthed sums are put aside, this model becomes quite intuitive. 

Further, we saw in section 3 that the model makes very specific predictions for RT 

distributions. It predicts that each accumulator is Weibull distributed. Hence, having two or more 

accumulators introduces deviations that can be predicted. We saw (section 5) that the impact of 

adding noise did increase slightly the probability of observing a LogNormal distribution (Ulrich 

and Miller, 1993). Yet, the Weibull distribution predominated in a majority of the simulations, a 

result strikingly similar to the human RT distributions found using a method of contrasts 

(Cousineau, in preparation). 

Because the system needs to know that time is going on even when nothing else is 

happening, we added time-out units to the system. Although they add dimensions to the inputs 

(whose sole presence are irrelevant since clocks are always on), they do not make the problems 

harder to solve. On the contrary, because they represent chronometers that tick the seconds away, 

they provide positive information that can be used in rules such as “If by now nothing else has 

happened, you might consider this”. Thus, this system learns to prioritize based on the received 

evidence, and one of its options is “let’s wait a little more”. When we assumed that clocks could 

be pressured by speeded external signals, we obtained results typical of speed-accuracy trade-off 

studies. The model is also consistent with the methods of speed-accuracy decomposition 
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introduced by Meyer and his colleagues (1988). Therefore, manipulating time constraints allows 

evaluating empirically some portion of the D matrix. Conversely, constraints on accuracy of hits 

and correct rejections resulted in ROC curves that are congruent with empirical ones and in turn 

gave some clues on the relative size of the thresholds. It is our belief that to uncover the 

mechanisms of decision, time constraints and accuracy constraints should be studied at the same 

time, in the same experiment, with the same subjects. SATO and ROC phenomena are but two 

faces of the same decision process. 

Some properties of the parallel race model 

The parallel race model has two properties that are very important for psychological 

plausibility, namely reduction of variability and resistance to partial destruction. 

The reduction of variability is a useful property for any psychological model. Suppose 

that the inputs (or equivalently the units) have a slow conductance rate and a significant amount 

of variability resulting from noise η (as is the case for neurons, for example). A serial system 

composed of m stages would end up with a tremendous amount of variability m × η. By adding a 

second unit in parallel with the same purpose as the first one, and considering only the fastest, 

variability decreases considerably. In some cases, with only two redundant units (ρ = 2), 

variability of the output is reduced to half the variability of the incoming signal; with 3, it is 

reduced to one third, etc. In general, the resulting variance from ρ redundant inputs is 

proportional to γ ρη , where γ depends on the shape of the variability of each unit (Cousineau 

et al., in press). This is probably the easiest way to reduce variability (noise) that we know. No 

special filters or transformations are needed. In fact, it is possible to construct a serial system 
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composed of m stages where each stage is composed of units racing in parallel with variability at 

the output that is comparable in magnitude with the variability of the inputs.19 Such a system is 

said to be in control of the noise and can be extended to a larger number of stages without much 

decrease in performance resulting from noise. 

Resistance to partial destruction also results from the assumption of redundancy: with a 

large number of redundant channels, a few lose will barely affect the system. Perhaps the only 

visible manifestation of partial destruction would be a small rise in variability since fewer units 

are now competing. This property doesn’t depend on the nature of the units (neurons or others). 

They are emergent properties of large collections of random elements where only the fastest are 

crucial at any given moment.  

Serial effects 

From a neuroanatomically point of view, the weight of evidences clearly suggests that the 

brain have a massive parallel architecture. Yet, in cognitive psychology, there are countless box-

and-arrow models where certain operations must be performed in a given sequence. Some of 

these models implicitly assume a central executive who knows when to perform the operation, 

but this only relegates the notion of time one notch deeper (Van Gelder, 1995). One elegant 

aspect of the parallel race model is that it does exactly the opposite: time is the front-end of this 

parallel architecture. Seriality, as we describe next, is one by-product of PRN to accommodate 

imperfect inputs. 

PRN allows faster responses to more complex patterns since it needs to gather a larger 

amount of evidence. Because the absence of information has no representation in this network, 
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the various responses in competition must agree to defer their responses a little longer when they 

might be in presence of embedded patterns. 

This results in the most interesting property of all: seriality out of a parallel architecture. 

The serial effects obtained cannot be schematized appropriately by a box-and-arrow diagram 

since the B response will occur if response A was not triggered, not after response A was 

discarded. The distinction is subtle but very important since in the latter, response B has no real 

knowledge whether processing for an A response was completed or not. Further, only training 

can adjust the delays for the B responses. Finally, this fake seriality may pose problems for those 

who analyze their data in the context of the additive-factor method (Sternberg, 1969) and the 

descendant of this method, the mean interaction contrast (Thomas, 2000, Townsend and Nozawa, 

1995). Further studies are needed to see whether simple statistics such as the mean interaction 

contrast and simple properties such as the Miller inequality still hold in the parallel race model 

(Ulrich and Giray, 1986, Cousineau, 2001). Nevertheless, this model provides a convenient 

framework, which is at the same time intuitive and highly constrained by mathematical relations. 

Strange, did you say? 

In retrospect, the parallel race model accomplishments are achieved with only three free 

parameters. Nevertheless, two of them are quite unusual in psychological models, so they 

deserve a few comments. 

The first parameter is I * D. It is not common to have a function be treated as a free 

parameter. The fact that it has no numerical value of its own and is not located on a continuum of 

function does not interfere with the fact that distribution functions are chosen by modelers (often 
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with best-fit objectives in mind). The same holds for the parallel race model. Although for large 

redundancies, the parallel race model predicts that accumulators are Weibull, it does not predict 

the exact shape γ of these distributions. More information on I * D (or taken individually, I and 

D) are needed to reduce the number of assumptions. Whether it can be studied empirically is an 

open question. 

