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NEARLY UNBIASED ESTIMATORS FOR THE THREE-PARAMETER
WEIBULL DISTRIBUTION WITH GREATER EFFICIENCY THAN THE
ITERATIVE LIKELIHOOD METHOD

Abstract
The maximum likelihood method is the most commonly used method to estimate the
parameters of the three-parameter Weibull distribution. However, it returns biased
estimates. In this paper, we show how to calculate weights which cancel the biases
contained in the MLE equations. The exact weights can be computed when the
population parameters are known and the expected weights when they are not. Two of the
three weights' expected values are dependant only on the sample size whereas the third
also depends on the population shape parameters. Monte Carlo simulations demonstrate
the practicability of the weighted MLE method. Compared to the iterative MLE
technique, the bias is reduced seven times (irrespective of the sample size) and the
variability of the parameter estimates is reduced seven times for very small sample sizes

but this gain disappears for large sample sizes.
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Nearly unbiased estimators for the three-parameter Weibull distribution
with greater efficiency than the iterative likelihood method

The Weibull distribution is often used in experimental psychology either to
describe the response time data (e.g. Palmer, 1998, Burbeck and Luce, 1982) or to test a
model (e.g. Cousineau and Shiffrin, 2004). In some applications, the Weibull distribution
is just a convenient tool used to highlight the properties of interests in the data (e.g.
Rouder, Lu, Speckman, Sun and Yiang., 2005). In other applications however, the
Weibull distribution is a direct consequence of a cognitive model (e.g. Logan, 1988,
Cousineau, 2004, van Zandt and Ratcliff, 1995, Tuerlinckx, 2004).

The most commonly used technique to estimate the parameters of a data set
assuming the Weibull distribution is the maximum likelihood estimation technique
(hereafter called the iterative MLE). The problem with that technique is that it returns
biased estimators. The exact amount of bias is unknown and depends on the sample size.
As a consequence, it is not possible to compare the parameter values obtained from
samples of different sizes. As an example, for a very small sample (8 observations), the
shape parameter can be underestimated by more than 40 % and the scale parameter by
more than 30 % (these figures were approximated using Monte Carlo simulations
described later). Overall, if the three parameters are seen as a vector, the length of the
estimated vector is wrong by over 50 %. For medium size samples (rn = 32), the vector is
still wrong by over 10%. Averaging the parameters across multiple participants
(assuming they have identical distributions of RT) can be used to reduce the variability of

the estimates but this cannot eliminate the biases. Because experiments in psychology
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rarely have the same sample sizes, this is a major obstacle for cross-experiment
comparisons, an obstacle that we wish to eliminate with the present paper.

Electrical engineers, who extensively use the Weibull distribution for voltage
breakage, have developed many heuristics which aim at removing the bias of the obtained
MLE estimates. However, these heuristics were developed for the two-parameter (no
shift) Weibull distribution and cannot be generalized to the three-parameter Weibull
distribution (see Cacciari and Montanari, 1994, for a review of some of these heuristics).
Likewise, Hirose (1999) proposed to create a set of polynoms which, given the obtained
parameters, would return the unbiased parameters. These polynoms are based on the
biases found using Monte Carlo simulations for a large number of parameter values.
However, this technique requires tremendous amount of computations and must be
recalibrated for each implementation of the MLE program. Further, we found the gains to
be modest (Cousineau, in preparation).

In the following, we extend the MLE technique by incorporating three weights in
the solutions to the maximum likelihood equations. Exact expressions for these weights
are given, but being based on the (unknown) population parameters, we instead examine
their expected values. In doing so, we will need to move from an iterative MLE technique
to a two-step method in which two of the parameters are estimated iteratively and the last
one is estimated algebraically. Finally, Monte Carlo simulations will examine the
performance of the iterative MLE vs. the two-step MLE, and within the two-step

methods, the impact of the weights on the bias of the parameters.
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The iterative and weighted MLE equations

In psychology, the iterative MLE technique is definitely the most commonly used
technique (Heathcote, 1996, Cousineau and Larochelle, 1997, Dolan, 2000, Rouder, Sun,
Speckman, Lu and Zhou, 2003, Heathcote, Brown and Cousineau, 2004, see Cousineau,
Brown and Heathcote, 2004, for a review and van Zandt, 2000, for alternatives).

The best-fitting shape, scale and shift parameters are found by maximizing the
likelihood function (or more commonly, the log of the likelihood function), performing a
search in the parameter space (see Myung, 2003, for a tutorial). Let the true parameters
be denoted by v, 3 and « for the shape, the scale and the shift parameters respectively.

Figure 1 illustrates some Weibull distributions varying on their shape.

Insert Figure 1 about here

The domains of the parameters are givenby v € ' = R*, 5 € B = R" and
o € A={a < min(X),a € R} where X denotes the sample and R* excludes zero.' The
iterative MLE are obtained by performing a search over the three parameters

simultaneously:

5, B, é = M log (£(, B, a| X
{7'6' }MLE {vfer,ﬁe&g,(aeA og (¢(, 5, o ))}

(1

where 7, /3’ and & are the estimated parameters, and the likelihood function / is given by:
=1

in which » is the sample size and f'is the assumed probability density function (pdf) of x,

given by the Weibull distribution:

r—«
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Its cumulative density function (cdf) is given by:

Flaly.f.0) =1 - (55
The iterative MLE technique is used by most computer programs available (RTSY'S,
PASTIS, DISFIT and QMPE). It is very general and can be adapted to any distribution
whose pdf is known.
Instead of relying on brut computational power, we can look for an analytical
solution to (1) by looking for a maximum using the derivatives with respect to each of the
parameters. The result, given in Equation 2, is composed of a system of equations for %

and & and a second equation for B given 4 and &. We call this solution a "2-step MLE"

solution.
N 2
. 1 1 n . S log(zi—a)(zi—a)?
{5.4) Min (34 5 S0y log (s — o) — Bl
, = " A
7 MLE Min <l Zﬁ 1oy Y (i) L)Q
velaed \n &=l zi—a 7 30 (2;—a)’"h -1 (2)
N 1< N
1817, &g = - (x; — )’