The second parameter is ρ. Considering the gigantic number of connections in the brain, 

it is likely that the same activation will arrive to a neuron through various paths. This intuition is 

incorporated in the parallel race model. One reason to do this is to increase the number of races 

while keeping the problem the same. When this is done, the statistics of extreme theorems nicely 

fit into the picture, providing simple predictions. Yet, ρ also proved interesting in another way 

because the resistance to partial destruction and the reduction of noise properties are direct 

consequences of this parameter. Further, Anderson (1994) showed that increasing the number of 

paths in simple networks can explain the RT-IQ correlation. Indeed, the parallel race model does 

fit well the empirical data reported when only ρ is manipulated. Hence, more is better. However, 

a massive dose of redundant inputs right from the start increases slightly the amount of training 

needed before the network stabilizes. A possible solution, suggested in a different context by 

Logan, is to suppose that redundancy is not present from the start but rather that extra inputs are 

recruited as practice on a task goes on. This interesting conjecture makes connection between the 

learning curves of both mean and standard deviation and the shape of RT distribution (as shown 

originally by Logan, 1988, 1992; also see Cousineau and Lefebvre, in preparation, Takane, 

Oshima-Takane and Shultz, 1999). 
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Finally, the noise parameter η might in contrast seem more conventional. It is seen from 

times to times in various models. However, it is important to see that the noise as we define it in 

this paper does not affect the magnitude of numerical values (such as strength or weight) but 

always introduces delays in the acquisition of information. It is not a “How much” but rather a 

“When then”. It is always an increase because information can only be delayed, not speeded by 

noise (congruent with entropy). 

Taken together, η and ρ more or less describe the residual noise at the output of the 

system. As such, they should always be studied in conjunction. However, this is not an easy task. 

For example, reducing luminance contrast is generally modeled by an increase in noise (Palmer, 

1994, 1998). However, since it reduces the amount of photons reaching the eye, should not it be 

seen as a reduction in redundancy? A more formal definition of these factors are therefore 

needed. 

Thorpe’s paradox and the learning rule 

In light of Thorpe’s paradox mentioned in the introduction, an interesting question 

emerges: if only the first few milliseconds of the neural activities is used, why does the 

activation last so long? In the parallel race model, only the moment when the activation turns on 

is relevant. It could shut down immediately after. Therefore, it is not relevant for decision-

making, but it might be relevant for learning. 

The learning rule discussed here is not of the delta rule type for two reasons. First, there 

are no hidden layers and the attribution of errors is easy: the fastest are the guilty. Second, a 

difficult information to assess (and a much more elusive question) is how to know if an error 
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occurred or not. The solution in supervised network was to assume that a teacher was present. 

Nevertheless, what can a teacher do? It is doubtful that it can reach the specific faulty unit. It is 

more reasonable to suppose that it can stop the incorrect behavior. Thus, it seems that the teacher 

can stop a behavior and interrupt immediately what would otherwise be an excessively long 

period of high activation. In retrospect, this long period of high activation might serve as a 

confirmation: If it was not interrupted prematurely, then it was not an erroneous behavior. In 

other words, neuron activities may have two dimensions: the moment it went on, and the 

duration of the activation. These two dimensions in turn may be responsible for two distinct 

behaviors: decision and learning. This view could solve some of the controversy surrounding the 

notion of teachers in supervised learning. 

In a different vein, extended periods of activation could also be relevant to reinforcement. 

For example, keeping a neuron activated for some time might be used to detect whether other 

neurons can be activated in the same way and thus joined to the system. Equivalently, the 

conjoint activation of the input and the output might facilitate the creation of new connections 

between the two. In either case, they are other forms of the redundancy conjecture. 

New mathematics, old asymptotic theories 

In order to develop the mathematics of race models, we redefined the dot product, based 

on the joining function and aggregate functions we chose. Although there is no precedent to this 

in the literature to my knowledge, it leads to a major simplification for predicting RT 

distributions since it has direct connections with asymptotic theories. I will show some examples 

here using three distinct asymptotic theories. 
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The simplest case is related to the Perceptrons. Let I and W be the input vector and the 

weight matrix describing a given network. The output of such a network is simply  

where the standard dot product is used. Let further assume that I, W, or both can be noisy, such 

that all I

WIO








∑
×=

i and Wij are independent and identically distributed with distribution functions I and 

W respectively. If the mean m and variance  exist for a given 

pattern I

)(: WI ×= PE )(:2 WI ×= PVars

P, then according to the law of large number (Feller, 1957), the asymptotic distribution 

of sums  is normally distributed with mean m and standard deviation s. Of course, 

this result is based on the extra condition that the number of inputs is large (larger than 30) 

because the law of large number is an asymptotic theory too

)^( jL WIΣ

20. In general, models based on the 

standard dot product are called additive models (or linear models, in relation with linear algebra). 

A second class of non-linear models is the multiplicative class of models (West and 

Schlesinger, 1990). Decisions are obtained by chaining processes. Therefore, they are well suited 

for explanation involving processing steps such as Encoding-Decision-Motor response (but in 

order for asymptotic theories to apply, the number of steps has to be much larger than three). 

Following the presentation of Ulrich and Miller (1993), if we let I be a random vector of inputs 

{Ii} and G be a matrix {gi} composed of power functions of the type  , then the response of 

this system is given when O  exceeds a criterion χ. This is a cascade models 

(McClelland, 1979) and, as shown by Ulrich and Miller, under this formulation, the RT 

distribution is LogNormal. 
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A third class of models is the class of competitive models, based on the minimum 

operator such as the parallel race model. The Weibull is the asymptotic distribution for these 

models. In the above, we concentrated only on an additive version {Ii + Dij}. However, we also 

explored a multiplicative version of this race model, where the output was given by 

. As shown in Cousineau et al., there is no difference in the RT distribution 

predicted, which leads to the temporary conclusion that the joining operator used may not have 

much impact on learning.

DIO







 ×
=

Min

PP

21 

Overall, we conjecture that there may exist three distinct classes of learning networks, the 

additive (or linear) models, the multiplicative (or cascade) models, and the competitive (or race) 

models. These classes are easily identified by the type of dot product used in the integration rule, 

,  , and  respectively. We put an underscore since it may be that the joining operator is 

irrelevant. These classes of models have well-known asymptotic behavior since under some 

general assumptions,  is normal,  is LogNormal, and  is Weibull (at least when the 

underscore represents convolution, production, and convolution or production respectively). 

Future work is needed to see if very general predictions made by these models can be contrasted 

using general properties (such as the Miller inequality, Ulrich and Giray, 1986, Cousineau, 

2001). 
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The word of the end 

Ractliff, Van Zandt, and McKoon (1999), who explored extensively RT distributions and 

phenomena such as SATO, remarked: “The findings […] show that the long tradition of 
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reaction-time research and theory is a fertile domain for development and testing […] how 

decisions are generated over time.” (p. 261). I would like to stress this point even more: maybe 

time is the fundamental unit of cognition. At least, I showed in this text that, in principle, it could 

be so. Whether human cognition is based on this class of model remains an open question, but 

finding which metric underlies cognitive processes would help to develop tests that are more 

sensitive. 
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FOOTNOTES 

                                                 

1 Another class of model that generalizes the SDT is the multidimensional SDT, sometimes 

called the noise models (Palmer, 1994, Eckstein, Thomas, Palmer, Shimozaki, 2000, Maddox, 

Ashby, 1993). They assume that a fixed number of samples are taken from the stimuli. 

2 A classic example of a race model with a single accumulator is given by a chain (Weibull, 

1951) where the overall strength of the chain lies in the strength of its weakest link. However, 

this example is confusing because the chain is organized serially, one link after the other. It is 

important to understand that it is a parallel phenomenon since the chain will break as soon as one 

of its links will. In this situation, the distribution of the weakest link accurately describes the 

distribution of the tensions at which the chains break.  

3 Because the weights are partly determined by training, we could call them “partly free 

parameters”. To test distinct models, it is necessary to know the number of free parameters using 

for example the Likelihood ratio test (Myung, 2000, Grünwald, 2000). At this time, no one 

knows to how many “fully free parameters” corresponds, say, a hundred “partially free 

parameters” This question is open to further research. 

4 If you need to think in terms of activation strength, then consider that all the connections have 

an equal strength of one. 

5 Hidden layers will not be studied in this paper. 

6 A variation where one input can fill more or less than one slot will not be considered here. See 

Laberge, 1962. 
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7 The average is not the best measure in a parallel model (if ρ > 1) and a more sensible value 

would be the characteristic smallest value (Gumbel, 1958), but our purpose here is to obtain a 

value that reflects the manipulation of noise and redundancy for graphical purpose only. 

8 To be consistent with the “Serial Poisson race model” label, we should call PRN the “Parallel 

anything race model”. Indeed, the above assumptions and the following results are not based on 

a specific distribution function. Any functions that satisfy the criterionC1 and C2 presented in 

Appendix C predicts a Weibull distribution. In that sense, the PRN is a more general model. 

9 And these equivalences might explain why Signal Detection theory (Palmer, 1998, Eckstein, 

1998), Reduction of information theory (Haider and Frensch, 1996, 1999) and Diffusion models 

(Ratcliff, Van Zandt., McKoon, 1999) are so successful. 

10 I would like to thank some of my friends for suggesting this representation. 

11 At this time, I couldn’t derive a proof of convergence toward the optimal solution, contrary to 

many neural networks where such a proof exists (Kohonen, 1984). One reason is that the non 

linear algebra operator  is new and not related to derivatives. A gradient descent proof is thus 

impossible for PRN. 

.~

12 In the following, we use the tilde to mean “is distributed as”. 

13 Although not shown, it does not take longer for the parallel race model to learn an AND 

problem than a XOR problem.  

14 We note that this network has no tolerance to errors: learning occurs on every error. 

Ultimately, after an infinite amount of training, it would make infinitely few mistakes. 
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15 Logan (1992) tested this same prediction involving RT distribution and RT learning curve in 

the context of his Instance-Based theory of automaticity.  

16 The trouble with this prediction on noise η is that physical measures of noise are not likely to 

be linearly related to psychological measures of noise (Lu and Dosher, 1998, West and 

Shlesinger, 1990, Link, 1992). 

17 This model does not have a specific mechanism for tolerance to errors. It therefore aimed at 

zero errors (expressed by an infinite θ) which wil never be attained. However, we trained the 

simulations long enough that θ should be reasonably small. 

18 Interestingly, that is exactly the changes of value we had to perform in Section 1 when going 

from an On-Off representation (1 or 0) to a time-domain representation (0 or ∞). 

19 The question here is to find a solution to  

 0

?
0     η
ρ

η
η

γ
≤










≈ mm

ρ>m

Σ
1C Σ

2C

 

where ηm is the noise at stage m. In the case where γ = 1, one obvious solution is . 