In the above notation, the curled braces denote that a search is required whereas square
braces indicate an algebraic solution.” Appendix A indicates how this solution is derived.
The equations in (2) are the well-known MLE solutions for the Weibull
distributions (see e.g. Rockette, Antle and Klimko, 1974). What is less known is that they
can also be obtained from simple algebraic manipulations. Jacquelin (1996) showed how
to derive the solution in the case of the two-parameter (no shift) Weibull distribution; in
Appendix B, we derive the solution for the three-parameter Weibull distribution. We call

this solution the weighted MLE solution as it is identical to the standard MLE solution
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except for the presence of three weights, W;, W5 and Wi,
Overall, the weighted MLE are given by
n | — )T, —C 2
Min (% +1 Yo log(z —a) — Liz log(@i __)( . )7)
{’S/ @} _ ) y€laeA \ 7 n == >izi(@i—a)
? - n 2

" Min (130, 1 x St )

~el,a€A \" =1 z;—a 2icg(@i—a)’™ ! (3)

. S 1log,<1 G )log <10%< J);ilzlog (log (ﬁ))

iz log (T(:c,))

e, 2 (108 (7))

~
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Except for the introduction of 1/} and W, and the replacement of *= by W, the

==

weighted MLE equations are identical to the standard MLE equations. The terms W, can
be seen as weights and the corresponding MLE weights are 1, 1 and 7. However, they
cannot be pulled out of the equations, so that it is not possible to unbias the estimates
after the search has been completed.

When the true weights W, W5 and W5 are used, the estimated parameters are
precisely the true population parameters whatever the sample. Hence, the estimated

parameters & = cv, 3 = 3 and 4 = ~. In addition, Var (&) = Var(3)=Var ()= 0. The
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difficulty is that computing the true weights W1, W5 and W3 requires F'(X;) which in
turn requires the true parameters. Of course, they are unknown in practical applications.
One way around this difficulty is to realize that the weights are random variables.
Hence, instead of using the exact but unknown weights, we can infer their most probable

values. In the following section, we examine the mean, the median and the geometric

average of Wy, W5 and W,

Three propositions related to the weights 1/, W, and W3

We present a certain number of propositions related to the weights W;. We were
not able to demonstrate all of them; whenever we were not able to demonstrate a
proposition, we checked that Monte Carlo simulations (described later) results were

congruent with the propositions. Table 1 presents an overview of some of the results.

Insert Table 1 about here

Proposition 1 (the standard MLE weights are the asymptotic values of ;,

W5 and W5): the limit as n tends to o of 11/ is 1, of /5 is 1 and of W3 is 7%1 if

v is greater than 1. When ~ is equal or smaller to 1, the limit of W3 is
divergent.
To prove the limit of W and some of the following propositions, it is convenient

to deduce the sampling distribution of I¥/;. Assume a population X following a Weibull

N
distribution with true parameters v, /3 and . The quantity log <#(X)> equals <T”' ;O> .

~

Defining z; as <$g“> ,/, we find that the z; are distributed following an (unshifted)

exponential distribution with mean parameter 1 (Smith and Rose, 2002). The quantity
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Ly <”";“> equals )" ; = which is a convolution of 7 exponentially distributed

variates with mean parameter % This is known to result in a Gamma distribution with
parameters {n, %} (Townsend and Ashby, 1983, Luce, 1986). The expected value of W;
is therefore n X % = 1, whatever the sample size.

Regarding W5 and W3, we were unable to derive their sampling distributions and
to demonstrate the propositions.

Proposition 1, if correct, shows that for large n, the weighted MLE (Eq. 3) are
equivalent to the standard MLE (Eq. 2). Among other things, it means that
asymptotically, whenever standard MLE are efficient and normally distributed, so are the
weighted MLE. As shown in Smith, 1985, this is the case when v > 2.

Proposition 2: The sampling distribution of 1//; and W, depends only on the
sample size whereas the sampling distribution of 1V depends on the sample
size and the shape parameter of the population.

Regarding W, we already showed that the sampling distribution is Gamma with

5
parameters {n, %} Regarding W, note that the quantity log <#(X)> equals (%)

which follows an exponential distribution with rate parameter 1. Hence, the three sums in
W, are random variates which only depend on n. For W3, we don't have a formal
demonstration. However, we remark that the numerator follows a type-II distribution of
extreme (Fréchet) with scale parameter % and shape parameter v whereas the
denominator follows a type-II distribution of extreme with scale parameter % and shape

parameter 7%1 (Galambos, 1978, Gumbel, 1958).

Proposition 3: Regarding 11/, its mean value is 1 (irrespective of sample size);
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its median value is the median of a Gamma distribution with parameter {n,

11; and its geometric average value is xp(U(n) where 1(n) is the digamma

function given by I'(n)/T'(n). Regarding V>, its mean valueis 1 — 1.
The propositions regarding W, are all derived from the fact that its sampling
distribution is a Gamma distribution with parameter {n, %} The geometric average of W,

was obtained by finding the expected value of the transformed variable y; = log (z;),

n_lo z; s o
since (& (q’l) = elog(G(zi)) =e 7'_In o) = eE[lOg’(*i)] where G (sz) = A Hi:l Z; denotes the

geometric average (Rose and Smith, 2000).

The proposition regarding the mean of W5 is not demonstrated but Monte Carlo
simulations suggested this result.