Therefore, with a system whose “width” is larger than its “depth”, a race model with m stages 

has a stable amount of variability at the output. 

20 By analogy with Appendix C, we can call the two above conditions criterion  and . It 

seems that many asymptotic theories can be satisfied with as few as two criteria. 
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21 Since we are talking about variations, let me mention one more. We tested a different learning 

rule where, contrary to the present version in which delays were increased if a unit false-alarmed, 

delays were decreased if a unit missed. Again, this variation did not affect learning. 
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Appendix A: 

Deterministic solution to some simple problems 

The purpose of this appendix is to propose simple problems, that is, situations where the 

PRM must make correct output to a given input. Although PRM is relatively simple, it is our 

experience that people acquainted with classic connectionist network have difficulties 

understanding PRM because some of the basic concepts, although similar looking, have in fact 

the opposite meanings. 

Five different problems are explored: the Detection problem, the 1D problem, the 

Identification problem, the AND problem and finally, the XOR problem. Figure A.1, left 

column, illustrates the problem spaces. The dimensions represent the value of a certain attribute 

of the stimuli. Here, attributes are all binary, which can be implemented as present or absent. 

Insert Figure A.1 about here 

When working with binary features, it is convenient to think in terms of zeros and ones, 

and indeed, the problem spaces in Figure A.1 are organized in that way. However, when 

presenting a stimulus to the network, what is crucial is whether the information on the dimension 

has arrived (i.e. is present) or has not arrived yet (i.e. is not present). As such, activated units 

receive an input right away (at time t = 0) whereas inactivated units never receive an input (will 

be activated after an infinite amount of time, t = ∞). This distinction is very important since what 

is fed into the network are times at which the activation occurs, not its strength. Therefore, 

instead of thinking in terms of 0 and 1 (absent, present), one should think in terms of ∞ and 0 

(never vs. sudden). 
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All the toy problems presented here require at least one time-out unit. For simplicity’s 

sake, we assume that these units are always immediately on, so that there activation times are all 

zero. 

We deliberately ignored variability in the moments of activation. It is an exercise of logic 

to find the optimal solutions. The learning rule is also not considered in this appendix. 

Example 1: The Detection problem 

We first study a simple problem that we call the Detection problem. This problem is 

composed of 1-dimensional inputs, and the task of the system is to decide whether this 

dimension is on by making an A response or off with a B response. Figure A.1(a), left part, 

shows the problem space. 

In terms of connections, if the input  gets activated, it should be conveyed to the output A 

with no delays. This connection should be immediate and thus receive a value of zero (the 

smallest delay possible on such a channel). In addition, this single piece of information is 

sufficient for an A response, so the size of the accumulator A must be 1. Because this same 

information is totally irrelevant to response B, it should never reach the B accumulator, so there 

should be no connection between the input and the response B. Instead, the accumulator B 

should rely on a time-out unit. However, the delay between the activation of the clock and the 

moment it reaches the B accumulator cannot be zero. If such was the case, in the presence of a 

signal on the input, both accumulator A and B would be triggered at the same time, and the tie 

would make the response ambiguous. The proper solution is to defer the clock signal a little, in 

case an input signal is present. Thus, there should be a small delay t > 0 between the clock signal 

and the response B. 
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Figure A.1(a), right column illustrate the solution using a matrix of delay and a vector of 

accumulator sizes. 

Example 2: The 1D problem 

In this problem, inputs are composed of two dimensions (e. g. features) which can be 

either present or absent. The correct response is A if dimension two is present. This problem is 

called a one-dimensional (1D) problem because only one dimension is relevant. The presence or 

absence of the other dimension is totally uninformative. Figure A.1(b), left column, shows the 

problem space. 

To address a specific connection, we will use the Dij notation, where D is the matrix of 

connections, representing the delays between an input and an accumulator, i is the input number 

(1, 2, or  for the clock unit) and j is the response output, either the accumulator A or B in this 

example. Thus, D A is the delay in the connection between the clock and the first accumulator. 

Further, let Kj represents the size of the jth accumulator. 

Because the input on dimension 2 is fully diagnostic of response A, it should be conveyed 

immediately to the accumulator A, and a response can occur immediately. Thus, D2A = 0. In 

addition, this information is sufficient so that the accumulator for response A is 1 (KA = 1). The 

model should answer response B if and only if nothing is on the second channel, that is, if no 

response has been made at time 0. Therefore, D1B must be larger than D2A. Call this delay t > 0. 

Finally, if nothing is presented, the clock should also be able to generate a B response. Thus, 

D B = t as well. The other connections are irrelevant and can be disconnected (∞). Also note that 
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the presence of a signal on input 1 being uninformative, we could rely on the clock only and set 

D1B to ∞. 

Right column of Figure A.1(b) shows the solution in terms of delays and thresholds. 

Note that if an input is present on the first channel, it can either be response A (pattern {1, 

1}) or response B (pattern {1, 0}). This is an example of an embedded pattern. Embedded 

patterns will be discussed in the text. 

The solution shows that response B will be performed if and only if response A was not 

done previously. In a certain sense, B must agree not to compete with A in case where the input 

on dimension 2 is activated. This form of collaboration is in direct opposition with classic neural 

networks where the inputs are in competition. 

Example 3: The Identification problem 

The identification problem is an example where the system must answer A if dimension 1 

is on and B if dimension 2 is on (the case where both are on is assumed non existent). When 

neither dimension 1 nor dimension 2 is present, the system must make a third response, called C. 