In what follows, we use the following shortcuts: F; to denote the mean value of
W, G, to denote the geometric mean of W, and .J; to denote the median value of W;. As
suggested by Proposition 3, .J;, ./, GG1, G and F5 depend on 7 only. .J3, G3 and F5
depend on n and v and £/ is a constant. Whenever these quantities were not available in

closed form, we used Monte Carlo simulations to estimate them. To do so, we replaced in

5
Wi, W5 and W3, the terms log (#(”) = <r1;a> with z; which is a random variable

sampled form a standard exponential distribution In one simulation, » random deviates
were sampled and the W; estimated. This process was repeated 2°° times before
computing the mean, median or geometric average.’ Tables 2, 3 and 4 provide some

values as a function of sample sizes (and as a function of y for W5).

Insert Tables 2, 3 and 4 about here

The weights F5, G5 and .J5 have the advantage over the MLE weights to be
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everywhere defined, including at v = 1. Figure 2 shows the median weight .J; as a

function of +y for three sample sizes, along with the corresponding MLE weight 7%1 First

thing to note is that there is not discontinuity at v =1 and that the median values of W3 are
everywhere positive. Second thing to note is that the differences between the MLE
weights and the median weights becomes vanishingly small past v = 2 (this is also true
for the mean weight and the geometric average weight). It demonstrates that 1) the
sampling distribution of W5 tends to become symmetrical for v > 2 as the three measures
of central tendency become equals; ii) the solutions therefore must be asymptotically
unbiased whenever v > 2. In other words, the MLE solution behave as if the Weibull
distribution was satisfying the regularity conditions when v > 2 (which is not the case), a

results formally demonstrated by Smith (1985).

Insert Figure 2 about here

The mean of W is very difficult to estimate. We found using the Monte Carlo
simulations described above that its sampling distribution is skewed and with a high
kurtosis, resulting in a long tail to the right. The tail becomes very important when v < 1.
For example, for a v of 0.5, the median of W5 obtained from 10,000 Monte Carlo
simulations is approximately 13, but the largest value of W3 was almost 900,000. We
nevertheless provided estimates for F5 in Table 4, but even the first digit is not reliable
when v < 1. In contrast, estimating the median and the geometric average of W3 was
easier, the first two digits being reliable when obtained from 2*° Monte Carlo simulations
Figure 3 shows the distribution of W5 obtained from 10,000 Monte Carlo simulations for

three shape parameters.

Insert Figure 3 about here
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Point estimates and median bias

To compare the techniques, we need to define a measure of exactitude showing

how well the true parameters are recovered from random samples. Possible definitions of

~

exactitude are the mean bias (by, = E[0] — 01 where 0 is one parameter and F is the

N A

mean), the median bias (byiq = M d[f] — 0r) and the modal bias (by;, = M odel0] — 7).
The mean bias is not a good choice because if the distribution of the estimates is
skewed (as is certainly the case for small samples), the true parameter value is more
likely to be near the mode than the mean of the distribution. The modal bias is not a
convenient measure as it is difficult to estimate the mode of a sample. Hence, the median
bias is the preferred measure of exactitude (e.g. Cacciari & Montanari, 1994; Jacquelin,
1997). In addition, the following property holds for any continuous increasing
(decreasing) transformation U: Md(U(z)) = U(Md(z)).* In the following, we will use

the median bias to evaluate the estimation techniques.

Bias of the scale parameter assuming v and o are known

Regarding the parameter S given by equation 3, if we assume that v and « are

known, we can write:

1 < 8 . 1 i
W, ; (z; — ) = AMd (V) (W) ; (z; — ) "

Md(3) =Md | 7

Hence, the median bias of S when the median of the weight 1/ is used (.J;) should be
Zero.
This was confirmed by simulations. Across simulations, we varied the sample size

n {8, 16, 32} and the population shape v {0.5, 1.0, 1.5, 2.0, 2.5}. The scale and shift
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parameters, being scaling parameters (see Rouder et al., 2005, footnote 3 for a deﬁnitior11)3,
were held constant at {3 =100, o = 300}. The shape parameters were chosen such that
there are two for which the regular MLE should be both efficient and normally
distributed (v > 2), two for which the regular MLE should work but where the
distributions of the estimates are not normal (1 <y < 2) and the last case (7 < 1)
correspond to a situation for which there should be no consistent estimators (Smith,
1985).

For each simulation, a random sample of size n was generated and the best-fitting
scale parameter B was estimated using Equation 3 with three different weights: the
expected value of Wy (F4, which is always 1), its median value (./;) and its geometric

average value (G,). For each combination of n x v, 2'° such simulations were run and the

median estimated 3 was computed.

The results are reported in Table 5. As seen, when the median weight is used, the
median bias is very close to zero, as expected from Eq. 4. More importantly, the median
bias seems independent of the sample size and of the true population parameter. Hence,
the weight .J; returns a truly unbiased estimate of 5 (given the assumption that v and «
are known; more on this latter). Using the mean weight F/; produces an underestimated
median estimate and using (¢4, an overestimated median estimate. In the last two cases,
the estimates are better when 7 is large and when + is large. This last result is
understandable because as 7 increases, the Weibull distribution becomes more
symmetrical and the mean, median and geometric average weights tend toward identical

values.

Insert Table 5 about here
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Bias of the shape and shift parameters

Isolating the second weight from Eq. 3, we can write:

n

1 & S (i — ) log (z; — )
W, = —— log T; — =1
T ( D > PR

such that, using the geometric mean (whose following property is true for two

independent random variables: G (x;y;) = G (z;) G (y;)), we have:

Go=G(Wy) =G <7 (_% i log (z; — o) + Dizy <xin_ a)'log (xf' — @)>>

iy (T — )’

w0 (-} Symta-o B g gael)

Sadly, it is not possible to isolate G() in the other equation defining 4 and &. Hence, it is
not known whether G5 and (G5 would result in small biases or not. For that reason, we ran
another series of simulations estimating the parameters - and or. We followed the exact
same procedure as in the previous section.

Table 6 presents the results. As seen, the general quality of the estimations
increases with increasing sample sizes for all weights used. In addition, the shift
parameter « is generally well estimated. It is best estimated using the geometric average
weights G5 and (3. The worse estimates are obtained when F, and E; are used whereas
the median weights ./, and .J5 returns median estimates that are in-between.

Regarding the shape parameter, it is poorly estimated by the mean weights £> and
E5 (bias for very small sample sizes n = 8 of over 10%). However, the bias is reduced
fivefold by using the geometric mean weights Gjand G'3. Using the median weights ./,

and .J5 also does a god job, the bias being about half the bias of the mean weights £ and
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Es.

Using G5 and (s, the bias on vy rarely exceed 2%, whatever the true shape and the
sample size. The solution is not bias-free however since the biases are affected by sample
sizes. Contrary to the estimated scales, the estimated shapes and shifts are more
accurately estimated when v < 1. This is caused by the parameter a: When y < 1, the

distribution is exponential or hyper exponential and the smallest observation will

generally be very close to the true a.

Insert Table 6 about here

Simultaneous estimates of the three parameters

The above results (unbiased estimates of /3 using .J;, nearly unbiased estimates of
v and « using (G5 and (73) were established independently and, regarding /3, assuming the
exact values of 7 and «. In practical applications, the three parameters will be estimated
and the estimated /3’ will depends on the estimated 4 and & as well. In addition, even
though {7, o}, ¢, are least biased than {v, a} ;, s, it does not mean that the /3 obtained
from the former will be least biased that the B obtained from the latter. Because this
question is difficult to answer by examining the equations, we ran another series of
simulations.

We first examine the usual iterative MLE solutions (Eq. 1), which is a 1-step
method since all three parameters are estimated simultaneously. We also examined the
two-step method of Eq. 2. It is the same as equation 3 except that the asymptotic weights

1,1 and ’y——fl are used. Finally, we tested three sets of weights: {.J1, .Jo, J3}, {G1, G2, G3}

and a mixture of weights: {.J;, G5, G3}. This last mixture of weights was tested because
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(G, and G5 were the best weights for estimating v and « whereas .J; was the best weight16
for estimating /3. The procedure used was identical to the one previously used.
Some of the results are presented in Table 7. The median bias is seen for each
parameter individually. We also report a 3D-bias which is the median bias in the three-
dimensional parameter space, measured as the median length of the vector separating the

true parameters from the estimated parameters relative to the parameter vector length. In

equation:

Md (]|6 — 6|
3D
b3 = — x 100%

where 6 is the true parameter vector and g is one estimated parameter vector.

As seen, the iterative MLE does a very poor job for very small samples (n = 8)
with biases on 7 and 5 exceeding 25%. To see how bad this is, note that with a medium-
size sample (n = 32), the bias is worse than for the two-step MLE technique with a small
sample (n = 16) and also twice as worse than with the .J;, .J> and .J; weights with a very

small sample (n = 8).

Insert Table 7 about here

The three set of weights outperformed the two-step MLE. The set {.J;, .J5, J3}
(reported in Table 7) was the best one, followed by the mixture {.J;, G5, G3}. The set
{G4, G5, G3} was last with bias approximately 50% larger than those of {.J, .J5, J3}. Still,
the biases obtained by this last set were half those obtained by the 2-step MLE technique.

Examining the 3D biases for n = 16 and n = 32, we see that on average, the set of
weights {.J;, .Jo, J5} produced estimates that are about seven times less biased than the

iterative MLE estimates (average 3D bias of 0.187 for the iterative MLE vs. 0.025 for the
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weighted MLE) and 3.5 times les biased than the 2-step MLE technique (average 3D bialls7
of 0.085).

In parallel to bias, we also checked the efficiency of the techniques (efficiency
measures the variability of the estimates). This measure is important since the general
error of estimation is a function of both the systematic bias and the variability of the
estimate such that a biased estimate with high efficiency (low variability) can sometimes
be preferable to an unbiased estimate with weak efficiency.

We measured efficiency using the standard deviation of the estimates. Table 8
shows the results. As seen, the iterative MLE technique has the weakest efficiency for all
the sample sizes. However, the difference diminishes as sample size increases. This was
to be expected since the MLE technique is asymptotically the most efficient technique.
The two-step MLE and the two-step weighted MLE (using /1, .J; and .J5) have nearly

identical efficiencies, irrespective of the sample size and the population shape parameter

(the same result was also found for the other two sets of weights not shown in Table 8).

Insert Table 8 about here

Overall, the simulations showed that the two-step technique using the weights ./,
J5 and .J3 is considerably less bias than the MLE technique while having the same (large

n) or better efficiency.

General discussion

The present paper showed how to modify the regular MLE equations to obtained
nearly unbiased estimates. The exact values of the weights required are not known when

the true parameters are unknown, but their most probable values can be used. The
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weighted MLE technique (with median weights) works best for the three parameter ;
Weibull distribution and for the two-parameter Weibull distribution as well (as discussed
in Appendix C).

As we mentioned ealier, the third weight used by the standard MLE technique is
undefined when = 1 and inconsistent when v < 1. Using .J3, the median of the weight
W3, avoids the problem as it is defined for any . The Minimum Product Spacing (MPS)
technique solved this inconsistency problem using a slightly different approach: instead

of changing the weights, Cheng and Amin (1983) changed the probability measure.

Indeed, they replaced f (x;) with [7" | f (x;) dx. With this new measure, infinities that

occurred when the smallest x; was equal to « are avoided. Nevertheless, this technique
still returns biased estimates (Cousineau, Brown and Heathcote, 2004, Cousineau, in
preparation). The same also applies to the derived techniques, the Quantile Maximum
Product (QMPE, Heathcote, Brown and Cousineau, 2004) and the Quantile Product
Spacing (QPS, Speckman and Rouder, 2004).