Figure A.1(c), left part, shows the problem space. 

Apart from the third accumulator, this example is simple to solve. As soon as something 

is perceived on dimension 1 or 2, a response A or B, respectively, must be made. Thus, the 

delays D1A and D2B are set to zero. However, the clock is responsible of the response C and to 

avoid ambiguity with A and B, it should be delayed a little. D C = t > 0. 

Figure A.1(c), right part, shows the solution matrix. 
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Example 4: The AND problem 

The AND problem requires that both inputs be present for the system to respond A. All 

other patterns of input must result in response B. See Figure A.1(d) for the problem space. 

The correct solution requires that the inputs be transmitted rapidly to the accumulator A. 

However, the two must be present. This requires that the threshold KA be 2. If the conjunction is 

not present, any single input will not fill the accumulator. However, it can trigger a B response 

and should, a little while latter to avoid tie. A time-out unit can also trigger a response B later. 

Figure A.1(d), right part, shows the solution matrix. 

Note that since the correct response is the same whether there is one input or none 

(response B), we can use only the clock to respond B and shut down the other two connections 

(D1B and D2B to ∞) without any change in performance or accuracy. 

Example 5: The XOR problem 

The XOR problem is a more complex problem with an important history. Indeed, Minsky 

and Papert (1969) showed that the XOR problem is a linearly non separable problem (there exist 

no single boundary between the As and the Bs in the problem space) and could not be solved by 

two-layered connectionist network. As this example shows, a hidden layer is not necessary inside 

a PRN architecture. 

The XOR rule is to respond A if both or none of the input are present and B otherwise. 

Figure A.1(e), left part, shows the problem space in the usual format. 

The correct solution is to react rapidly if two inputs are present (D1A and D2A equal zero), 

and to be cautious if there seems to be no input (delays t2 for time-out units). However, when 

only one input is present, accumulator B should react faster than the clock and slower than 
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accumulator A, to avoid simultaneous responses. So delays should be set at t1, where t1 < t2. In 

this last case, since there is one actual piece of evidence collected so far, the system is rapidly 

confident that it is not a situation where no input are present. However, the system is still 

uncertain about the presence or absence of the second input. The purpose of the time-out unit is 

to wait, but not to wait too long. Also note that the threshold for a response A is 2 since a 

conjunction is required. Therefore, to make a response A when nothing is present, two 

activations are required, leading to the consequence that two clocks are absolutely needed. This 

is an example where redundancy is necessary. 

In the priority learner representation, the rules R1 to R3 could be:  

R1: Say "A" as soon as there is two evidences; 

R2: Or else, say "B" later (at time t1) if one evidence; 

R3: Or finally, say «A» later (at time t2). 

In R1, evidence will come from the inputs whereas for R3, evidence are likely to come from the 

clocks. Because in the XOR problem, R1 and R3 addresses the same output A, so must the 

accumulator size be identical. This is why this particular problem requires two clocks. The 

previous problems could all be learned with only one clock although more than one clock does 

not hinder performance (the extra clocks might make learning slower). 

As seen, because the system can order the responses temporally, there is no need for 

hidden units. Note that adding clocks does not change the problem space to a linearly separable 

one since the clocks are always on. 
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Appendix B: 

Redefining the dot product 

The whole point of race models is to find which channel transmitted the information to 

the output first. Noise across the layers is assumed additive. Thus, a combination of sum and 

minima is required. It turns out that a simple generalization of the inner product allows 

accommodating the need of the race model. Further, by adopting this inner product 

representation, it allows for a very compact notation that naturally extends to vectors of random 

values (as seen in Appendix B) and also allows for comparisons with classic connectionist 

networks that use the standard inner product in their transmission rule. 

Redefining the dot product on vectors 

The standard inner product is defined on one-dimensional vectors U and V by: 

  ∑
=

×=
n

i
ii VUVU

1

:.

where n is the size of both vectors. One can note in the above equation that there are two 

operators at work: a joining operator (×) and an aggregate operator (Σ). The role of the joining 

operator is to relate a couple {Ui, Vi}, defined in a domain ℜ2 (we will assume the real domain in 

this text) with a single value in the ℜ domain. The product × does constitute an appropriate 

joining operator in standard situations. 

Having joined all the couples from the two vectors, we obtain a single list of values. This 

list needs to be reduced to a summary value and that is the role of the aggregate function (defined 

on the domain ℜn → ℜ). 
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A simple example illustrates the role of the two operators in turn. Let  

 U=  and V = 

 

First, the join operator is applied on the two vectors, yielding: 

 U × V = ×  =   

and then, the aggregate operator follows: 

 Σ  = 857 

 

To avoid confusion, we can use a more explicit notation U  to represent the standard 

inner product U , based on the product for the join operator and the summation for the 

aggregate operator. The non-standard dot product used for race models is thus in this 

representation denoted by U , where Min is the minimum operator. It is defined by: 

V
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Here’s an example with the same vectors as above, but using the U  operation: 

First, the joining operation using sum: 

V
Min 







 +

 U + V = +  = 

 

followed by aggregation done by locating the smallest of the list: 

 Min  = 3 

As can be seen, the results differ markedly. 

On some occasion, it is not the first minima that is required, but the second or third, etc. 

Let us define the Kth minimum operator MinK as a function that returns the Kth smallest value of a 

vector-list. If K = 1 then this operation reduces to the standard minimum operator Min. If K > 1 

and K smaller than the length of the list, MinK is defined recursively as 

, where the subtraction removes the smallest element from 

the vector-list. 