This paper leaves two open questions: What are the sampling distributions of W,
and W3? Having them in closed-form would avoid the use of approximations (Tables 3
and 4), might increase the precision of the estimates and speed-up the fitting process.
Currently, we used lookup tables for GG5, G5, .J> and .J; that are accurate to two digits
only. Further, for the third weight, we only have the approximations as a function of vy
between v = 0.25 and v = 2.75 by multiples of 0.25. In between, linear interpolations are
used, even though the functions Fj3, GG3 and .J5 are not linear with respect to v (/53 was
seen in Figure 2). Despite these approximations, the technique can be programmed and

automatized. >
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Footnote

" In response time studies, v is often restricted to be smaller than 5 as response time
distributions are nearly always positively skewed or sometimes symmetrical (Hopkins
and Kristofferson, 1980). Hence,  should not be much beyond 3.602 (Rouder et al.,
2005).

*Note by the way that it is easy to see that the MLE solution is applicable only when

v > 1 (Smith, 1985). Indeed, when the shape parameter is 1, the ratio % found in the

second equation defining v and ¢ is undefined. Further, when 0 < <1, the term —ﬁ

takes a positive value. However, all the remaining terms of that equation are also all
strictly positive. This means that there is no MLE solution in those cases. Hence, as was
shown by Rockette et al. (1974), maximizing the likelihood function can lead to
inconsistent estimates.

* For programmers, note that computing the median of 1/, requires the computation of
I'(n) = (n — 1)! (see the cdf of the Gamma distribution, Luce, 1986). This number
rapidly exceeds the capacity of a long integer or a double float.

* This property is also true for the mode but not for the mean of a distribution.

> A Mathematica package, FitDataJacquelin.mx, along with two demos are available on

the author's web site, http://www.mapageweb.umontreal.ca/cousined/papers/35-FitData/.

This package was used for the simulations resulting in Tables 7, 8 and 9.
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Appendix A: The 2-step MLE for the Weibull distribution
In this appendix, we derive the MLE for the Weibull distribution. First note that

for the Weibull distribution,
log(¢(y, B, | X)) = —nylog(B)+nlog(y)+(v=1) Y log (wi — a)=B7" Y _ (z; — @)’

The derivative with respect to the scale parameter is

Olog(t(y. B, al X))  ny oy )
a9 ——/7'1‘5 7;(% a)

=1 (A.1)
It is the only parameter which can be isolated on the left-hand side of an equation. Note
that it requires the knowledge of the other two parameters to be computed.

The derivative with respect to vy yields:

dlog(L(v, B. | X))
vy

%—nlog(/i’)-i—z log (z; — )+ log(B) Z (z; —a)'=p7" (Z (z; — )" log (z; — a))

eplacing 5~ wit T—n 7 (€]. A.l), settmgt (§] equatlon €quals to zero, an
Replacing 57 with T=—t—— (eq. A.1), setting th i 1 d
n 2ui=1 @

(@i

dividing by n returns:

L LS g (0 — ) - DB ) i 0]

(xl - Oé) n ~
Zi:l (IL - a) (A.2)



Nearly unbiased Weibull parameters

24
Similarly for «, we get:
dlog(¢(y, 8,0l X)) " 3 .
2 =—(y—1 ’ i—a)
- (v );mi_aJrﬁ 7;@: @)

which is set equal to zero. After some reorganizations, including a replacement of 37
with 23" (2; — a)”, we get:

1 n 1 n z; — y

_Z X z;le (2 a~),—1 S 0

nri—a YU (1 — ) v—1 (A3)

Equations A.2 and A.3 define implicitly the two parameters v and «, which in turn can be

used to derive 3. This solution is called in the text a two-step MLE method.
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Appendix B: Deriving the weighted MLE solution from algebraic manipulations
In this appendix, we show how to derive the weighted MLE solution for the

Weibull distribution using algebraic manipulations. First, let define IV, as

12 (=)

(B.1)
where F' (z;) stands for short for I’ (z;| v, 3, ). From the Weibull cdf, we see that
W li r,—a\ 1 i( y
= — = — T —«
=N =
so that
B=7 ! zn:(m'—oz)7
nW1 - !
=1 (B.2)

Note that Equation B.2 is nearly identical to the standard MLE solution except for the
presence of the term ;. Similarly, we can find the second weighted MLE equation with

the following manipulations. Start with

o < 1 > _ (,1:7;—0()7: (x; — )’
S\1-F (i) s ﬁ Yoy (wi—a)’ (B.3)

obtained by inserting the definition of 57 (Eq. B.2). Taking the logarithms, we get:

o (10 (=) ) = s ( e a)”'>

= ~vlog (z; — a) — log <n;V1 Z (i — Oz)v)

1=1

(B.4)

Multiply Equations B.3 and B.4 together, and take the average:
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Dividing both side by W and replacing W, by its definition (Eq. B.1), we get:

S tog (= ) Tog (log (a7

> icy log (%)

_ i log (@ = a) (2 — ) 1 < §
=7 S (5 —a) — log (nwlg(a:i—a) )

=1

Subtracting to this equation the mean of Eq. B.4, we obtain

S log <1 e ) log <10g <7)>> 1 ilog (log (ﬁ))

2 i1 log (ﬁ(r))

Yo log (i — a) (z — a) 7 - .
>y (@i — )’ n ; o )

Let define the lhs of the above equation 5. We get:

4y Bhalalon o= a)_
2 =7 n

so that:
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W- 1 — " log (z; — z; — a)”
— T Z (J:l - Od) - 21:1 Ogn(L' Od) (J/'y Od) =0
v L Z (%’ - Ol) (B.6)

1=1
Again, this formula is pretty much the same as the standard MLE solution except

for the presence of a term WW5. Finally, we derive the last equation. We first examine

By taking the summation and dividing both sides by n, we have
1. B 1L 1 -5
- I 1 - -
n;xi—a n;<og<1_F(%)>>
The left part further simplifies to
05 25 (i)
— =— log | ————
n;xi—a n; 1—F(z;) (B.7)
In parallel, we examine the following ratio

(5) "= (e (=r)

~((5))

which yields, after summation and division by # on both sides:

'«/_1

y—1

2 (550) =ix e (=re))
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1 & Ll 1 =
o = 15 (e ()
npBr-1 ; n ; 1—F(x;) (B.8)
If we divide Equation B.7 by Equation B.8, we get for the right hand side:
B n 1 n
n 24i=1 7;,—a 1 1
1 n 1= BV_Z 1\ 71
5T iz (T — @) nig (wi—a)g i (wi—a)
iy 1 Sy
e (i — a) %Z?:l (i — O‘)Wil
and for the left hand side:
1
w Di <10g <1,;($1)>)
»\/__1
5 im <log (1_1;@1))) '
Defining W5 as
_1
LS~ (log ( L !
n =1 1—F(x;)
W3 - Wl y—1
%2?:1 <log <1—F1(1'i)>> ’
the whole equation becomes
I SIEUI S v )
n (x-—oz) lzf} (J}‘—Ot)’y_l 3=
=1 ¢ n 1=1 \*""? (B9)

which is identical to the third MLE equation except for a term Ws.
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Appendix C:
The two-parameter Weibull distribution
Because many disciplines use an unshifted Weibull distribution, we also verified
the ability of the weighted MLE to estimate parameters. Because there are only two
unknown parameters, we do not need three equations and the one involving W5 was

dropped. The method is thus:

~vel

2
5 — (W RS v log (z;) x]
{}w Min < 24 - E log (z;) — Dic1 0 ( w) )

TNt D i1 T
(C.1)

Simulations were run as previously except that there is no shift (&= 0) and Equation C.1
was used for estimating the parameters. Table C.1 presents the median biases obtained

for the iterative MLE and the .J;, .J; weighted MLE technique. The two-step MLE results
are not presented as they were strictly identical to the iterative MLE results. As seen, by
comparison with Table 7, the parameters are more accurately estimated when there are

only two unknown parameters. In addition, the scale parameter is equally well estimated
using both techniques. Only the shape parameter benefits from the use of a weight (./; in

this case).

Insert Table C.1 about here
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Figure Captions
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Figure 1. Examples of Weibull distributions with identical scale and shift parameters
{6 =100, « =300} but varying on the shape parameters. The case where v =1 is the
shifted exponential distribution. The value of 3 and « were chosen so that the distribution

resembles a distribution of response times of a well-trained participant.
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Figure 2. Median weight .J5 as a function of the shape parameter ~y for three different
sample sizes (n =4, n = 8 and n = 64). The dashed line shows the MLE weight, given

byv%l; this ratio is undefined at v = 1 and negative for v < 1.
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Table 1. The weights W3, W5 and W3 and their mean, median and geometric average values

W2 WS

St tos (=) s (los (=) 14

n 1 1 - i “
Formulae =D log (1 o ) . ——> log <10g <7>> Wi =
=1 ( ’) Zi:1 log (#(1’)) n i—1 1-— F (Tl) Z;I:l IOg (<1il‘}(‘r')) 5 )
: T
MLE solution 1 1 Ny —1
. oo  when vy <1
Limitas n — oo 1 1 .
—=  when vy >1
q
1
Mean E 1 1—— 9 *
n
et (n)
Geo. mean GG ? ?
n
Median .J 2 such that M = - 2 9
zI'(n)
E,GandJ
values n n n and vy
depends on

Note: X = {x;} represents a sample of size n;

I' (n) is the Gamma function; v (n) is the polygamma function.
*: the mean of W3 is very difficult to estimate numerically when v < 1.
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Table 2: The quantities £, GG; and .J; for sample sizes 1 to 16. All these values are based

on exact formula

n E1 g1 J1
1 1.000 0.561 0.693
2 1.000 0.763 0.839
3 1.000 0.839 0.891
4 1.000 0.878 0.918
3 1.000 0.302 0.5834
L1 1.000 0.918 0.845
7 1.000 0.5929 0.853
it 1.000 0.938 0.859
9 1.000 0.945 0.963
10 1.000 0.550 0.94a7
11 1.000 0.955 0.870
2 1.000 0.959 0.872
13 1.000 0.962 0.874
14 1.000 0.965 0.8974
15 1.000 0.9467 0.a978
1a 1.000 0.969 0.8749

Table 3: The quantities /5, (G5 and .J5 for sample sizes 1 to 16. G5 and .J; are obtained

through Monte Carlo simulations and are approximate to 2 digits.

n E; e T3
1 0.000 0.000 0.000
2 0.500 0.163 0.275
3 0.64a7 0.409 0.517
4 0.750 0.553 0.638
3 0.800 0.a642 0.711
i 0.833 0.702 0.759
7 0.857 0.742 0.791
g 0.875 0.775 0.817
9 0.889 0.800 0.838
10 0.300 0.820 0.853
11 0.3909 0.835 0.867
2 0.917 0.5849 0.877
13 0.923 0.8a0 0.88a
14 0.929 0.871 0.895
15 0.933 0.879 0.302
1la 0.938 0.887 0.308
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Table 4: The quantities F5, G'5 and .J3 for sample sizes 1 to 16 and for selected values of

the shape parameter ~. All the values are obtained through Monte Carlo simulations and

are approximate to 2 digits for GGs, .J3 and £3, v > 1; the precision of £, v <1 is