}}{{:}{ 1 listMinlistMinlistMin KK −= −

In the above example, U  would yield 6. V
Min 







 +

2
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Inner product of a vector and a matrix 

In the race model, we use a vector to represent the input. The connections relating all the 

n inputs to the m outpt are stored in an n × m matrix. Because each output is an accumulator 

waiting for the Kth fastest channels, we also store in a vector of size m called K the accumulator 

sizes. 

We can redefine the inner product as we did for the dot product. Let U be defined 

on a vector U

A
KMin 







 +

n and a matrix An × m using sum as a joining operator and minima as an aggregate 

operator. As usual, the result will be a vector of size m. The operation is given by: 

  (B.2) }..1,{: mjAUAU j
MinMin jKK

== •









 +







 +

That is, for each column of A, we perform an inner product with U (as defined in Eq. B.1), using 

the KJ
th accumulator size.  

As an example, given  

 U = , A =  and K = , 

The result of U  is given by first applying the joining operation column wise: A
KMin 







 +

 U + A =  

then aggregating by finding the Kth minimum, performed on each of the m column: 

 MinK  =  MinK1 , MinK2   
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 =  Min1 , Min2   

 = ( 3, 6 ) 

When the context is not misleading, we will use the shorter notation  to stand for the 

redefined dot product U  or the redefined inner product U . 

.~

V
Min 







 +

2

A
KMin 







 +
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Appendix C: 

Details from the statistics of extremes 

The simplest race model consists in a single accumulator connected to inputs, a large 

number of them (say ρ) being redundant. A response is given when the accumulator is filled. 

Thus, the unit that fills the last slot determines the response time t. This is usually conveyed in 

the equation  where the t},...,,{ 21 ρtttRT Min= i are random variables distributed with 

distribution function T. It is shown that if: 

C1: T has a lower bound (at a point, say α(T) ), and  

C2: the left-end tail of T approximates a power curve (i. e., satisfying a criteria of this 

type: ( )( )
( )( )

γ

α
α x

h
hx

h
=

+
+

↓ TT
TT

0
lim , γ ≥ 0, Gnedenko, 194322),  

then the distribution of minima has an asymptotic stable shape (Fisher and Tippet, 1928, 

Gumbel, 1958, Galambos, 1978). Further, this shape is given by a Weibull distribution 

(Cousineau and Larochelle, 1997). 

This reasoning depends on ρ increasing to ∞, but Cousineau, Goodman and Shiffrin (in 

press) showed that ρ could be relatively small (smaller than 100, and in some cases, smaller than 

20). 

The two criteria above are satisfied by many known distributions including the 

Exponential and its related distributions and by the Uniform distribution. One important 

exception however is the Normal distribution, which does not have a lower bound (thus violating 
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C1). In addition, it is shown that this argument is still true if, instead of waiting for the fastest, we 

wait for the Kth fastest before triggering a response, as long as K is finite, small and independent 

of ρ (Galambos, 1978, Leadbetter, Lindgren and Rootzén, 1983). 

In the parallel race model, we have an input vector, denoted I and a connection matrix, 

denoted D. 

Let I and D be the distribution functions for each element composing the random vectors 

I and D, respectively. Using a similar notation to the one used to compute the output O in Eq. 

(1.2), we define O as the response times distribution produced by the model. We assume that the 

effects of I and D are additive (although it could as well be multiplicative; see the general 

discussion). The relation between the distribution function of the inputs I, the delay D, and the 

output O is thus given by: 

  (C.1) 
)*(

)( *

DI

DIO

K

K

Min

Min

L

L

=

=









where * is the convolution operation implementing the effect of adding random variables 

(Cramer, 1946), and L is defined as the asymptotic distribution. Because the aggregate operator 

MinK defines in what respect L is asymptotic, we can migrate MinK outside the parenthesis. In 

our case,  is the asymptotic distribution with respect to the K
KMinL th minimum. Stated differently, 

this equation returns the asymptotic distribution of the convolution I * D with respect to 

minima. 
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In order to solve O (Eq. 1.3), we need to assume some characteristic for the distribution 

functions I and D. A first obvious constraint is that a signal cannot arrive before it is emitted. 

This signifies that the criterion C1 is satisfied (α(I) ≥ 0 and α(D) ≥ 0). This also eliminates the 

Normal distribution; it is an unwise choice for modeling race models. The second assumption 

concerns the rate of increase of the distribution functions. Although many possibilities exist, we 

will adopt distributions with a power curve increase in probability because i) they satisfy the 

criterion C2, making the solution of O possible; ii) many common and well-known distributions 

are members of this family, such as the Exponential and the Uniform distributions. 

We proved in Cousineau and al. (in press) that convolving two distribution functions 

satisfying C1 and C2 results in a distribution function that also satisfies these criteria. Therefore, 

Eq. C.1 has a solution. One accumulator race network’s distribution is the Weibull distribution. 

We believe the above notation is useful since it can easily be extended to other 

asymptotic distributions. For example, when using the standard dot product (noted U ), the 

asymptotic distribution, assuming large random vectors with distributions U and V is given by: 

V








∑
×

  
)^(

)(

VU

VUO

∑=
∑

=







 ×

L

L

where ^ is the production operation, meaning that each pairs of random values in U and V are 

multiplied.  thus stand for the asymptotic distribution with respect to summation. Now, the ∑L
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result is well known to be a Normal distribution by appeal to the Central Limit Theorem 

(Cramér, 1947). 
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Appendix D: 

Imposing deadlines and speed-accuracy decomposition 

In this section, we introduce sharp time constraints. Thus, the response C will in fact 

corresponds to a “guess” response because the clock interrupts the trial too soon. We assume that 

the environment imposes the clock. Experiments imposing deadlines are called Signal-to-

Response (StoR) experiments. They have a peremptory signal that mandate a response as soon as 

possible (Reed, 1976). 