unknown.
Es
¥ = 0.5 ¥ = 1.0 ¥y = 1.5 v = 2.0 ¥ = 2.5
1 12.429 20.157 11.2711 12.483 24.798
2 15.452 11.54a7 4.18 3.147 2.771
3 33.320 14.372 3.701 2.594 2.225
4 73.132 368.570 3.480 2.411 2.043
5 686.530 14.812 3.431 2.309 1.948
L 27.540 11.751 3.297 2.235 1l.888
7 124,230 21.331 3.270 2.198 1.852
=1 99.608 13.2 3.192 2.170 1.831
9 97.148 14.822 3.178 2.154 l.808
10 447.a00 19.335 3.244 2.143 1.794
11 105.&aa80 13.879 3.185 2.120 1.779
2 le4.510 13.76a5 3.154 2.113 1.769
13 1368.390 2.762 3.109 2.109 1.759
14 342.220 14.270 3.111 2.099 1.755
15 1a88.430 14.737 3.110 2.091 1.748
1la 1588.130 13.6841 3.101 2.093 1.742
Gy
¥ = 0.5 ¥ = 1.0 ¥ = 1.5 ¥ = 2.0 ¥ o= 2.5
1 1.004 1.001 1.001 1.00& 1.002
2 2.395 1.851 1.524 1.3a0 1.268
3 3.e82 2.375 1.775 1.520 1.383
4 4.854 2.753 1.5934 1.803 1.438
5 £.005 3.0448 2.042 1.865 1.479
L 7.097 3.295 2.118 1.704 1.508a
7 2.103 3.497 2.184 1.740 1.528
g 9.145 3.865 2.229 1.766 1.543
9 10.133 3.842 2.278 1.778 1.552
10 11.104 3.966 2.312 1.800 1.564
11 2.190 4,083 2.354 1.817% 1.572
2 13.01% 4,152 2.378 1.829 1.583
13 13.898 4,280 2.403 1.838 1.582
14 14.857 4,387 2.423 1.842 1.591
15 15.819 4.4393 2.440 1.854 1.585
1a la.a04 4,581 2.4584 1.862 1.598
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Table 5: Median estimated scale parameter using the two-step weighted MLE technique

with weights F;, GGy or .J; when the true shape and shift parameters are known.

True ~y
Weight | 1.0 1.5 2.0 25 ~ Average . in
used bias percent
n=38
by 92.15 95.89 97.51 98.22 98.16 - 3.6 -3.6%
Gy 104.7 102.2 101.8 101.4 100.7 2.2 2.2%
J1 100.3 100.0 100.3 100.3 99.83 0.1 0.1%
n=16
by 95.33 97.10 98.38 98.78 99.16 - 23 -2.3%
Gy 101.5 100.2 100.5 100.3 100.4 0.6 0.6%
J1 99.61 99.76 99.76 99.82 99.99 - 02 -0.2%
n=32
Ey 97.60 98.85 99.28 99.40 99.67 - 1.0 -1.0%
Gy 100.7 100.4 100.3 100.2 100.30 0.4 0.4%
J1 99.67 99.89 99.97 99.93 100.08 - 0.1 -0.1%

Note: Negative bias means that the parameter is underestimated
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Table 6: Median estimated shape and shift parameters using the two-step weighted MLE

technique with weights F5 andF5, G5 and G, or .J5 and Js.

True ~y
Weights 0.5 1.0 1.5 2.0 g5  Average  in
used bias percent
n=8
E,2& E5 | y 0537 1.079 1.661 2226  2.763 0.153 10.2%
a 300. 208.3 2972 295.5 293.1 - 32 -3.2%
G, & G; | y 0.486 0.966  1.486 1.985  2.466 - 0.022 -1.5%
a 300.1 300.1 2994 298.3  296.6 - 1.1 -1.1%
Jy&Js |y 0.508 1.011 1.561 2.086  2.591 0.051 3.4%
a 300.1 299.5 2984 297. 295. - 20 -2.0%
n=16
E,2& E;| y 03518 1.032 1.587 2.113  2.664 0.083 5.5%
a 300. 299.1 2983 297. 296.4 - 1.8 -1.8%
G, & G; | y 0497 0.987 1.515 2.015  2.537 0.010 0.7%
a 300. 299.5  299.1 298.2  297.7 - 1.1 -1.1%
Jy&Js | y 0.505 1.005 1.544 2.056  2.589 0.040 2.7%
a 300. 2994  298.8 297.7  297.1 - 14 -1.4%
n=32
E,2& E5 | y 0.506 1.02 1.542 2.059  2.591 0.044 2.9%
a 300. 299.8 2984 298.1  297.6 - 1.2 -1.2%
G, & G; | y 0.496 1. 1.508 2.01 2.528 0.008 0.5%
a 300. 2999  298.7 298.6  298.2 - 0.9 -0.9%
Jy&Js | y 0.5 1.008 1.523 2.031 2.553 0.023 1.5%
a 300. 299.8  298.6 2984  298. - 1.0 -1.0%

Note: Note: Negative bias means that the parameter is underestimated
The percent bias for the parameter « is relative to the scale parameter.
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Table 7: Median estimated parameters using the iterative MLE technique, the two-step MLE technique and

the two-step weighted MLE technique with weights ./, /> and .J3.