Following Meyer, Irwin, Osman and Kounios (1988), we note that correct response can 

result either from an adequate processing of the input (when the signal S is faster than the clock 

C) or a correct guess (when S > C). If no signal-to-response occurs in a trial, there is no guess. 

Therefore, let us write Tn the response time obtained on no-StoR, Ts when a StoR occurs with a 

certain SOA, and Tgs the response time of a guessing. Both Tn and Ts are observable but Ts 

represents a compound of Tn and Tgs where Tgs is not observable and correspond to the 

distribution of the clock D C (presumably, Tgs = G + SOA). Meyer et al. suggested a 

decomposition method so that the distribution of the clock can be obtained. In the following, we 

apply this method to parallel race model and show that it correctly recovers the clock 

distribution. 

First, note that 

  and  ) )()( cPcP gs >=> CT()( cPcP n >=> ST
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where, for simplicity, S represents the processing time of the signal I1 + D1A, and C denotes the 

processing time of the clock I  + D C. During a normal trial, the clock is not involved since 

there is no StoR (D C = ∞). Under the parallel race model, 

  )()()()( cPcPccPcP gsngsns >>=>∩>=> TTTTT

Because all the inputs and the clocks are independent, we can use a product of two probabilities. 

It follows that 

 
)(
)(

)(
cP
cP

cP
n

s
gs >

>
=>

T
T

T  (D.1) 

That is, pure guess distribution is deduced from a ratio of two observed distributions and yields 

exactly the clock distribution. Figure D.1(a) illustrates the relation between Tn and Tgs, where 

SOA occurred at 2 arbitrary units of time. The sooner the distribution of the clock starts, the 

steeper the distribution of Ts becomes. In Figure D.1(b), we imposed three StoR SOA to the 

system by setting D C positions. We used the values 1, 2, and 3 in arbitrary units of times. Using 

Eq. D.1, we recover perfectly the distribution of the clocks. This graph is strikingly similar to the 

one obtained by Meyer and al. on human subjects, lending support to the parallel race model. 

Insert Figure D.1 about here 

The final question concerns which response is guessed. According to Meyer et al., some 

form of sophisticated guessing can occur. In the parallel race model, this is achieved by 

assuming that partial information can be used even if the accumulator is not full. In the above 

example, it is of course impossible since the accumulator size is 1: either it is already full or no 

information at all exists. However, if threshold is much higher than 1 (given that ρ is also larger 

than 1), then partial information can be available. If guessing is based on the proportion of slots 
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filled at a certain time, we can then make the following plot of Fn( E(Ts | D C) ) as a function of 

E(Ts | D C) where the first term gives the pdf of the time to fill the accumulator under a normal 

trial computed when the average time of a StoR trial is attained. Multiple points are obtained by 

varying SOA (D C). Figure D.1(c) gives the result, again compatible with the Meyer et al. data 

(their Figure 21). 
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FIGURE CAPTION 

Figure 1. a) The representation of a serial Poisson race model. Signals are received as spikes of 

activation through a unique channel in a serial mode. Information is accumulated until KA of 

them fill the accumulator. b) The representation of a Perceptron. Signals are received as strength 

of activation through multiple channels in parallel. 

Figure 2. A parallel race model with two accumulators and one clock unit. a) Signals are 

received at various moments Ii through independent channels and stored in the accumulator after 

going through the connections Dij. The symbol  denotes the clock (time-out) unit. b) The same 

model seen as a matrix of delays and vectors for inputs, thresholds and outputs. The dash line 

indicates the delimitation between inputs from the stimulus and inputs from the time-out units. 

Figure 3. Alternative representation of the PRN. a) PRN illustrated using a decision tree that 

minimizes the information processed. b) Random walk representation where the drift rates δi are 

the reciprocal of the average delays Dij and the variability ηi depends on the noise applied to I * 

D. 

Figure 4. Building a ROC curve from a Parallel race model. a) Signal detection theory assumes 

that signal S and noise N are random activation and that activation higher than a constant c 

results in a signal present response. b) Parallel race model assumes that signal (S) is 

characterized by the moment when the input becomes active. Because of variability, this moment 

is a random variable. If no signal is present, spurious activation (Sp) will occur, but it is likely to 

occur later (thus, the scale of Sp is much larger than the scale of S). If the signal arrives too late, 

the clock (C) will emit a default response. However, the clock is also a random variable with 
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position t. c) Some ROC curves generated from the Parallel race model assuming that variability 

in S and Sp are Weibull. Scale of Sp is 5 times larger than scale of S. 

Figure 5. The XOR problem. a) The optimal solution when redundancy is present. b) Illustration 

of the amount of noise added to the input. Two levels are shown, η = 0.5 and η = 2.0. c) 

Illustration of the amount of noise added to the delays. 

Figure 6. Learning curves of the parallel race network presented with the XOR problem. Left 

column shows the percent of errors (P(e)) as a function of epoch (1 epoch represents 10 trials) 

when the amount of noise η varies from 0.0 to 2.0 (ρ was constant at 1). As seen, learning is fast, 

but in presence of noise, the system still do scattered errors. Right column shows the solution 

achieved by the network. As seen, the drift rates become increasingly shallow when noise 

increases. Thresholds are unaffected by noise. 

Figure 7. Illustration of learning curves for the parallel race network when both redundancy ρ 

and noise η are manipulated. Columns shows two level of noise (η = 0.5 and 2.0), rows are for 

five level of redundancy (ρ = 1, 2, 4, 8 and 16). Even with very large amount of redundancy and 

noise, learning occurs rapidly. 

Figure 8. a) Appropriate values for t1 when noise η (0.5 or 2.0) and redundancy ρ (1 or 4) are 

varied. b) Estimated surface for t1 values when noise η (0.5 or 2) and redundancy ρ (1 or 4) are 

introduced. The reciprocal of these values gives an estimator of the drift rates in a random walk 

representation. 
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Figure 9. Recovered parameters from the best-fitting Weibull to the simulated response times to 

response A (both input present) in a XOR task, as a function of redundancy ρ and noise η in 

arbitrary units of time. The parameters are the position α , the scale , and the shape γ . ˆ β̂ ˆ

Figure 10. a) Mean correct RT and b) Percent correct in the XOR experiment. 

Figure 11. Correct RT distributions for the 2 subjects in the XOR experiment as a function of the 

number of dots presented. 

Figure A.1. The problems used in the text. The left column shows the problem space with the 

associated response. Colors indicate the correct solution to the stimuli used in these problems. 

Note that a value of zero on any dimension indicates that the corresponding feature was absent. 

The right column shows the matrix solution for a parallel race model. a) The Detect problem. 

The system has to say A if something happens. The general solution to this problem is to say “A” 

as soon as dimension 1 is activated (D1A = 0) or else say “B” after a while (t = D B > 0). b) The 

1D problem and its solution. The correct response is A if and only if dimension 2 is presented. 

Input for dimension 2 has the highest priority for response A (D2A = 0) followed by input for 

dimension 1 with respect to response B (t = D1B > 0). Thresholds are 1. c) The Identification 

problem. Correct responses are A or B depending on which dimension is on. There is no case 

where both dimensions are on at the same time. The clock is used to put time pressure on the 

system (at time t = D C) and the corresponding response C is a sophisticated guess. d) The AND 

problem and its solution. The correct response is A if and only if the two dimensions are 

presented. Input from both dimensions have the highest priority (DiA = 0) but both are needed 

(KA = 2). Any input or clock can later provoke a response B (t = DiB > 0). The clock is essential 

in case no input is presented. e) The XOR problem. Response A is correct if both or none of the 
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inputs is on. Response B is made in case where only one of the two inputs is on (0 < t1 = DiB < 

t2 = D C). This is a non-linearly separable problem. The solution requires two clocks when no 

input is present because the threshold KA must be two for the case where both inputs are on. 

Figure D.1. Speed-accuracy decomposition rational. a) The observed guessing times ts 

distribution is a compound of a normal processing time (tn observable when there is no time 

constraint) and a guessing time (tgs not observable). However, tgs can be deduced from the data. 

b) Deduced guessing time distributions tgs when three time constraints are used to set D C. c) 

Speed-accuracy trade-off plot of Percent correct as a function of time (in arbitrary units). 

                                                 

( )γα )()( fxbxf −=22 A general power curve function is given by a function . The purpose of 

the Gnedenko formulation is to get rib of both the subtractive parameter (through addition) and 

the multiplicative parameter (through the use of a ratio) so that we retain only the core of a 

power function: its exponential parameter γ. 



Table 1.
Analyses of Variance performed on the summary values ∆K and ∆D obtained after training
on a XOR problem

ANOVA
Factor SS dl MS F
log ∆∆ D

anova
log Redundancy (log ρ ) 961.3 3 320.4 73.8 **
log Noise (log η ) 1553.4 4 388.3 86.4 **
log ρ  X log η 519.0 12 43.2 9.96 **
error term 260.5 60 4.3

Best fitting equation

log ∆D = 1.1 log η  - 0.6 log ρ  + 5.2 R2
 = .75

∆∆ K

anova
Redundancy (ρ ) 1192.0 3 397.3 142.8 **
Noise (η ) 3.6 4 0.9 <1
ρ  X η 19.6 12 1.6 <1
error term 166.9 60 2.8

Best fitting equation
∆K = 0.41 ρ  - 0.6 R2

 = .77

** : p < .01

Table 1



Table 2.
Proportion best fitted for three distribution functions to the response
times to patterns A, when noise η and redundancy ρ are varied independantly.

Distribution
redundancy (η = 0.5) Weibull LogNormal Ex-Gaussian

1 88 8 4
2 78 15 7
4 48 31 21
8 41 39 20

16 56 23 21
32 67 5 28

noise (ρ = 2)
0.5 62 23 15
1.0 90 2 8
1.5 84 2 14
2.0 80 3 17

Table 2



Table 3.
Moments and estimated parameters from the XOR experiment

Number of Moments Distribution

dots
0 464 158 258 206 1.9
1 454 105 278 188 1.91
2 432 85 277 155 1.88

differences
 0-1 10 53 -20 18 -0.01
 1-2 22 20 1 33 0.03

RT RT á̂ â̂ ã̂

Table 3
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a) Formal representation b) Matrix representation
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a) Priority learner representation b) Random walk representation
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a) Signal detection theory b) Parallel race model c) ROC curves from b)
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a) Optimal solution b) Noise functions I c) Noise function D
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a) Delay D1B as a function
of exponential noise η η 
and redundancy ρρ
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a) Detection problem

b) 1D problem

c) Identification problem

d) AND problem

e) XOR problem
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a) Plot of normal (tn) and StoR (ts) distributions b) Distributions for three different guess
along with the guessing time (tgs) distribution SOA

c) Speed-accuracy trade-off plot
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