True 7y
Method 0.5 1.0 1.5 2.0 2.5 Af.rage in percent
1aS
n=3§
Iterative y 0366 0447 0.487 1.288 1.703 - 0.642  43.4%
MLE B 9345  60.78 6139  61.95 66.8 - 31.13 31.1%
o 3007 3073 3165 320. 3235 13.60 -13.6%
3D 275% 679%  78.0% 52.5%  46.7%  54.5%
two-step y  0.608 1.23 1.851 2.499 3.162 0370  -23.9%
MLE B 99.14 9867 103.3 106.5 109.5 3.422 -3.4%
a 2997 2969 2944 2928 280.6 - 5.320 5.3%
3D 216% 23.1%  237% 259%  284%  24.5%
two-step y 0508 1.03 1.529  2.07 2.605 0.048 2.8%
T I Js B 939 94.21 97.51  99.33 1032 - 2370 2.4%
a 300 299.7 298.8 2983 2946 - 1.720 1.7%
3D 63%  65% 32%  3.6% 5.6 % 5.0 %
n=16
lterative | y 0.442  0.661 1.248 1.726 2.099 - 0.265 18.4%
MLE B 1073  80.3 81.38  83.05 82.00 - 13.18 13.2%
o 3002 3042 308.6 3114 314.6 7.80 -7.8%
3D 137% 392%  252% 221%  245% 249%
two-step | y 0.55 1.094 1.667  2.243 2.811 0.173  -11.0%
MLE B 97.42 100.1 101.7 103.6 104.4 1.444 -1.4%
o 300.0  299.2 297. 296. 295.6 - 2.440 2.4%
3D 103%  9.4% 113% 127%  133% 11.4%
two-step | y 0.513 1.014 1.538  2.06 2.578 0.041 2.5%
I s | B 9588  98.3 99.75 100.9 1014 - 0.754 0.8%
o 300. 299.8 2984  298. 298. - 1.160 1.2%
3 48%  22% 26%  32% 3.5% 3.3%
n=32
lterative | y 0.469  0.827 1.393 1.829 2353 - 0.126 9.0%
MLE B 1052 90.32 91.53  90.79 91.31 - 6.17 6.2%
o 300.1 301.8 3044 3068 306. 3.82 -3.8%
3D 80%  198%  112% 128%  10.7% 12.5%
two-step | y 0.515 1.043 1.594  2.115 2.678 0.089 -5.3%
MLE B 100.1 99.9 101.7 101.8 101.6 1.020 -1.0%
o 300.0  299.6 2983 2975 2974 - 1.440 1.4%
3D 3.0% 4.3 % 65%  6.1% 7.4 % 5.5%
two-step | y 0.498 1.007 1.535  2.033 2.569 0.028 -1.4%
I s | B 99.6 99.36 100.8 100.8 100.5 0.212 -0.2%
o 300.0  299.7 298.8 2983 2984 - 0.960 1.0%
3D 05%  09% 25%  1.9% 2.8% 1.7 %

Note: The percent bias for the parameter «v is relative to the scale parameter;

Negative bias means that the parameter is underestimated,

3D represents the median distance between the true vector parameter and the estimated
vector parameter relative to the length of the true vector parameter.
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technique, the two-step MLE technique and the two-step weighted MLE technique with weights J;, J, and

Ja.
True 7y
Method 0.5 1.0 1.5 2.0 2.5 Average
efficiency
n=8
Iterative y 0.084 0.321 0.777 1.41 1.813 0.881
MLE B 59.54 37.59 35.22 40.05 41.86 42.85
a  2.569 5.425 14.54 24.68 29.15 15.27
two-step y  0.116 0.158 0.175 0.199 0.207 0.171
MLE B 59.34 25.91 20.31 18.92 19.22 28.74
o 1.853 7.211 12.69 14.52 16.55 10.56
two-step y  0.101 0.133 0.154 0.178 0.182 0.150
Iy, I Js B 56.38 25.2 19.76 17.2 18.03 27.31
o 1.833 7.127 11.82 14.07 16.06 10.18
n=16
Iterative y 0.074 0.142 0.536 0.582 0.918 0.450
MLE s 4122 20.73 18.89 20.29 26.52 25.53
a  0.666 3.94 7.635 14.94 21.48 9.732
two-step y  0.075 0.111 0.129 0.156 0.17 0.128
MLE S 36.13 18.39 13.31 12.29 12.42 18.51
a 0519 3.969 7.201 9.291 10.61 6.318
two-step y  0.07 0.104 0.124 0.148 0.161 0.121
Ji, Jo, J; B 35.67 17.94 13.01 12. 12.09 18.14
o 0535 3.991 7.057 9.158 10.35 6.218
n=32
Iterative y  0.051 0.105 0.202 0.348 0.587 0.259
MLE S 31.38 11.47 11.41 12.64 16.4 16.66
a 0.181 1.903 4.704 9.004 14.63 6.08
two-step y  0.048 0.084 0.099 0.111 0.135 0.095
MLE s 2554 12.43 8.894 8.603 7.789 12.65
a  0.153 1.833 4.036 5.76 6.769 3.71
two-step y  0.047 0.082 0.096 0.11 0.133 0.094
Iy, I Js B 2543 12.39 8.927 8.603 7.847 12.64
o 0.156 1.861 3.999 5.718 6.81 3.71

Note: The percent bias for the parameter « is relative to the scale parameter;
Negative bias means that the parameter is underestimated.
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Table C.1: Median estimated parameters using the iterative MLE technique and the two-step weighted
MLE technique with weights J; and J, for the two-parameter Weibull distribution.

True vy
Method 0.5 1.0 1.5 2.0 25  Average  inpercent
bias
n=8§8
Iterative y 0.564 1.145 1.690 2.265 2.895 0.212 13.8%
MLE B 92.26 97.2 98.7 98.54 98.39 - 298 -3.0%
two-step /4 0.496 1.01 1.488 2.004 2.537 0.007 0.2%
Ji I i) 92.6 96.8 98.5 98.4 98.2 - 310 -3.1%
n=16
Iterative y 0.543 1.061 1.562 2.115 2.649 0.086 6.1%
MLE B 101.4 98.78 98.61 100.0 100.1 - 0.222 -0.2%
two-step | y 0.501 1.001 1.475 1.990 2.501 - 0.006 -0.4%
Ji, Jr B 100.9 98.51 98.47 99.87 100.0 - 0450 -0.5%
n=32
Iterative y 0.519 1.031 1.545 2.085 2.575 0.051 3.4%
MLE B 98.84 99.05 99.78 99.89 99.83 - 0.522 -0.5%
two-step | y 0.504 1.000 1.501 2.026 2.499 0.006 0.4%
Ji, Jr B 98.51 98.89 99.69 99.82 99.78 - 0.662 -0.7%

Note: Negative bias means that the parameter is underestimated,



